ClickHouse/dbms/tests/external_models/catboost/helpers/table.py
Nikolai Kochetov 54786902c3 added test [#CLICKHOUSE-3305]
added test [#CLICKHOUSE-3305]

added test [#CLICKHOUSE-3305]

added test [#CLICKHOUSE-3305]

added test [#CLICKHOUSE-3305]

added test [#CLICKHOUSE-3305]

added test [#CLICKHOUSE-3305]

added test [#CLICKHOUSE-3305]
2017-10-25 20:08:46 +03:00

70 lines
2.5 KiB
Python

from server import ClickHouseServer
from client import ClickHouseClient
from pandas import DataFrame
import os
import threading
import tempfile
class ClickHouseTable:
def __init__(self, server, port, table_name, df):
self.server = server
self.port = port
self.table_name = table_name
self.df = df
if not isinstance(self.server, ClickHouseServer):
raise Exception('Expected ClickHouseServer, got ' + repr(self.server))
if not isinstance(self.df, DataFrame):
raise Exception('Expected DataFrame, got ' + repr(self.df))
self.server.wait_for_request(port)
self.client = ClickHouseClient(server.binary_path, port)
def _convert(self, name):
types_map = {
'float64': 'Float64',
'int64': 'Int64',
'float32': 'Float32',
'int32': 'Int32'
}
if name in types_map:
return types_map[name]
return 'String'
def _create_table_from_df(self):
self.client.query('create database if not exists test')
self.client.query('drop table if exists test.{}'.format(self.table_name))
column_types = list(self.df.dtypes)
column_names = list(self.df)
schema = ', '.join((name + ' ' + self._convert(str(t)) for name, t in zip(column_names, column_types)))
print 'schema:', schema
create_query = 'create table test.{} (date Date DEFAULT today(), {}) engine = MergeTree(date, (date), 8192)'
self.client.query(create_query.format(self.table_name, schema))
insert_query = 'insert into test.{} ({}) format CSV'
with tempfile.TemporaryFile() as tmp_file:
self.df.to_csv(tmp_file, header=False, index=False)
tmp_file.seek(0)
self.client.query(insert_query.format(self.table_name, ', '.join(column_names)), pipe=tmp_file)
def apply_model(self, model_name, float_columns, cat_columns):
columns = ', '.join(list(float_columns) + list(cat_columns))
query = "select modelEvaluate('{}', {}) from test.{} format TSV"
result = self.client.query(query.format(model_name, columns, self.table_name))
return tuple(map(float, filter(len, map(str.strip, result.split()))))
def _drop_table(self):
self.client.query('drop table test.{}'.format(self.table_name))
def __enter__(self):
self._create_table_from_df()
return self
def __exit__(self, type, value, traceback):
self._drop_table()