ClickHouse/src/Storages/Distributed/DistributedSink.cpp
2021-07-26 19:48:25 +03:00

759 lines
26 KiB
C++

#include <Storages/Distributed/DistributedSink.h>
#include <Storages/Distributed/DirectoryMonitor.h>
#include <Storages/StorageDistributed.h>
#include <Disks/StoragePolicy.h>
#include <Parsers/formatAST.h>
#include <Parsers/queryToString.h>
#include <IO/WriteBufferFromFile.h>
#include <Compression/CompressedWriteBuffer.h>
#include <IO/Operators.h>
#include <IO/WriteBufferFromString.h>
#include <IO/ConnectionTimeoutsContext.h>
#include <DataStreams/NativeBlockOutputStream.h>
#include <DataStreams/RemoteBlockOutputStream.h>
#include <DataStreams/ConvertingBlockInputStream.h>
#include <DataStreams/OneBlockInputStream.h>
#include <Interpreters/InterpreterInsertQuery.h>
#include <Interpreters/ExpressionActions.h>
#include <Interpreters/Context.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypeLowCardinality.h>
#include <Common/setThreadName.h>
#include <Common/CurrentMetrics.h>
#include <Common/typeid_cast.h>
#include <Common/Exception.h>
#include <Common/ProfileEvents.h>
#include <Common/escapeForFileName.h>
#include <Common/CurrentThread.h>
#include <Common/createHardLink.h>
#include <common/logger_useful.h>
#include <common/range.h>
#include <common/scope_guard.h>
#include <future>
#include <condition_variable>
#include <mutex>
#include <filesystem>
namespace CurrentMetrics
{
extern const Metric DistributedSend;
}
namespace ProfileEvents
{
extern const Event DistributedSyncInsertionTimeoutExceeded;
}
namespace fs = std::filesystem;
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int TIMEOUT_EXCEEDED;
extern const int TOO_LARGE_DISTRIBUTED_DEPTH;
}
static Block adoptBlock(const Block & header, const Block & block, Poco::Logger * log)
{
if (blocksHaveEqualStructure(header, block))
return block;
LOG_WARNING(log,
"Structure does not match (remote: {}, local: {}), implicit conversion will be done.",
header.dumpStructure(), block.dumpStructure());
ConvertingBlockInputStream convert(
std::make_shared<OneBlockInputStream>(block),
header,
ConvertingBlockInputStream::MatchColumnsMode::Name);
return convert.read();
}
static void writeBlockConvert(const BlockOutputStreamPtr & out, const Block & block, size_t repeats, Poco::Logger * log)
{
Block adopted_block = adoptBlock(out->getHeader(), block, log);
for (size_t i = 0; i < repeats; ++i)
out->write(adopted_block);
}
DistributedSink::DistributedSink(
ContextPtr context_,
StorageDistributed & storage_,
const StorageMetadataPtr & metadata_snapshot_,
const ASTPtr & query_ast_,
const ClusterPtr & cluster_,
bool insert_sync_,
UInt64 insert_timeout_,
StorageID main_table_)
: SinkToStorage(metadata_snapshot_->getSampleBlock())
, context(Context::createCopy(context_))
, storage(storage_)
, metadata_snapshot(metadata_snapshot_)
, query_ast(query_ast_)
, query_string(queryToString(query_ast_))
, cluster(cluster_)
, insert_sync(insert_sync_)
, allow_materialized(context->getSettingsRef().insert_allow_materialized_columns)
, insert_timeout(insert_timeout_)
, main_table(main_table_)
, log(&Poco::Logger::get("DistributedBlockOutputStream"))
{
const auto & settings = context->getSettingsRef();
if (settings.max_distributed_depth && context->getClientInfo().distributed_depth > settings.max_distributed_depth)
throw Exception("Maximum distributed depth exceeded", ErrorCodes::TOO_LARGE_DISTRIBUTED_DEPTH);
context->getClientInfo().distributed_depth += 1;
random_shard_insert = settings.insert_distributed_one_random_shard && !storage.has_sharding_key;
}
void DistributedSink::consume(Chunk chunk)
{
if (is_first_chunk)
{
storage.delayInsertOrThrowIfNeeded();
is_first_chunk = false;
}
auto ordinary_block = getPort().getHeader().cloneWithColumns(chunk.detachColumns());
if (!allow_materialized)
{
/* They are added by the AddingDefaultBlockOutputStream, and we will get
* different number of columns eventually */
for (const auto & col : metadata_snapshot->getColumns().getMaterialized())
{
if (ordinary_block.has(col.name))
{
ordinary_block.erase(col.name);
LOG_DEBUG(log, "{}: column {} will be removed, because it is MATERIALIZED",
storage.getStorageID().getNameForLogs(), col.name);
}
}
}
if (insert_sync)
writeSync(ordinary_block);
else
writeAsync(ordinary_block);
}
void DistributedSink::writeAsync(const Block & block)
{
if (random_shard_insert)
{
writeAsyncImpl(block, storage.getRandomShardIndex(cluster->getShardsInfo()));
++inserted_blocks;
}
else
{
if (storage.getShardingKeyExpr() && (cluster->getShardsInfo().size() > 1))
return writeSplitAsync(block);
writeAsyncImpl(block);
++inserted_blocks;
}
}
std::string DistributedSink::getCurrentStateDescription()
{
WriteBufferFromOwnString buffer;
const auto & addresses = cluster->getShardsAddresses();
buffer << "Insertion status:\n";
for (auto & shard_jobs : per_shard_jobs)
for (JobReplica & job : shard_jobs.replicas_jobs)
{
buffer << "Wrote " << job.blocks_written << " blocks and " << job.rows_written << " rows"
<< " on shard " << job.shard_index << " replica " << job.replica_index
<< ", " << addresses[job.shard_index][job.replica_index].readableString();
/// Performance statistics
if (job.blocks_started > 0)
{
buffer << " (average " << job.elapsed_time_ms / job.blocks_started << " ms per block";
if (job.blocks_started > 1)
buffer << ", the slowest block " << job.max_elapsed_time_for_block_ms << " ms";
buffer << ")";
}
buffer << "\n";
}
return buffer.str();
}
void DistributedSink::initWritingJobs(const Block & first_block, size_t start, size_t end)
{
const Settings & settings = context->getSettingsRef();
const auto & addresses_with_failovers = cluster->getShardsAddresses();
const auto & shards_info = cluster->getShardsInfo();
size_t num_shards = end - start;
remote_jobs_count = 0;
local_jobs_count = 0;
per_shard_jobs.resize(shards_info.size());
for (size_t shard_index : collections::range(start, end))
{
const auto & shard_info = shards_info[shard_index];
auto & shard_jobs = per_shard_jobs[shard_index];
/// If hasInternalReplication, than prefer local replica (if !prefer_localhost_replica)
if (!shard_info.hasInternalReplication() || !shard_info.isLocal() || !settings.prefer_localhost_replica)
{
const auto & replicas = addresses_with_failovers[shard_index];
for (size_t replica_index : collections::range(0, replicas.size()))
{
if (!replicas[replica_index].is_local || !settings.prefer_localhost_replica)
{
shard_jobs.replicas_jobs.emplace_back(shard_index, replica_index, false, first_block);
++remote_jobs_count;
if (shard_info.hasInternalReplication())
break;
}
}
}
if (shard_info.isLocal() && settings.prefer_localhost_replica)
{
shard_jobs.replicas_jobs.emplace_back(shard_index, 0, true, first_block);
++local_jobs_count;
}
if (num_shards > 1)
shard_jobs.shard_current_block_permutation.reserve(first_block.rows());
}
}
void DistributedSink::waitForJobs()
{
pool->wait();
if (insert_timeout)
{
if (static_cast<UInt64>(watch.elapsedSeconds()) > insert_timeout)
{
ProfileEvents::increment(ProfileEvents::DistributedSyncInsertionTimeoutExceeded);
throw Exception("Synchronous distributed insert timeout exceeded.", ErrorCodes::TIMEOUT_EXCEEDED);
}
}
size_t num_finished_jobs = finished_jobs_count;
if (random_shard_insert)
{
if (finished_jobs_count != 1)
LOG_WARNING(log, "Expected 1 writing jobs when doing random shard insert, but finished {}", num_finished_jobs);
}
else
{
size_t jobs_count = remote_jobs_count + local_jobs_count;
if (num_finished_jobs < jobs_count)
LOG_WARNING(log, "Expected {} writing jobs, but finished only {}", jobs_count, num_finished_jobs);
}
}
ThreadPool::Job
DistributedSink::runWritingJob(JobReplica & job, const Block & current_block, size_t num_shards)
{
auto thread_group = CurrentThread::getGroup();
return [this, thread_group, &job, &current_block, num_shards]()
{
if (thread_group)
CurrentThread::attachToIfDetached(thread_group);
setThreadName("DistrOutStrProc");
++job.blocks_started;
SCOPE_EXIT({
++finished_jobs_count;
UInt64 elapsed_time_for_block_ms = watch_current_block.elapsedMilliseconds();
job.elapsed_time_ms += elapsed_time_for_block_ms;
job.max_elapsed_time_for_block_ms = std::max(job.max_elapsed_time_for_block_ms, elapsed_time_for_block_ms);
});
const auto & shard_info = cluster->getShardsInfo()[job.shard_index];
auto & shard_job = per_shard_jobs[job.shard_index];
const auto & addresses = cluster->getShardsAddresses();
/// Generate current shard block
if (num_shards > 1)
{
auto & shard_permutation = shard_job.shard_current_block_permutation;
size_t num_shard_rows = shard_permutation.size();
for (size_t j = 0; j < current_block.columns(); ++j)
{
const auto & src_column = current_block.getByPosition(j).column;
auto & dst_column = job.current_shard_block.getByPosition(j).column;
/// Zero permutation size has special meaning in IColumn::permute
if (num_shard_rows)
dst_column = src_column->permute(shard_permutation, num_shard_rows);
else
dst_column = src_column->cloneEmpty();
}
}
const Block & shard_block = (num_shards > 1) ? job.current_shard_block : current_block;
const Settings & settings = context->getSettingsRef();
/// Do not initiate INSERT for empty block.
if (shard_block.rows() == 0)
return;
if (!job.is_local_job || !settings.prefer_localhost_replica)
{
if (!job.stream)
{
auto timeouts = ConnectionTimeouts::getTCPTimeoutsWithFailover(settings);
if (shard_info.hasInternalReplication())
{
/// Skip replica_index in case of internal replication
if (shard_job.replicas_jobs.size() != 1)
throw Exception("There are several writing job for an automatically replicated shard", ErrorCodes::LOGICAL_ERROR);
/// TODO: it make sense to rewrite skip_unavailable_shards and max_parallel_replicas here
auto results = shard_info.pool->getManyChecked(timeouts, &settings, PoolMode::GET_ONE, main_table.getQualifiedName());
if (results.empty() || results.front().entry.isNull())
throw Exception("Expected exactly one connection for shard " + toString(job.shard_index), ErrorCodes::LOGICAL_ERROR);
job.connection_entry = std::move(results.front().entry);
}
else
{
const auto & replica = addresses.at(job.shard_index).at(job.replica_index);
const ConnectionPoolPtr & connection_pool = shard_info.per_replica_pools.at(job.replica_index);
if (!connection_pool)
throw Exception("Connection pool for replica " + replica.readableString() + " does not exist", ErrorCodes::LOGICAL_ERROR);
job.connection_entry = connection_pool->get(timeouts, &settings);
if (job.connection_entry.isNull())
throw Exception("Got empty connection for replica" + replica.readableString(), ErrorCodes::LOGICAL_ERROR);
}
if (throttler)
job.connection_entry->setThrottler(throttler);
job.stream = std::make_shared<RemoteBlockOutputStream>(
*job.connection_entry, timeouts, query_string, settings, context->getClientInfo());
job.stream->writePrefix();
}
CurrentMetrics::Increment metric_increment{CurrentMetrics::DistributedSend};
Block adopted_shard_block = adoptBlock(job.stream->getHeader(), shard_block, log);
job.stream->write(adopted_shard_block);
}
else // local
{
if (!job.stream)
{
/// Forward user settings
job.local_context = Context::createCopy(context);
/// Copying of the query AST is required to avoid race,
/// in case of INSERT into multiple local shards.
///
/// Since INSERT into local node uses AST,
/// and InterpreterInsertQuery::execute() is modifying it,
/// to resolve tables (in InterpreterInsertQuery::getTable())
auto copy_query_ast = query_ast->clone();
InterpreterInsertQuery interp(copy_query_ast, job.local_context, allow_materialized);
auto block_io = interp.execute();
job.stream = block_io.out;
job.stream->writePrefix();
}
writeBlockConvert(job.stream, shard_block, shard_info.getLocalNodeCount(), log);
}
job.blocks_written += 1;
job.rows_written += shard_block.rows();
};
}
void DistributedSink::writeSync(const Block & block)
{
const Settings & settings = context->getSettingsRef();
const auto & shards_info = cluster->getShardsInfo();
size_t start = 0;
size_t end = shards_info.size();
if (settings.insert_shard_id)
{
start = settings.insert_shard_id - 1;
end = settings.insert_shard_id;
}
if (!pool)
{
/// Deferred initialization. Only for sync insertion.
initWritingJobs(block, start, end);
size_t jobs_count = random_shard_insert ? 1 : (remote_jobs_count + local_jobs_count);
size_t max_threads = std::min<size_t>(settings.max_distributed_connections, jobs_count);
pool.emplace(/* max_threads_= */ max_threads,
/* max_free_threads_= */ max_threads,
/* queue_size_= */ jobs_count);
if (!throttler && (settings.max_network_bandwidth || settings.max_network_bytes))
{
throttler = std::make_shared<Throttler>(settings.max_network_bandwidth, settings.max_network_bytes,
"Network bandwidth limit for a query exceeded.");
}
watch.restart();
}
watch_current_block.restart();
if (random_shard_insert)
{
start = storage.getRandomShardIndex(shards_info);
end = start + 1;
}
size_t num_shards = end - start;
if (num_shards > 1)
{
auto current_selector = createSelector(block);
/// Prepare row numbers for needed shards
for (size_t shard_index : collections::range(start, end))
per_shard_jobs[shard_index].shard_current_block_permutation.resize(0);
for (size_t i = 0; i < block.rows(); ++i)
per_shard_jobs[current_selector[i]].shard_current_block_permutation.push_back(i);
}
try
{
/// Run jobs in parallel for each block and wait them
finished_jobs_count = 0;
for (size_t shard_index : collections::range(start, end))
for (JobReplica & job : per_shard_jobs[shard_index].replicas_jobs)
pool->scheduleOrThrowOnError(runWritingJob(job, block, num_shards));
}
catch (...)
{
pool->wait();
throw;
}
try
{
waitForJobs();
}
catch (Exception & exception)
{
exception.addMessage(getCurrentStateDescription());
throw;
}
inserted_blocks += 1;
inserted_rows += block.rows();
}
void DistributedSink::onFinish()
{
auto log_performance = [this]()
{
double elapsed = watch.elapsedSeconds();
LOG_DEBUG(log, "It took {} sec. to insert {} blocks, {} rows per second. {}", elapsed, inserted_blocks, inserted_rows / elapsed, getCurrentStateDescription());
};
/// Pool finished means that some exception had been thrown before,
/// and scheduling new jobs will return "Cannot schedule a task" error.
if (insert_sync && pool && !pool->finished())
{
finished_jobs_count = 0;
try
{
for (auto & shard_jobs : per_shard_jobs)
{
for (JobReplica & job : shard_jobs.replicas_jobs)
{
if (job.stream)
{
pool->scheduleOrThrowOnError([&job]()
{
job.stream->writeSuffix();
});
}
}
}
}
catch (...)
{
pool->wait();
throw;
}
try
{
pool->wait();
log_performance();
}
catch (Exception & exception)
{
log_performance();
exception.addMessage(getCurrentStateDescription());
throw;
}
}
}
IColumn::Selector DistributedSink::createSelector(const Block & source_block) const
{
Block current_block_with_sharding_key_expr = source_block;
storage.getShardingKeyExpr()->execute(current_block_with_sharding_key_expr);
const auto & key_column = current_block_with_sharding_key_expr.getByName(storage.getShardingKeyColumnName());
return storage.createSelector(cluster, key_column);
}
Blocks DistributedSink::splitBlock(const Block & block)
{
auto selector = createSelector(block);
/// Split block to num_shard smaller block, using 'selector'.
const size_t num_shards = cluster->getShardsInfo().size();
Blocks splitted_blocks(num_shards);
for (size_t shard_idx = 0; shard_idx < num_shards; ++shard_idx)
splitted_blocks[shard_idx] = block.cloneEmpty();
size_t columns_in_block = block.columns();
for (size_t col_idx_in_block = 0; col_idx_in_block < columns_in_block; ++col_idx_in_block)
{
MutableColumns splitted_columns = block.getByPosition(col_idx_in_block).column->scatter(num_shards, selector);
for (size_t shard_idx = 0; shard_idx < num_shards; ++shard_idx)
splitted_blocks[shard_idx].getByPosition(col_idx_in_block).column = std::move(splitted_columns[shard_idx]);
}
return splitted_blocks;
}
void DistributedSink::writeSplitAsync(const Block & block)
{
Blocks splitted_blocks = splitBlock(block);
const size_t num_shards = splitted_blocks.size();
for (size_t shard_idx = 0; shard_idx < num_shards; ++shard_idx)
if (splitted_blocks[shard_idx].rows())
writeAsyncImpl(splitted_blocks[shard_idx], shard_idx);
++inserted_blocks;
}
void DistributedSink::writeAsyncImpl(const Block & block, size_t shard_id)
{
const auto & shard_info = cluster->getShardsInfo()[shard_id];
const auto & settings = context->getSettingsRef();
if (shard_info.hasInternalReplication())
{
if (shard_info.isLocal() && settings.prefer_localhost_replica)
/// Prefer insert into current instance directly
writeToLocal(block, shard_info.getLocalNodeCount());
else
{
const auto & path = shard_info.insertPathForInternalReplication(
settings.prefer_localhost_replica,
settings.use_compact_format_in_distributed_parts_names);
if (path.empty())
throw Exception("Directory name for async inserts is empty", ErrorCodes::LOGICAL_ERROR);
writeToShard(block, {path});
}
}
else
{
if (shard_info.isLocal() && settings.prefer_localhost_replica)
writeToLocal(block, shard_info.getLocalNodeCount());
std::vector<std::string> dir_names;
for (const auto & address : cluster->getShardsAddresses()[shard_id])
if (!address.is_local || !settings.prefer_localhost_replica)
dir_names.push_back(address.toFullString(settings.use_compact_format_in_distributed_parts_names));
if (!dir_names.empty())
writeToShard(block, dir_names);
}
}
void DistributedSink::writeToLocal(const Block & block, size_t repeats)
{
InterpreterInsertQuery interp(query_ast, context, allow_materialized);
auto block_io = interp.execute();
block_io.out->writePrefix();
writeBlockConvert(block_io.out, block, repeats, log);
block_io.out->writeSuffix();
}
void DistributedSink::writeToShard(const Block & block, const std::vector<std::string> & dir_names)
{
const auto & settings = context->getSettingsRef();
const auto & distributed_settings = storage.getDistributedSettingsRef();
bool fsync = distributed_settings.fsync_after_insert;
bool dir_fsync = distributed_settings.fsync_directories;
std::string compression_method = Poco::toUpper(settings.network_compression_method.toString());
std::optional<int> compression_level;
if (compression_method == "ZSTD")
compression_level = settings.network_zstd_compression_level;
CompressionCodecFactory::instance().validateCodec(compression_method, compression_level, !settings.allow_suspicious_codecs, settings.allow_experimental_codecs);
CompressionCodecPtr compression_codec = CompressionCodecFactory::instance().get(compression_method, compression_level);
/// tmp directory is used to ensure atomicity of transactions
/// and keep monitor thread out from reading incomplete data
std::string first_file_tmp_path;
auto reservation = storage.getStoragePolicy()->reserveAndCheck(block.bytes());
const auto disk = reservation->getDisk();
auto disk_path = disk->getPath();
auto data_path = storage.getRelativeDataPath();
auto make_directory_sync_guard = [&](const std::string & current_path)
{
SyncGuardPtr guard;
if (dir_fsync)
{
const std::string relative_path(data_path + current_path);
guard = disk->getDirectorySyncGuard(relative_path);
}
return guard;
};
auto it = dir_names.begin();
/// on first iteration write block to a temporary directory for subsequent
/// hardlinking to ensure the inode is not freed until we're done
{
const std::string path(disk_path + data_path + *it);
const std::string tmp_path(path + "/tmp/");
fs::create_directory(path);
fs::create_directory(tmp_path);
const std::string file_name(toString(storage.file_names_increment.get()) + ".bin");
first_file_tmp_path = tmp_path + file_name;
/// Write batch to temporary location
{
auto tmp_dir_sync_guard = make_directory_sync_guard(*it + "/tmp/");
WriteBufferFromFile out{first_file_tmp_path};
CompressedWriteBuffer compress{out, compression_codec};
NativeBlockOutputStream stream{compress, DBMS_TCP_PROTOCOL_VERSION, block.cloneEmpty()};
/// Prepare the header.
/// See also readDistributedHeader() in DirectoryMonitor (for reading side)
///
/// We wrap the header into a string for compatibility with older versions:
/// a shard will able to read the header partly and ignore other parts based on its version.
WriteBufferFromOwnString header_buf;
writeVarUInt(DBMS_TCP_PROTOCOL_VERSION, header_buf);
writeStringBinary(query_string, header_buf);
context->getSettingsRef().write(header_buf);
context->getClientInfo().write(header_buf, DBMS_TCP_PROTOCOL_VERSION);
writeVarUInt(block.rows(), header_buf);
writeVarUInt(block.bytes(), header_buf);
writeStringBinary(block.cloneEmpty().dumpStructure(), header_buf); /// obsolete
/// Write block header separately in the batch header.
/// It is required for checking does conversion is required or not.
{
NativeBlockOutputStream header_stream{header_buf, DBMS_TCP_PROTOCOL_VERSION, block.cloneEmpty()};
header_stream.write(block.cloneEmpty());
}
/// Add new fields here, for example:
/// writeVarUInt(my_new_data, header_buf);
/// And note that it is safe, because we have checksum and size for header.
/// Write the header.
const StringRef header = header_buf.stringRef();
writeVarUInt(DBMS_DISTRIBUTED_SIGNATURE_HEADER, out);
writeStringBinary(header, out);
writePODBinary(CityHash_v1_0_2::CityHash128(header.data, header.size), out);
stream.writePrefix();
stream.write(block);
stream.writeSuffix();
out.finalize();
if (fsync)
out.sync();
}
// Create hardlink here to reuse increment number
const std::string block_file_path(fs::path(path) / file_name);
createHardLink(first_file_tmp_path, block_file_path);
auto dir_sync_guard = make_directory_sync_guard(*it);
}
++it;
/// Make hardlinks
for (; it != dir_names.end(); ++it)
{
const std::string path(fs::path(disk_path) / (data_path + *it));
fs::create_directory(path);
const std::string block_file_path(fs::path(path) / (toString(storage.file_names_increment.get()) + ".bin"));
createHardLink(first_file_tmp_path, block_file_path);
auto dir_sync_guard = make_directory_sync_guard(*it);
}
auto file_size = fs::file_size(first_file_tmp_path);
/// remove the temporary file, enabling the OS to reclaim inode after all threads
/// have removed their corresponding files
fs::remove(first_file_tmp_path);
/// Notify
auto sleep_ms = context->getSettingsRef().distributed_directory_monitor_sleep_time_ms;
for (const auto & dir_name : dir_names)
{
auto & directory_monitor = storage.requireDirectoryMonitor(disk, dir_name, /* startup= */ false);
directory_monitor.addAndSchedule(file_size, sleep_ms.totalMilliseconds());
}
}
}