13 KiB
slug | sidebar_position | sidebar_label |
---|---|---|
/en/sql-reference/aggregate-functions/combinators | 37 | Combinators |
Aggregate Function Combinators
The name of an aggregate function can have a suffix appended to it. This changes the way the aggregate function works.
-If
The suffix -If can be appended to the name of any aggregate function. In this case, the aggregate function accepts an extra argument – a condition (Uint8 type). The aggregate function processes only the rows that trigger the condition. If the condition was not triggered even once, it returns a default value (usually zeros or empty strings).
Examples: sumIf(column, cond)
, countIf(cond)
, avgIf(x, cond)
, quantilesTimingIf(level1, level2)(x, cond)
, argMinIf(arg, val, cond)
and so on.
With conditional aggregate functions, you can calculate aggregates for several conditions at once, without using subqueries and JOIN
s. For example, conditional aggregate functions can be used to implement the segment comparison functionality.
-Array
The -Array suffix can be appended to any aggregate function. In this case, the aggregate function takes arguments of the ‘Array(T)’ type (arrays) instead of ‘T’ type arguments. If the aggregate function accepts multiple arguments, this must be arrays of equal lengths. When processing arrays, the aggregate function works like the original aggregate function across all array elements.
Example 1: sumArray(arr)
- Totals all the elements of all ‘arr’ arrays. In this example, it could have been written more simply: sum(arraySum(arr))
.
Example 2: uniqArray(arr)
– Counts the number of unique elements in all ‘arr’ arrays. This could be done an easier way: uniq(arrayJoin(arr))
, but it’s not always possible to add ‘arrayJoin’ to a query.
-If and -Array can be combined. However, ‘Array’ must come first, then ‘If’. Examples: uniqArrayIf(arr, cond)
, quantilesTimingArrayIf(level1, level2)(arr, cond)
. Due to this order, the ‘cond’ argument won’t be an array.
-Map
The -Map suffix can be appended to any aggregate function. This will create an aggregate function which gets Map type as an argument, and aggregates values of each key of the map separately using the specified aggregate function. The result is also of a Map type.
Example
CREATE TABLE map_map(
date Date,
timeslot DateTime,
status Map(String, UInt64)
) ENGINE = Log;
INSERT INTO map_map VALUES
('2000-01-01', '2000-01-01 00:00:00', (['a', 'b', 'c'], [10, 10, 10])),
('2000-01-01', '2000-01-01 00:00:00', (['c', 'd', 'e'], [10, 10, 10])),
('2000-01-01', '2000-01-01 00:01:00', (['d', 'e', 'f'], [10, 10, 10])),
('2000-01-01', '2000-01-01 00:01:00', (['f', 'g', 'g'], [10, 10, 10]));
SELECT
timeslot,
sumMap(status),
avgMap(status),
minMap(status)
FROM map_map
GROUP BY timeslot;
┌────────────timeslot─┬─sumMap(status)───────────────────────┬─avgMap(status)───────────────────────┬─minMap(status)───────────────────────┐
│ 2000-01-01 00:00:00 │ {'a':10,'b':10,'c':20,'d':10,'e':10} │ {'a':10,'b':10,'c':10,'d':10,'e':10} │ {'a':10,'b':10,'c':10,'d':10,'e':10} │
│ 2000-01-01 00:01:00 │ {'d':10,'e':10,'f':20,'g':20} │ {'d':10,'e':10,'f':10,'g':10} │ {'d':10,'e':10,'f':10,'g':10} │
└─────────────────────┴──────────────────────────────────────┴──────────────────────────────────────┴──────────────────────────────────────┘
-SimpleState
If you apply this combinator, the aggregate function returns the same value but with a different type. This is a SimpleAggregateFunction(...) that can be stored in a table to work with AggregatingMergeTree tables.
Syntax
<aggFunction>SimpleState(x)
Arguments
x
— Aggregate function parameters.
Returned values
The value of an aggregate function with the SimpleAggregateFunction(...)
type.
Example
Query:
WITH anySimpleState(number) AS c SELECT toTypeName(c), c FROM numbers(1);
Result:
┌─toTypeName(c)────────────────────────┬─c─┐
│ SimpleAggregateFunction(any, UInt64) │ 0 │
└──────────────────────────────────────┴───┘
-State
If you apply this combinator, the aggregate function does not return the resulting value (such as the number of unique values for the uniq function), but an intermediate state of the aggregation (for uniq
, this is the hash table for calculating the number of unique values). This is an AggregateFunction(...)
that can be used for further processing or stored in a table to finish aggregating later.
To work with these states, use:
- AggregatingMergeTree table engine.
- finalizeAggregation function.
- runningAccumulate function.
- -Merge combinator.
- -MergeState combinator.
-Merge
If you apply this combinator, the aggregate function takes the intermediate aggregation state as an argument, combines the states to finish aggregation, and returns the resulting value.
-MergeState
Merges the intermediate aggregation states in the same way as the -Merge combinator. However, it does not return the resulting value, but an intermediate aggregation state, similar to the -State combinator.
-ForEach
Converts an aggregate function for tables into an aggregate function for arrays that aggregates the corresponding array items and returns an array of results. For example, sumForEach
for the arrays [1, 2]
, [3, 4, 5]
and[6, 7]
returns the result [10, 13, 5]
after adding together the corresponding array items.
-Distinct
Every unique combination of arguments will be aggregated only once. Repeating values are ignored.
Examples: sum(DISTINCT x)
, groupArray(DISTINCT x)
, corrStableDistinct(DISTINCT x, y)
and so on.
-OrDefault
Changes behavior of an aggregate function.
If an aggregate function does not have input values, with this combinator it returns the default value for its return data type. Applies to the aggregate functions that can take empty input data.
-OrDefault
can be used with other combinators.
Syntax
<aggFunction>OrDefault(x)
Arguments
x
— Aggregate function parameters.
Returned values
Returns the default value of an aggregate function’s return type if there is nothing to aggregate.
Type depends on the aggregate function used.
Example
Query:
SELECT avg(number), avgOrDefault(number) FROM numbers(0)
Result:
┌─avg(number)─┬─avgOrDefault(number)─┐
│ nan │ 0 │
└─────────────┴──────────────────────┘
Also -OrDefault
can be used with another combinators. It is useful when the aggregate function does not accept the empty input.
Query:
SELECT avgOrDefaultIf(x, x > 10)
FROM
(
SELECT toDecimal32(1.23, 2) AS x
)
Result:
┌─avgOrDefaultIf(x, greater(x, 10))─┐
│ 0.00 │
└───────────────────────────────────┘
-OrNull
Changes behavior of an aggregate function.
This combinator converts a result of an aggregate function to the Nullable data type. If the aggregate function does not have values to calculate it returns NULL.
-OrNull
can be used with other combinators.
Syntax
<aggFunction>OrNull(x)
Arguments
x
— Aggregate function parameters.
Returned values
- The result of the aggregate function, converted to the
Nullable
data type. NULL
, if there is nothing to aggregate.
Type: Nullable(aggregate function return type)
.
Example
Add -orNull
to the end of aggregate function.
Query:
SELECT sumOrNull(number), toTypeName(sumOrNull(number)) FROM numbers(10) WHERE number > 10
Result:
┌─sumOrNull(number)─┬─toTypeName(sumOrNull(number))─┐
│ ᴺᵁᴸᴸ │ Nullable(UInt64) │
└───────────────────┴───────────────────────────────┘
Also -OrNull
can be used with another combinators. It is useful when the aggregate function does not accept the empty input.
Query:
SELECT avgOrNullIf(x, x > 10)
FROM
(
SELECT toDecimal32(1.23, 2) AS x
)
Result:
┌─avgOrNullIf(x, greater(x, 10))─┐
│ ᴺᵁᴸᴸ │
└────────────────────────────────┘
-Resample
Lets you divide data into groups, and then separately aggregates the data in those groups. Groups are created by splitting the values from one column into intervals.
<aggFunction>Resample(start, end, step)(<aggFunction_params>, resampling_key)
Arguments
start
— Starting value of the whole required interval forresampling_key
values.stop
— Ending value of the whole required interval forresampling_key
values. The whole interval does not include thestop
value[start, stop)
.step
— Step for separating the whole interval into subintervals. TheaggFunction
is executed over each of those subintervals independently.resampling_key
— Column whose values are used for separating data into intervals.aggFunction_params
—aggFunction
parameters.
Returned values
- Array of
aggFunction
results for each subinterval.
Example
Consider the people
table with the following data:
┌─name───┬─age─┬─wage─┐
│ John │ 16 │ 10 │
│ Alice │ 30 │ 15 │
│ Mary │ 35 │ 8 │
│ Evelyn │ 48 │ 11.5 │
│ David │ 62 │ 9.9 │
│ Brian │ 60 │ 16 │
└────────┴─────┴──────┘
Let’s get the names of the people whose age lies in the intervals of [30,60)
and [60,75)
. Since we use integer representation for age, we get ages in the [30, 59]
and [60,74]
intervals.
To aggregate names in an array, we use the groupArray aggregate function. It takes one argument. In our case, it’s the name
column. The groupArrayResample
function should use the age
column to aggregate names by age. To define the required intervals, we pass the 30, 75, 30
arguments into the groupArrayResample
function.
SELECT groupArrayResample(30, 75, 30)(name, age) FROM people
┌─groupArrayResample(30, 75, 30)(name, age)─────┐
│ [['Alice','Mary','Evelyn'],['David','Brian']] │
└───────────────────────────────────────────────┘
Consider the results.
Jonh
is out of the sample because he’s too young. Other people are distributed according to the specified age intervals.
Now let’s count the total number of people and their average wage in the specified age intervals.
SELECT
countResample(30, 75, 30)(name, age) AS amount,
avgResample(30, 75, 30)(wage, age) AS avg_wage
FROM people
┌─amount─┬─avg_wage──────────────────┐
│ [3,2] │ [11.5,12.949999809265137] │
└────────┴───────────────────────────┘