mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-14 19:45:11 +00:00
615 lines
22 KiB
C++
615 lines
22 KiB
C++
// Copyright 2008 The RE2 Authors. All Rights Reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Tested by search_test.cc.
|
|
//
|
|
// Prog::SearchOnePass is an efficient implementation of
|
|
// regular expression search with submatch tracking for
|
|
// what I call "one-pass regular expressions". (An alternate
|
|
// name might be "backtracking-free regular expressions".)
|
|
//
|
|
// One-pass regular expressions have the property that
|
|
// at each input byte during an anchored match, there may be
|
|
// multiple alternatives but only one can proceed for any
|
|
// given input byte.
|
|
//
|
|
// For example, the regexp /x*yx*/ is one-pass: you read
|
|
// x's until a y, then you read the y, then you keep reading x's.
|
|
// At no point do you have to guess what to do or back up
|
|
// and try a different guess.
|
|
//
|
|
// On the other hand, /x*x/ is not one-pass: when you're
|
|
// looking at an input "x", it's not clear whether you should
|
|
// use it to extend the x* or as the final x.
|
|
//
|
|
// More examples: /([^ ]*) (.*)/ is one-pass; /(.*) (.*)/ is not.
|
|
// /(\d+)-(\d+)/ is one-pass; /(\d+).(\d+)/ is not.
|
|
//
|
|
// A simple intuition for identifying one-pass regular expressions
|
|
// is that it's always immediately obvious when a repetition ends.
|
|
// It must also be immediately obvious which branch of an | to take:
|
|
//
|
|
// /x(y|z)/ is one-pass, but /(xy|xz)/ is not.
|
|
//
|
|
// The NFA-based search in nfa.cc does some bookkeeping to
|
|
// avoid the need for backtracking and its associated exponential blowup.
|
|
// But if we have a one-pass regular expression, there is no
|
|
// possibility of backtracking, so there is no need for the
|
|
// extra bookkeeping. Hence, this code.
|
|
//
|
|
// On a one-pass regular expression, the NFA code in nfa.cc
|
|
// runs at about 1/20 of the backtracking-based PCRE speed.
|
|
// In contrast, the code in this file runs at about the same
|
|
// speed as PCRE.
|
|
//
|
|
// One-pass regular expressions get used a lot when RE is
|
|
// used for parsing simple strings, so it pays off to
|
|
// notice them and handle them efficiently.
|
|
//
|
|
// See also Anne Brüggemann-Klein and Derick Wood,
|
|
// "One-unambiguous regular languages", Information and Computation 142(2).
|
|
|
|
#include <string.h>
|
|
#include <map>
|
|
#include "util/util.h"
|
|
#include "util/arena.h"
|
|
#include "util/sparse_set.h"
|
|
#include "re2/prog.h"
|
|
#include "re2/stringpiece.h"
|
|
|
|
namespace re2 {
|
|
|
|
static const int Debug = 0;
|
|
|
|
// The key insight behind this implementation is that the
|
|
// non-determinism in an NFA for a one-pass regular expression
|
|
// is contained. To explain what that means, first a
|
|
// refresher about what regular expression programs look like
|
|
// and how the usual NFA execution runs.
|
|
//
|
|
// In a regular expression program, only the kInstByteRange
|
|
// instruction processes an input byte c and moves on to the
|
|
// next byte in the string (it does so if c is in the given range).
|
|
// The kInstByteRange instructions correspond to literal characters
|
|
// and character classes in the regular expression.
|
|
//
|
|
// The kInstAlt instructions are used as wiring to connect the
|
|
// kInstByteRange instructions together in interesting ways when
|
|
// implementing | + and *.
|
|
// The kInstAlt instruction forks execution, like a goto that
|
|
// jumps to ip->out() and ip->out1() in parallel. Each of the
|
|
// resulting computation paths is called a thread.
|
|
//
|
|
// The other instructions -- kInstEmptyWidth, kInstMatch, kInstCapture --
|
|
// are interesting in their own right but like kInstAlt they don't
|
|
// advance the input pointer. Only kInstByteRange does.
|
|
//
|
|
// The automaton execution in nfa.cc runs all the possible
|
|
// threads of execution in lock-step over the input. To process
|
|
// a particular byte, each thread gets run until it either dies
|
|
// or finds a kInstByteRange instruction matching the byte.
|
|
// If the latter happens, the thread stops just past the
|
|
// kInstByteRange instruction (at ip->out()) and waits for
|
|
// the other threads to finish processing the input byte.
|
|
// Then, once all the threads have processed that input byte,
|
|
// the whole process repeats. The kInstAlt state instruction
|
|
// might create new threads during input processing, but no
|
|
// matter what, all the threads stop after a kInstByteRange
|
|
// and wait for the other threads to "catch up".
|
|
// Running in lock step like this ensures that the NFA reads
|
|
// the input string only once.
|
|
//
|
|
// Each thread maintains its own set of capture registers
|
|
// (the string positions at which it executed the kInstCapture
|
|
// instructions corresponding to capturing parentheses in the
|
|
// regular expression). Repeated copying of the capture registers
|
|
// is the main performance bottleneck in the NFA implementation.
|
|
//
|
|
// A regular expression program is "one-pass" if, no matter what
|
|
// the input string, there is only one thread that makes it
|
|
// past a kInstByteRange instruction at each input byte. This means
|
|
// that there is in some sense only one active thread throughout
|
|
// the execution. Other threads might be created during the
|
|
// processing of an input byte, but they are ephemeral: only one
|
|
// thread is left to start processing the next input byte.
|
|
// This is what I meant above when I said the non-determinism
|
|
// was "contained".
|
|
//
|
|
// To execute a one-pass regular expression program, we can build
|
|
// a DFA (no non-determinism) that has at most as many states as
|
|
// the NFA (compare this to the possibly exponential number of states
|
|
// in the general case). Each state records, for each possible
|
|
// input byte, the next state along with the conditions required
|
|
// before entering that state -- empty-width flags that must be true
|
|
// and capture operations that must be performed. It also records
|
|
// whether a set of conditions required to finish a match at that
|
|
// point in the input rather than process the next byte.
|
|
|
|
// A state in the one-pass NFA (aka DFA) - just an array of actions.
|
|
struct OneState;
|
|
|
|
// A state in the one-pass NFA - just an array of actions indexed
|
|
// by the bytemap_[] of the next input byte. (The bytemap
|
|
// maps next input bytes into equivalence classes, to reduce
|
|
// the memory footprint.)
|
|
struct OneState {
|
|
uint32 matchcond; // conditions to match right now.
|
|
uint32 action[1];
|
|
};
|
|
|
|
// The uint32 conditions in the action are a combination of
|
|
// condition and capture bits and the next state. The bottom 16 bits
|
|
// are the condition and capture bits, and the top 16 are the index of
|
|
// the next state.
|
|
//
|
|
// Bits 0-5 are the empty-width flags from prog.h.
|
|
// Bit 6 is kMatchWins, which means the match takes
|
|
// priority over moving to next in a first-match search.
|
|
// The remaining bits mark capture registers that should
|
|
// be set to the current input position. The capture bits
|
|
// start at index 2, since the search loop can take care of
|
|
// cap[0], cap[1] (the overall match position).
|
|
// That means we can handle up to 5 capturing parens: $1 through $4, plus $0.
|
|
// No input position can satisfy both kEmptyWordBoundary
|
|
// and kEmptyNonWordBoundary, so we can use that as a sentinel
|
|
// instead of needing an extra bit.
|
|
|
|
static const int kIndexShift = 16; // number of bits below index
|
|
static const int kEmptyShift = 6; // number of empty flags in prog.h
|
|
static const int kRealCapShift = kEmptyShift + 1;
|
|
static const int kRealMaxCap = (kIndexShift - kRealCapShift) / 2 * 2;
|
|
|
|
// Parameters used to skip over cap[0], cap[1].
|
|
static const int kCapShift = kRealCapShift - 2;
|
|
static const int kMaxCap = kRealMaxCap + 2;
|
|
|
|
static const uint32 kMatchWins = 1 << kEmptyShift;
|
|
static const uint32 kCapMask = ((1 << kRealMaxCap) - 1) << kRealCapShift;
|
|
|
|
static const uint32 kImpossible = kEmptyWordBoundary | kEmptyNonWordBoundary;
|
|
|
|
// Check, at compile time, that prog.h agrees with math above.
|
|
// This function is never called.
|
|
void OnePass_Checks() {
|
|
COMPILE_ASSERT((1<<kEmptyShift)-1 == kEmptyAllFlags,
|
|
kEmptyShift_disagrees_with_kEmptyAllFlags);
|
|
// kMaxCap counts pointers, kMaxOnePassCapture counts pairs.
|
|
COMPILE_ASSERT(kMaxCap == Prog::kMaxOnePassCapture*2,
|
|
kMaxCap_disagrees_with_kMaxOnePassCapture);
|
|
}
|
|
|
|
static bool Satisfy(uint32 cond, const StringPiece& context, const char* p) {
|
|
uint32 satisfied = Prog::EmptyFlags(context, p);
|
|
if (cond & kEmptyAllFlags & ~satisfied)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// Apply the capture bits in cond, saving p to the appropriate
|
|
// locations in cap[].
|
|
static void ApplyCaptures(uint32 cond, const char* p,
|
|
const char** cap, int ncap) {
|
|
for (int i = 2; i < ncap; i++)
|
|
if (cond & (1 << kCapShift << i))
|
|
cap[i] = p;
|
|
}
|
|
|
|
// Compute a node pointer.
|
|
// Basically (OneState*)(nodes + statesize*nodeindex)
|
|
// but the version with the C++ casts overflows 80 characters (and is ugly).
|
|
static inline OneState* IndexToNode(volatile uint8* nodes, int statesize,
|
|
int nodeindex) {
|
|
return reinterpret_cast<OneState*>(
|
|
const_cast<uint8*>(nodes + statesize*nodeindex));
|
|
}
|
|
|
|
bool Prog::SearchOnePass(const StringPiece& text,
|
|
const StringPiece& const_context,
|
|
Anchor anchor, MatchKind kind,
|
|
StringPiece* match, int nmatch) {
|
|
if (anchor != kAnchored && kind != kFullMatch) {
|
|
LOG(DFATAL) << "Cannot use SearchOnePass for unanchored matches.";
|
|
return false;
|
|
}
|
|
|
|
// Make sure we have at least cap[1],
|
|
// because we use it to tell if we matched.
|
|
int ncap = 2*nmatch;
|
|
if (ncap < 2)
|
|
ncap = 2;
|
|
|
|
const char* cap[kMaxCap];
|
|
for (int i = 0; i < ncap; i++)
|
|
cap[i] = NULL;
|
|
|
|
const char* matchcap[kMaxCap];
|
|
for (int i = 0; i < ncap; i++)
|
|
matchcap[i] = NULL;
|
|
|
|
StringPiece context = const_context;
|
|
if (context.begin() == NULL)
|
|
context = text;
|
|
if (anchor_start() && context.begin() != text.begin())
|
|
return false;
|
|
if (anchor_end() && context.end() != text.end())
|
|
return false;
|
|
if (anchor_end())
|
|
kind = kFullMatch;
|
|
|
|
// State and act are marked volatile to
|
|
// keep the compiler from re-ordering the
|
|
// memory accesses walking over the NFA.
|
|
// This is worth about 5%.
|
|
volatile OneState* state = onepass_start_;
|
|
volatile uint8* nodes = onepass_nodes_;
|
|
volatile uint32 statesize = onepass_statesize_;
|
|
uint8* bytemap = bytemap_;
|
|
const char* bp = text.begin();
|
|
const char* ep = text.end();
|
|
const char* p;
|
|
bool matched = false;
|
|
matchcap[0] = bp;
|
|
cap[0] = bp;
|
|
uint32 nextmatchcond = state->matchcond;
|
|
for (p = bp; p < ep; p++) {
|
|
int c = bytemap[*p & 0xFF];
|
|
uint32 matchcond = nextmatchcond;
|
|
uint32 cond = state->action[c];
|
|
|
|
// Determine whether we can reach act->next.
|
|
// If so, advance state and nextmatchcond.
|
|
if ((cond & kEmptyAllFlags) == 0 || Satisfy(cond, context, p)) {
|
|
uint32 nextindex = cond >> kIndexShift;
|
|
state = IndexToNode(nodes, statesize, nextindex);
|
|
nextmatchcond = state->matchcond;
|
|
} else {
|
|
state = NULL;
|
|
nextmatchcond = kImpossible;
|
|
}
|
|
|
|
// This code section is carefully tuned.
|
|
// The goto sequence is about 10% faster than the
|
|
// obvious rewrite as a large if statement in the
|
|
// ASCIIMatchRE2 and DotMatchRE2 benchmarks.
|
|
|
|
// Saving the match capture registers is expensive.
|
|
// Is this intermediate match worth thinking about?
|
|
|
|
// Not if we want a full match.
|
|
if (kind == kFullMatch)
|
|
goto skipmatch;
|
|
|
|
// Not if it's impossible.
|
|
if (matchcond == kImpossible)
|
|
goto skipmatch;
|
|
|
|
// Not if the possible match is beaten by the certain
|
|
// match at the next byte. When this test is useless
|
|
// (e.g., HTTPPartialMatchRE2) it slows the loop by
|
|
// about 10%, but when it avoids work (e.g., DotMatchRE2),
|
|
// it cuts the loop execution by about 45%.
|
|
if ((cond & kMatchWins) == 0 && (nextmatchcond & kEmptyAllFlags) == 0)
|
|
goto skipmatch;
|
|
|
|
// Finally, the match conditions must be satisfied.
|
|
if ((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p)) {
|
|
for (int i = 2; i < 2*nmatch; i++)
|
|
matchcap[i] = cap[i];
|
|
if (nmatch > 1 && (matchcond & kCapMask))
|
|
ApplyCaptures(matchcond, p, matchcap, ncap);
|
|
matchcap[1] = p;
|
|
matched = true;
|
|
|
|
// If we're in longest match mode, we have to keep
|
|
// going and see if we find a longer match.
|
|
// In first match mode, we can stop if the match
|
|
// takes priority over the next state for this input byte.
|
|
// That bit is per-input byte and thus in cond, not matchcond.
|
|
if (kind == kFirstMatch && (cond & kMatchWins))
|
|
goto done;
|
|
}
|
|
|
|
skipmatch:
|
|
if (state == NULL)
|
|
goto done;
|
|
if ((cond & kCapMask) && nmatch > 1)
|
|
ApplyCaptures(cond, p, cap, ncap);
|
|
}
|
|
|
|
// Look for match at end of input.
|
|
{
|
|
uint32 matchcond = state->matchcond;
|
|
if (matchcond != kImpossible &&
|
|
((matchcond & kEmptyAllFlags) == 0 || Satisfy(matchcond, context, p))) {
|
|
if (nmatch > 1 && (matchcond & kCapMask))
|
|
ApplyCaptures(matchcond, p, cap, ncap);
|
|
for (int i = 2; i < ncap; i++)
|
|
matchcap[i] = cap[i];
|
|
matchcap[1] = p;
|
|
matched = true;
|
|
}
|
|
}
|
|
|
|
done:
|
|
if (!matched)
|
|
return false;
|
|
for (int i = 0; i < nmatch; i++)
|
|
match[i].set(matchcap[2*i], matchcap[2*i+1] - matchcap[2*i]);
|
|
return true;
|
|
}
|
|
|
|
|
|
// Analysis to determine whether a given regexp program is one-pass.
|
|
|
|
// If ip is not on workq, adds ip to work queue and returns true.
|
|
// If ip is already on work queue, does nothing and returns false.
|
|
// If ip is NULL, does nothing and returns true (pretends to add it).
|
|
typedef SparseSet Instq;
|
|
static bool AddQ(Instq *q, int id) {
|
|
if (id == 0)
|
|
return true;
|
|
if (q->contains(id))
|
|
return false;
|
|
q->insert(id);
|
|
return true;
|
|
}
|
|
|
|
struct InstCond {
|
|
int id;
|
|
uint32 cond;
|
|
};
|
|
|
|
// Returns whether this is a one-pass program; that is,
|
|
// returns whether it is safe to use SearchOnePass on this program.
|
|
// These conditions must be true for any instruction ip:
|
|
//
|
|
// (1) for any other Inst nip, there is at most one input-free
|
|
// path from ip to nip.
|
|
// (2) there is at most one kInstByte instruction reachable from
|
|
// ip that matches any particular byte c.
|
|
// (3) there is at most one input-free path from ip to a kInstMatch
|
|
// instruction.
|
|
//
|
|
// This is actually just a conservative approximation: it might
|
|
// return false when the answer is true, when kInstEmptyWidth
|
|
// instructions are involved.
|
|
// Constructs and saves corresponding one-pass NFA on success.
|
|
bool Prog::IsOnePass() {
|
|
if (did_onepass_)
|
|
return onepass_start_ != NULL;
|
|
did_onepass_ = true;
|
|
|
|
if (start() == 0) // no match
|
|
return false;
|
|
|
|
// Steal memory for the one-pass NFA from the overall DFA budget.
|
|
// Willing to use at most 1/4 of the DFA budget (heuristic).
|
|
// Limit max node count to 65000 as a conservative estimate to
|
|
// avoid overflowing 16-bit node index in encoding.
|
|
int maxnodes = 2 + byte_inst_count_;
|
|
int statesize = sizeof(OneState) + (bytemap_range_-1)*sizeof(uint32);
|
|
if (maxnodes >= 65000 || dfa_mem_ / 4 / statesize < maxnodes)
|
|
return false;
|
|
|
|
// Flood the graph starting at the start state, and check
|
|
// that in each reachable state, each possible byte leads
|
|
// to a unique next state.
|
|
int size = this->size();
|
|
InstCond *stack = new InstCond[size];
|
|
|
|
int* nodebyid = new int[size]; // indexed by ip
|
|
memset(nodebyid, 0xFF, size*sizeof nodebyid[0]);
|
|
|
|
uint8* nodes = new uint8[maxnodes*statesize];
|
|
uint8* nodep = nodes;
|
|
|
|
Instq tovisit(size), workq(size);
|
|
AddQ(&tovisit, start());
|
|
nodebyid[start()] = 0;
|
|
nodep += statesize;
|
|
int nalloc = 1;
|
|
for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
|
|
int id = *it;
|
|
int nodeindex = nodebyid[id];
|
|
OneState* node = IndexToNode(nodes, statesize, nodeindex);
|
|
|
|
// Flood graph using manual stack, filling in actions as found.
|
|
// Default is none.
|
|
for (int b = 0; b < bytemap_range_; b++)
|
|
node->action[b] = kImpossible;
|
|
node->matchcond = kImpossible;
|
|
|
|
workq.clear();
|
|
bool matched = false;
|
|
int nstack = 0;
|
|
stack[nstack].id = id;
|
|
stack[nstack++].cond = 0;
|
|
while (nstack > 0) {
|
|
int id = stack[--nstack].id;
|
|
Prog::Inst* ip = inst(id);
|
|
uint32 cond = stack[nstack].cond;
|
|
switch (ip->opcode()) {
|
|
case kInstAltMatch:
|
|
// TODO(rsc): Ignoring kInstAltMatch optimization.
|
|
// Should implement it in this engine, but it's subtle.
|
|
// Fall through.
|
|
case kInstAlt:
|
|
// If already on work queue, (1) is violated: bail out.
|
|
if (!AddQ(&workq, ip->out()) || !AddQ(&workq, ip->out1()))
|
|
goto fail;
|
|
stack[nstack].id = ip->out1();
|
|
stack[nstack++].cond = cond;
|
|
stack[nstack].id = ip->out();
|
|
stack[nstack++].cond = cond;
|
|
break;
|
|
|
|
case kInstByteRange: {
|
|
int nextindex = nodebyid[ip->out()];
|
|
if (nextindex == -1) {
|
|
if (nalloc >= maxnodes) {
|
|
if (Debug)
|
|
LOG(ERROR)
|
|
<< StringPrintf("Not OnePass: hit node limit %d > %d",
|
|
nalloc, maxnodes);
|
|
goto fail;
|
|
}
|
|
nextindex = nalloc;
|
|
nodep += statesize;
|
|
nodebyid[ip->out()] = nextindex;
|
|
nalloc++;
|
|
AddQ(&tovisit, ip->out());
|
|
}
|
|
if (matched)
|
|
cond |= kMatchWins;
|
|
for (int c = ip->lo(); c <= ip->hi(); c++) {
|
|
int b = bytemap_[c];
|
|
c = unbytemap_[b]; // last c in byte class
|
|
uint32 act = node->action[b];
|
|
uint32 newact = (nextindex << kIndexShift) | cond;
|
|
if ((act & kImpossible) == kImpossible) {
|
|
node->action[b] = newact;
|
|
} else if (act != newact) {
|
|
if (Debug) {
|
|
LOG(ERROR)
|
|
<< StringPrintf("Not OnePass: conflict on byte "
|
|
"%#x at state %d",
|
|
c, *it);
|
|
}
|
|
goto fail;
|
|
}
|
|
}
|
|
if (ip->foldcase()) {
|
|
Rune lo = max<Rune>(ip->lo(), 'a') + 'A' - 'a';
|
|
Rune hi = min<Rune>(ip->hi(), 'z') + 'A' - 'a';
|
|
for (int c = lo; c <= hi; c++) {
|
|
int b = bytemap_[c];
|
|
c = unbytemap_[b]; // last c in class
|
|
uint32 act = node->action[b];
|
|
uint32 newact = (nextindex << kIndexShift) | cond;
|
|
if ((act & kImpossible) == kImpossible) {
|
|
node->action[b] = newact;
|
|
} else if (act != newact) {
|
|
if (Debug) {
|
|
LOG(ERROR)
|
|
<< StringPrintf("Not OnePass: conflict on byte "
|
|
"%#x at state %d",
|
|
c, *it);
|
|
}
|
|
goto fail;
|
|
}
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
case kInstCapture:
|
|
if (ip->cap() < kMaxCap)
|
|
cond |= (1 << kCapShift) << ip->cap();
|
|
goto QueueEmpty;
|
|
|
|
case kInstEmptyWidth:
|
|
cond |= ip->empty();
|
|
goto QueueEmpty;
|
|
|
|
case kInstNop:
|
|
QueueEmpty:
|
|
// kInstCapture and kInstNop always proceed to ip->out().
|
|
// kInstEmptyWidth only sometimes proceeds to ip->out(),
|
|
// but as a conservative approximation we assume it always does.
|
|
// We could be a little more precise by looking at what c
|
|
// is, but that seems like overkill.
|
|
|
|
// If already on work queue, (1) is violated: bail out.
|
|
if (!AddQ(&workq, ip->out())) {
|
|
if (Debug) {
|
|
LOG(ERROR) << StringPrintf("Not OnePass: multiple paths"
|
|
" %d -> %d\n",
|
|
*it, ip->out());
|
|
}
|
|
goto fail;
|
|
}
|
|
stack[nstack].id = ip->out();
|
|
stack[nstack++].cond = cond;
|
|
break;
|
|
|
|
case kInstMatch:
|
|
if (matched) {
|
|
// (3) is violated
|
|
if (Debug) {
|
|
LOG(ERROR) << StringPrintf("Not OnePass: multiple matches"
|
|
" from %d\n", *it);
|
|
}
|
|
goto fail;
|
|
}
|
|
matched = true;
|
|
node->matchcond = cond;
|
|
break;
|
|
|
|
case kInstFail:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (Debug) { // For debugging, dump one-pass NFA to LOG(ERROR).
|
|
string dump = "prog dump:\n" + Dump() + "node dump\n";
|
|
map<int, int> idmap;
|
|
for (int i = 0; i < size; i++)
|
|
if (nodebyid[i] != -1)
|
|
idmap[nodebyid[i]] = i;
|
|
|
|
StringAppendF(&dump, "byte ranges:\n");
|
|
int i = 0;
|
|
for (int b = 0; b < bytemap_range_; b++) {
|
|
int lo = i;
|
|
while (bytemap_[i] == b)
|
|
i++;
|
|
StringAppendF(&dump, "\t%d: %#x-%#x\n", b, lo, i - 1);
|
|
}
|
|
|
|
for (Instq::iterator it = tovisit.begin(); it != tovisit.end(); ++it) {
|
|
int id = *it;
|
|
int nodeindex = nodebyid[id];
|
|
if (nodeindex == -1)
|
|
continue;
|
|
OneState* node = IndexToNode(nodes, statesize, nodeindex);
|
|
string s;
|
|
StringAppendF(&dump, "node %d id=%d: matchcond=%#x\n",
|
|
nodeindex, id, node->matchcond);
|
|
for (int i = 0; i < bytemap_range_; i++) {
|
|
if ((node->action[i] & kImpossible) == kImpossible)
|
|
continue;
|
|
StringAppendF(&dump, " %d cond %#x -> %d id=%d\n",
|
|
i, node->action[i] & 0xFFFF,
|
|
node->action[i] >> kIndexShift,
|
|
idmap[node->action[i] >> kIndexShift]);
|
|
}
|
|
}
|
|
LOG(ERROR) << dump;
|
|
}
|
|
|
|
// Overallocated earlier; cut down to actual size.
|
|
nodep = new uint8[nalloc*statesize];
|
|
memmove(nodep, nodes, nalloc*statesize);
|
|
delete[] nodes;
|
|
nodes = nodep;
|
|
|
|
onepass_start_ = IndexToNode(nodes, statesize, nodebyid[start()]);
|
|
onepass_nodes_ = nodes;
|
|
onepass_statesize_ = statesize;
|
|
dfa_mem_ -= nalloc*statesize;
|
|
|
|
delete[] stack;
|
|
delete[] nodebyid;
|
|
return true;
|
|
|
|
fail:
|
|
delete[] stack;
|
|
delete[] nodebyid;
|
|
delete[] nodes;
|
|
return false;
|
|
}
|
|
|
|
} // namespace re2
|