mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 19:02:04 +00:00
4088c0a7f3
Automated register all functions with below naming convention by iterating through the symbols: void DB::registerXXX(DB::FunctionFactory &)
153 lines
4.9 KiB
C++
153 lines
4.9 KiB
C++
#include <Common/FrequencyHolder.h>
|
||
#include <Functions/FunctionFactory.h>
|
||
#include <Functions/FunctionsTextClassification.h>
|
||
|
||
#include <memory>
|
||
#include <unordered_map>
|
||
|
||
namespace DB
|
||
{
|
||
|
||
namespace
|
||
{
|
||
/* We need to solve zero-frequency problem for Naive Bayes Classifier
|
||
* If the bigram is not found in the text, we assume that the probability of its meeting is 1e-06.
|
||
* 1e-06 is minimal value in our marked-up dictionary.
|
||
*/
|
||
constexpr Float64 zero_frequency = 1e-06;
|
||
|
||
/// If the data size is bigger than this, behaviour is unspecified for this function.
|
||
constexpr size_t max_string_size = 1UL << 15;
|
||
|
||
template <typename ModelMap>
|
||
ALWAYS_INLINE inline Float64 naiveBayes(
|
||
const FrequencyHolder::EncodingMap & standard,
|
||
const ModelMap & model,
|
||
Float64 max_result)
|
||
{
|
||
Float64 res = 0;
|
||
for (const auto & el : model)
|
||
{
|
||
/// Try to find bigram in the dictionary.
|
||
const auto * it = standard.find(el.getKey());
|
||
if (it != standard.end())
|
||
{
|
||
res += el.getMapped() * log(it->getMapped());
|
||
} else
|
||
{
|
||
res += el.getMapped() * log(zero_frequency);
|
||
}
|
||
/// If at some step the result has become less than the current maximum, then it makes no sense to count it fully.
|
||
if (res < max_result)
|
||
{
|
||
return res;
|
||
}
|
||
}
|
||
return res;
|
||
}
|
||
|
||
/// Сount how many times each bigram occurs in the text.
|
||
template <typename ModelMap>
|
||
ALWAYS_INLINE inline void calculateStats(
|
||
const UInt8 * data,
|
||
const size_t size,
|
||
ModelMap & model)
|
||
{
|
||
UInt16 hash = 0;
|
||
for (size_t i = 0; i < size; ++i)
|
||
{
|
||
hash <<= 8;
|
||
hash += *(data + i);
|
||
++model[hash];
|
||
}
|
||
}
|
||
}
|
||
|
||
/* Determine language and charset of text data. For each text, we build the distribution of bigrams bytes.
|
||
* Then we use marked-up dictionaries with distributions of bigram bytes of various languages and charsets.
|
||
* Using a naive Bayesian classifier, find the most likely charset and language and return it
|
||
*/
|
||
template <bool detect_language>
|
||
struct CharsetClassificationImpl
|
||
{
|
||
static void vector(
|
||
const ColumnString::Chars & data,
|
||
const ColumnString::Offsets & offsets,
|
||
ColumnString::Chars & res_data,
|
||
ColumnString::Offsets & res_offsets)
|
||
{
|
||
const auto & encodings_freq = FrequencyHolder::getInstance().getEncodingsFrequency();
|
||
|
||
if constexpr (detect_language)
|
||
/// 2 chars for ISO code + 1 zero byte
|
||
res_data.reserve(offsets.size() * 3);
|
||
else
|
||
/// Mean charset length is 8
|
||
res_data.reserve(offsets.size() * 8);
|
||
|
||
res_offsets.resize(offsets.size());
|
||
|
||
size_t current_result_offset = 0;
|
||
|
||
double zero_frequency_log = log(zero_frequency);
|
||
|
||
for (size_t i = 0; i < offsets.size(); ++i)
|
||
{
|
||
const UInt8 * str = data.data() + offsets[i - 1];
|
||
const size_t str_len = offsets[i] - offsets[i - 1] - 1;
|
||
|
||
HashMapWithStackMemory<UInt16, UInt64, DefaultHash<UInt16>, 4> model;
|
||
calculateStats(str, str_len, model);
|
||
|
||
std::string_view result_value;
|
||
|
||
/// Go through the dictionary and find the charset with the highest weight
|
||
Float64 max_result = zero_frequency_log * (max_string_size);
|
||
for (const auto & item : encodings_freq)
|
||
{
|
||
Float64 score = naiveBayes(item.map, model, max_result);
|
||
if (max_result < score)
|
||
{
|
||
max_result = score;
|
||
|
||
if constexpr (detect_language)
|
||
result_value = item.lang;
|
||
else
|
||
result_value = item.name;
|
||
}
|
||
}
|
||
|
||
size_t result_value_size = result_value.size();
|
||
res_data.resize(current_result_offset + result_value_size + 1);
|
||
memcpy(&res_data[current_result_offset], result_value.data(), result_value_size);
|
||
res_data[current_result_offset + result_value_size] = '\0';
|
||
current_result_offset += result_value_size + 1;
|
||
|
||
res_offsets[i] = current_result_offset;
|
||
}
|
||
}
|
||
};
|
||
|
||
|
||
struct NameDetectCharset
|
||
{
|
||
static constexpr auto name = "detectCharset";
|
||
};
|
||
|
||
struct NameDetectLanguageUnknown
|
||
{
|
||
static constexpr auto name = "detectLanguageUnknown";
|
||
};
|
||
|
||
|
||
using FunctionDetectCharset = FunctionTextClassificationString<CharsetClassificationImpl<false>, NameDetectCharset>;
|
||
using FunctionDetectLanguageUnknown = FunctionTextClassificationString<CharsetClassificationImpl<true>, NameDetectLanguageUnknown>;
|
||
|
||
REGISTER_FUNCTION(DetectCharset)
|
||
{
|
||
factory.registerFunction<FunctionDetectCharset>();
|
||
factory.registerFunction<FunctionDetectLanguageUnknown>();
|
||
}
|
||
|
||
}
|