mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-17 13:13:36 +00:00
2210 lines
89 KiB
C++
2210 lines
89 KiB
C++
#include <DataStreams/ExpressionBlockInputStream.h>
|
|
#include <DataStreams/FilterBlockInputStream.h>
|
|
#include <DataStreams/LimitBlockInputStream.h>
|
|
#include <DataStreams/LimitByBlockInputStream.h>
|
|
#include <DataStreams/PartialSortingBlockInputStream.h>
|
|
#include <DataStreams/MergeSortingBlockInputStream.h>
|
|
#include <DataStreams/MergingSortedBlockInputStream.h>
|
|
#include <DataStreams/AggregatingBlockInputStream.h>
|
|
#include <DataStreams/MergingAggregatedBlockInputStream.h>
|
|
#include <DataStreams/MergingAggregatedMemoryEfficientBlockInputStream.h>
|
|
#include <DataStreams/AsynchronousBlockInputStream.h>
|
|
#include <DataStreams/UnionBlockInputStream.h>
|
|
#include <DataStreams/ParallelAggregatingBlockInputStream.h>
|
|
#include <DataStreams/DistinctBlockInputStream.h>
|
|
#include <DataStreams/NullBlockInputStream.h>
|
|
#include <DataStreams/TotalsHavingBlockInputStream.h>
|
|
#include <DataStreams/copyData.h>
|
|
#include <DataStreams/CreatingSetsBlockInputStream.h>
|
|
#include <DataStreams/MaterializingBlockInputStream.h>
|
|
#include <DataStreams/ConcatBlockInputStream.h>
|
|
#include <DataStreams/RollupBlockInputStream.h>
|
|
#include <DataStreams/CubeBlockInputStream.h>
|
|
#include <DataStreams/ConvertColumnLowCardinalityToFullBlockInputStream.h>
|
|
#include <DataStreams/ConvertingBlockInputStream.h>
|
|
|
|
#include <Parsers/ASTFunction.h>
|
|
#include <Parsers/ASTIdentifier.h>
|
|
#include <Parsers/ASTLiteral.h>
|
|
#include <Parsers/ASTOrderByElement.h>
|
|
#include <Parsers/ASTSelectWithUnionQuery.h>
|
|
#include <Parsers/ASTTablesInSelectQuery.h>
|
|
#include <Parsers/ParserSelectQuery.h>
|
|
|
|
#include <Interpreters/InterpreterSelectQuery.h>
|
|
#include <Interpreters/InterpreterSelectWithUnionQuery.h>
|
|
#include <Interpreters/InterpreterSetQuery.h>
|
|
#include <Interpreters/evaluateConstantExpression.h>
|
|
#include <Interpreters/convertFieldToType.h>
|
|
#include <Interpreters/ExpressionAnalyzer.h>
|
|
#include <Interpreters/DatabaseAndTableWithAlias.h>
|
|
#include <Interpreters/JoinToSubqueryTransformVisitor.h>
|
|
#include <Interpreters/CrossToInnerJoinVisitor.h>
|
|
|
|
#include <Storages/MergeTree/MergeTreeWhereOptimizer.h>
|
|
#include <Storages/IStorage.h>
|
|
#include <Storages/StorageMergeTree.h>
|
|
#include <Storages/StorageReplicatedMergeTree.h>
|
|
|
|
#include <TableFunctions/ITableFunction.h>
|
|
#include <TableFunctions/TableFunctionFactory.h>
|
|
|
|
#include <Core/Field.h>
|
|
#include <Core/Types.h>
|
|
#include <Columns/Collator.h>
|
|
#include <Common/typeid_cast.h>
|
|
#include <Parsers/queryToString.h>
|
|
#include <ext/map.h>
|
|
#include <memory>
|
|
|
|
#include <Processors/Sources/NullSource.h>
|
|
#include <Processors/Sources/SourceFromInputStream.h>
|
|
#include <Processors/Sources/SourceFromTotals.h>
|
|
#include <Processors/Transforms/FilterTransform.h>
|
|
#include <Processors/Transforms/ExpressionTransform.h>
|
|
#include <Processors/Transforms/AggregatingTransform.h>
|
|
#include <Processors/Transforms/MergingAggregatedTransform.h>
|
|
#include <Processors/Transforms/MergingAggregatedMemoryEfficientTransform.h>
|
|
#include <Processors/Transforms/TotalsHavingTransform.h>
|
|
#include <Processors/Transforms/PartialSortingTransform.h>
|
|
#include <Processors/Transforms/LimitsCheckingTransform.h>
|
|
#include <Processors/Transforms/MergeSortingTransform.h>
|
|
#include <Processors/Transforms/MergingSortedTransform.h>
|
|
#include <Processors/Transforms/DistinctTransform.h>
|
|
#include <Processors/Transforms/LimitByTransform.h>
|
|
#include <Processors/Transforms/ExtremesTransform.h>
|
|
#include <Processors/Transforms/CreatingSetsTransform.h>
|
|
#include <Processors/Transforms/RollupTransform.h>
|
|
#include <Processors/Transforms/CubeTransform.h>
|
|
#include <Processors/LimitTransform.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int TOO_DEEP_SUBQUERIES;
|
|
extern const int THERE_IS_NO_COLUMN;
|
|
extern const int SAMPLING_NOT_SUPPORTED;
|
|
extern const int ILLEGAL_FINAL;
|
|
extern const int ILLEGAL_PREWHERE;
|
|
extern const int TOO_MANY_COLUMNS;
|
|
extern const int LOGICAL_ERROR;
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int PARAMETER_OUT_OF_BOUND;
|
|
extern const int ARGUMENT_OUT_OF_BOUND;
|
|
extern const int INVALID_LIMIT_EXPRESSION;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
|
|
/// Assumes `storage` is set and the table filter is not empty.
|
|
String generateFilterActions(ExpressionActionsPtr & actions, const StoragePtr & storage, const Context & context, const Names & prerequisite_columns = {})
|
|
{
|
|
const auto & db_name = storage->getDatabaseName();
|
|
const auto & table_name = storage->getTableName();
|
|
const auto & filter_str = context.getUserProperty(db_name, table_name, "filter");
|
|
|
|
/// TODO: implement some AST builders for this kind of stuff
|
|
ASTPtr query_ast = std::make_shared<ASTSelectQuery>();
|
|
auto * select_ast = query_ast->as<ASTSelectQuery>();
|
|
|
|
auto expr_list = std::make_shared<ASTExpressionList>();
|
|
select_ast->children.push_back(expr_list);
|
|
select_ast->select_expression_list = select_ast->children.back();
|
|
|
|
auto parseExpression = [] (const String & expr)
|
|
{
|
|
ParserExpression expr_parser;
|
|
return parseQuery(expr_parser, expr, 0);
|
|
};
|
|
|
|
// The first column is our filter expression.
|
|
expr_list->children.push_back(parseExpression(filter_str));
|
|
|
|
/// Keep columns that are required after the filter actions.
|
|
for (const auto & column_str : prerequisite_columns)
|
|
expr_list->children.push_back(parseExpression(column_str));
|
|
|
|
auto tables = std::make_shared<ASTTablesInSelectQuery>();
|
|
auto tables_elem = std::make_shared<ASTTablesInSelectQueryElement>();
|
|
auto table_expr = std::make_shared<ASTTableExpression>();
|
|
select_ast->children.push_back(tables);
|
|
select_ast->tables = select_ast->children.back();
|
|
tables->children.push_back(tables_elem);
|
|
tables_elem->table_expression = table_expr;
|
|
tables_elem->children.push_back(table_expr);
|
|
table_expr->database_and_table_name = createTableIdentifier(db_name, table_name);
|
|
table_expr->children.push_back(table_expr->database_and_table_name);
|
|
|
|
/// Using separate expression analyzer to prevent any possible alias injection
|
|
auto syntax_result = SyntaxAnalyzer(context).analyze(query_ast, storage->getColumns().getAllPhysical());
|
|
ExpressionAnalyzer analyzer(query_ast, syntax_result, context);
|
|
ExpressionActionsChain new_chain(context);
|
|
analyzer.appendSelect(new_chain, false);
|
|
actions = new_chain.getLastActions();
|
|
|
|
return expr_list->children.at(0)->getColumnName();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const Context & context_,
|
|
const SelectQueryOptions & options,
|
|
const Names & required_result_column_names)
|
|
: InterpreterSelectQuery(query_ptr_, context_, nullptr, nullptr, options, required_result_column_names)
|
|
{
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const Context & context_,
|
|
const BlockInputStreamPtr & input_,
|
|
const SelectQueryOptions & options)
|
|
: InterpreterSelectQuery(query_ptr_, context_, input_, nullptr, options.copy().noSubquery())
|
|
{}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const Context & context_,
|
|
const StoragePtr & storage_,
|
|
const SelectQueryOptions & options)
|
|
: InterpreterSelectQuery(query_ptr_, context_, nullptr, storage_, options.copy().noSubquery())
|
|
{}
|
|
|
|
InterpreterSelectQuery::~InterpreterSelectQuery() = default;
|
|
|
|
|
|
/** There are no limits on the maximum size of the result for the subquery.
|
|
* Since the result of the query is not the result of the entire query.
|
|
*/
|
|
static Context getSubqueryContext(const Context & context)
|
|
{
|
|
Context subquery_context = context;
|
|
Settings subquery_settings = context.getSettings();
|
|
subquery_settings.max_result_rows = 0;
|
|
subquery_settings.max_result_bytes = 0;
|
|
/// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query).
|
|
subquery_settings.extremes = 0;
|
|
subquery_context.setSettings(subquery_settings);
|
|
return subquery_context;
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const Context & context_,
|
|
const BlockInputStreamPtr & input_,
|
|
const StoragePtr & storage_,
|
|
const SelectQueryOptions & options_,
|
|
const Names & required_result_column_names)
|
|
: options(options_)
|
|
/// NOTE: the query almost always should be cloned because it will be modified during analysis.
|
|
, query_ptr(options.modify_inplace ? query_ptr_ : query_ptr_->clone())
|
|
, context(context_)
|
|
, storage(storage_)
|
|
, input(input_)
|
|
, log(&Logger::get("InterpreterSelectQuery"))
|
|
{
|
|
initSettings();
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
if (settings.max_subquery_depth && options.subquery_depth > settings.max_subquery_depth)
|
|
throw Exception("Too deep subqueries. Maximum: " + settings.max_subquery_depth.toString(),
|
|
ErrorCodes::TOO_DEEP_SUBQUERIES);
|
|
|
|
if (settings.allow_experimental_cross_to_join_conversion)
|
|
{
|
|
CrossToInnerJoinVisitor::Data cross_to_inner;
|
|
CrossToInnerJoinVisitor(cross_to_inner).visit(query_ptr);
|
|
}
|
|
|
|
if (settings.allow_experimental_multiple_joins_emulation)
|
|
{
|
|
JoinToSubqueryTransformVisitor::Data join_to_subs_data;
|
|
JoinToSubqueryTransformVisitor(join_to_subs_data).visit(query_ptr);
|
|
}
|
|
|
|
max_streams = settings.max_threads;
|
|
auto & query = getSelectQuery();
|
|
|
|
ASTPtr table_expression = extractTableExpression(query, 0);
|
|
|
|
bool is_table_func = false;
|
|
bool is_subquery = false;
|
|
if (table_expression)
|
|
{
|
|
is_table_func = table_expression->as<ASTFunction>();
|
|
is_subquery = table_expression->as<ASTSelectWithUnionQuery>();
|
|
}
|
|
|
|
if (input)
|
|
{
|
|
/// Read from prepared input.
|
|
source_header = input->getHeader();
|
|
}
|
|
else if (is_subquery)
|
|
{
|
|
/// Read from subquery.
|
|
interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>(
|
|
table_expression, getSubqueryContext(context), options.subquery(), required_columns);
|
|
|
|
source_header = interpreter_subquery->getSampleBlock();
|
|
}
|
|
else if (!storage)
|
|
{
|
|
if (is_table_func)
|
|
{
|
|
/// Read from table function.
|
|
storage = context.getQueryContext().executeTableFunction(table_expression);
|
|
}
|
|
else
|
|
{
|
|
/// Read from table. Even without table expression (implicit SELECT ... FROM system.one).
|
|
String database_name;
|
|
String table_name;
|
|
|
|
getDatabaseAndTableNames(database_name, table_name);
|
|
|
|
storage = context.getTable(database_name, table_name);
|
|
}
|
|
}
|
|
|
|
if (storage)
|
|
table_lock = storage->lockStructureForShare(false, context.getCurrentQueryId());
|
|
|
|
syntax_analyzer_result = SyntaxAnalyzer(context, options).analyze(
|
|
query_ptr, source_header.getNamesAndTypesList(), required_result_column_names, storage);
|
|
query_analyzer = std::make_unique<ExpressionAnalyzer>(
|
|
query_ptr, syntax_analyzer_result, context, NamesAndTypesList(),
|
|
NameSet(required_result_column_names.begin(), required_result_column_names.end()),
|
|
options.subquery_depth, !options.only_analyze);
|
|
|
|
if (!options.only_analyze)
|
|
{
|
|
if (query.sample_size() && (input || !storage || !storage->supportsSampling()))
|
|
throw Exception("Illegal SAMPLE: table doesn't support sampling", ErrorCodes::SAMPLING_NOT_SUPPORTED);
|
|
|
|
if (query.final() && (input || !storage || !storage->supportsFinal()))
|
|
throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support FINAL" : "Illegal FINAL", ErrorCodes::ILLEGAL_FINAL);
|
|
|
|
if (query.prewhere_expression && (input || !storage || !storage->supportsPrewhere()))
|
|
throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support PREWHERE" : "Illegal PREWHERE", ErrorCodes::ILLEGAL_PREWHERE);
|
|
|
|
/// Save the new temporary tables in the query context
|
|
for (const auto & it : query_analyzer->getExternalTables())
|
|
if (!context.tryGetExternalTable(it.first))
|
|
context.addExternalTable(it.first, it.second);
|
|
}
|
|
|
|
if (!options.only_analyze || options.modify_inplace)
|
|
{
|
|
if (query_analyzer->isRewriteSubqueriesPredicate())
|
|
{
|
|
/// remake interpreter_subquery when PredicateOptimizer is rewrite subqueries and main table is subquery
|
|
if (is_subquery)
|
|
interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>(
|
|
table_expression,
|
|
getSubqueryContext(context),
|
|
options.subquery(),
|
|
required_columns);
|
|
}
|
|
}
|
|
|
|
if (interpreter_subquery)
|
|
{
|
|
/// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery.
|
|
if (query_analyzer->hasAggregation())
|
|
interpreter_subquery->ignoreWithTotals();
|
|
}
|
|
|
|
required_columns = query_analyzer->getRequiredSourceColumns();
|
|
|
|
if (storage)
|
|
source_header = storage->getSampleBlockForColumns(required_columns);
|
|
|
|
/// Calculate structure of the result.
|
|
{
|
|
Pipeline pipeline;
|
|
executeImpl(pipeline, nullptr, true);
|
|
result_header = pipeline.firstStream()->getHeader();
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::getDatabaseAndTableNames(String & database_name, String & table_name)
|
|
{
|
|
if (auto db_and_table = getDatabaseAndTable(getSelectQuery(), 0))
|
|
{
|
|
table_name = db_and_table->table;
|
|
database_name = db_and_table->database;
|
|
|
|
/// If the database is not specified - use the current database.
|
|
if (database_name.empty() && !context.tryGetTable("", table_name))
|
|
database_name = context.getCurrentDatabase();
|
|
}
|
|
else /// If the table is not specified - use the table `system.one`.
|
|
{
|
|
database_name = "system";
|
|
table_name = "one";
|
|
}
|
|
}
|
|
|
|
|
|
Block InterpreterSelectQuery::getSampleBlock()
|
|
{
|
|
return result_header;
|
|
}
|
|
|
|
|
|
BlockIO InterpreterSelectQuery::execute()
|
|
{
|
|
Pipeline pipeline;
|
|
executeImpl(pipeline, input, options.only_analyze);
|
|
executeUnion(pipeline);
|
|
|
|
BlockIO res;
|
|
res.in = pipeline.firstStream();
|
|
return res;
|
|
}
|
|
|
|
BlockInputStreams InterpreterSelectQuery::executeWithMultipleStreams()
|
|
{
|
|
Pipeline pipeline;
|
|
executeImpl(pipeline, input, options.only_analyze);
|
|
return pipeline.streams;
|
|
}
|
|
|
|
QueryPipeline InterpreterSelectQuery::executeWithProcessors()
|
|
{
|
|
QueryPipeline query_pipeline;
|
|
executeImpl(query_pipeline, input, options.only_analyze);
|
|
return query_pipeline;
|
|
}
|
|
|
|
InterpreterSelectQuery::AnalysisResult
|
|
InterpreterSelectQuery::analyzeExpressions(QueryProcessingStage::Enum from_stage, bool dry_run, const FilterInfoPtr & filter_info)
|
|
{
|
|
AnalysisResult res;
|
|
|
|
/// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing.
|
|
res.first_stage = from_stage < QueryProcessingStage::WithMergeableState
|
|
&& options.to_stage >= QueryProcessingStage::WithMergeableState;
|
|
/// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing.
|
|
res.second_stage = from_stage <= QueryProcessingStage::WithMergeableState
|
|
&& options.to_stage > QueryProcessingStage::WithMergeableState;
|
|
|
|
/** First we compose a chain of actions and remember the necessary steps from it.
|
|
* Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and
|
|
* throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries.
|
|
*/
|
|
|
|
bool has_filter = false;
|
|
bool has_prewhere = false;
|
|
bool has_where = false;
|
|
size_t where_step_num;
|
|
|
|
auto finalizeChain = [&](ExpressionActionsChain & chain)
|
|
{
|
|
chain.finalize();
|
|
|
|
if (has_prewhere)
|
|
{
|
|
const ExpressionActionsChain::Step & step = chain.steps.at(0);
|
|
res.prewhere_info->remove_prewhere_column = step.can_remove_required_output.at(0);
|
|
|
|
Names columns_to_remove;
|
|
for (size_t i = 1; i < step.required_output.size(); ++i)
|
|
{
|
|
if (step.can_remove_required_output[i])
|
|
columns_to_remove.push_back(step.required_output[i]);
|
|
}
|
|
|
|
if (!columns_to_remove.empty())
|
|
{
|
|
auto columns = res.prewhere_info->prewhere_actions->getSampleBlock().getNamesAndTypesList();
|
|
ExpressionActionsPtr actions = std::make_shared<ExpressionActions>(columns, context);
|
|
for (const auto & column : columns_to_remove)
|
|
actions->add(ExpressionAction::removeColumn(column));
|
|
|
|
res.prewhere_info->remove_columns_actions = std::move(actions);
|
|
}
|
|
|
|
res.columns_to_remove_after_prewhere = std::move(columns_to_remove);
|
|
}
|
|
else if (has_filter)
|
|
{
|
|
/// Can't have prewhere and filter set simultaneously
|
|
res.filter_info->do_remove_column = chain.steps.at(0).can_remove_required_output.at(0);
|
|
}
|
|
if (has_where)
|
|
res.remove_where_filter = chain.steps.at(where_step_num).can_remove_required_output.at(0);
|
|
|
|
has_filter = has_prewhere = has_where = false;
|
|
|
|
chain.clear();
|
|
};
|
|
|
|
{
|
|
ExpressionActionsChain chain(context);
|
|
auto & query = getSelectQuery();
|
|
|
|
Names additional_required_columns_after_prewhere;
|
|
|
|
if (storage && query.sample_size())
|
|
{
|
|
Names columns_for_sampling = storage->getColumnsRequiredForSampling();
|
|
additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(),
|
|
columns_for_sampling.begin(), columns_for_sampling.end());
|
|
}
|
|
|
|
if (storage && query.final())
|
|
{
|
|
Names columns_for_final = storage->getColumnsRequiredForFinal();
|
|
additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(),
|
|
columns_for_final.begin(), columns_for_final.end());
|
|
}
|
|
|
|
if (storage && context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter"))
|
|
{
|
|
has_filter = true;
|
|
|
|
/// XXX: aggregated copy-paste from ExpressionAnalyzer::appendSmth()
|
|
if (chain.steps.empty())
|
|
{
|
|
chain.steps.emplace_back(std::make_shared<ExpressionActions>(source_columns, context));
|
|
}
|
|
ExpressionActionsChain::Step & step = chain.steps.back();
|
|
|
|
// FIXME: assert(filter_info);
|
|
res.filter_info = filter_info;
|
|
step.actions = filter_info->actions;
|
|
step.required_output.push_back(res.filter_info->column_name);
|
|
step.can_remove_required_output = {true};
|
|
|
|
chain.addStep();
|
|
}
|
|
|
|
if (query_analyzer->appendPrewhere(chain, !res.first_stage, additional_required_columns_after_prewhere))
|
|
{
|
|
has_prewhere = true;
|
|
|
|
res.prewhere_info = std::make_shared<PrewhereInfo>(
|
|
chain.steps.front().actions, query.prewhere_expression->getColumnName());
|
|
|
|
chain.addStep();
|
|
}
|
|
|
|
res.need_aggregate = query_analyzer->hasAggregation();
|
|
|
|
query_analyzer->appendArrayJoin(chain, dry_run || !res.first_stage);
|
|
|
|
if (query_analyzer->appendJoin(chain, dry_run || !res.first_stage))
|
|
{
|
|
res.before_join = chain.getLastActions();
|
|
if (!res.hasJoin())
|
|
throw Exception("No expected JOIN", ErrorCodes::LOGICAL_ERROR);
|
|
chain.addStep();
|
|
}
|
|
|
|
if (query_analyzer->appendWhere(chain, dry_run || !res.first_stage))
|
|
{
|
|
where_step_num = chain.steps.size() - 1;
|
|
has_where = res.has_where = true;
|
|
res.before_where = chain.getLastActions();
|
|
chain.addStep();
|
|
}
|
|
|
|
if (res.need_aggregate)
|
|
{
|
|
query_analyzer->appendGroupBy(chain, dry_run || !res.first_stage);
|
|
query_analyzer->appendAggregateFunctionsArguments(chain, dry_run || !res.first_stage);
|
|
res.before_aggregation = chain.getLastActions();
|
|
|
|
finalizeChain(chain);
|
|
|
|
if (query_analyzer->appendHaving(chain, dry_run || !res.second_stage))
|
|
{
|
|
res.has_having = true;
|
|
res.before_having = chain.getLastActions();
|
|
chain.addStep();
|
|
}
|
|
}
|
|
|
|
/// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers.
|
|
query_analyzer->appendSelect(chain, dry_run || (res.need_aggregate ? !res.second_stage : !res.first_stage));
|
|
res.selected_columns = chain.getLastStep().required_output;
|
|
res.has_order_by = query_analyzer->appendOrderBy(chain, dry_run || (res.need_aggregate ? !res.second_stage : !res.first_stage));
|
|
res.before_order_and_select = chain.getLastActions();
|
|
chain.addStep();
|
|
|
|
if (query_analyzer->appendLimitBy(chain, dry_run || !res.second_stage))
|
|
{
|
|
res.has_limit_by = true;
|
|
res.before_limit_by = chain.getLastActions();
|
|
chain.addStep();
|
|
}
|
|
|
|
query_analyzer->appendProjectResult(chain);
|
|
res.final_projection = chain.getLastActions();
|
|
|
|
finalizeChain(chain);
|
|
}
|
|
|
|
/// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys).
|
|
if (res.filter_info)
|
|
res.filter_info->actions->prependProjectInput();
|
|
if (res.has_where)
|
|
res.before_where->prependProjectInput();
|
|
if (res.has_having)
|
|
res.before_having->prependProjectInput();
|
|
|
|
res.subqueries_for_sets = query_analyzer->getSubqueriesForSets();
|
|
|
|
/// Check that PREWHERE doesn't contain unusual actions. Unusual actions are that can change number of rows.
|
|
if (res.prewhere_info)
|
|
{
|
|
auto check_actions = [](const ExpressionActionsPtr & actions)
|
|
{
|
|
if (actions)
|
|
for (const auto & action : actions->getActions())
|
|
if (action.type == ExpressionAction::Type::JOIN || action.type == ExpressionAction::Type::ARRAY_JOIN)
|
|
throw Exception("PREWHERE cannot contain ARRAY JOIN or JOIN action", ErrorCodes::ILLEGAL_PREWHERE);
|
|
};
|
|
|
|
check_actions(res.prewhere_info->prewhere_actions);
|
|
check_actions(res.prewhere_info->alias_actions);
|
|
check_actions(res.prewhere_info->remove_columns_actions);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
|
|
template <typename TPipeline>
|
|
void InterpreterSelectQuery::executeImpl(TPipeline & pipeline, const BlockInputStreamPtr & prepared_input, bool dry_run)
|
|
{
|
|
/** Streams of data. When the query is executed in parallel, we have several data streams.
|
|
* If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then
|
|
* if there is an ORDER BY, then glue the streams using UnionBlockInputStream, and then MergeSortingBlockInputStream,
|
|
* if not, then glue it using UnionBlockInputStream,
|
|
* then apply LIMIT.
|
|
* If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel;
|
|
* a parallel GROUP BY will glue streams into one,
|
|
* then perform the remaining operations with one resulting stream.
|
|
*/
|
|
|
|
constexpr bool pipeline_with_processors = std::is_same<TPipeline, QueryPipeline>::value;
|
|
|
|
/// Now we will compose block streams that perform the necessary actions.
|
|
auto & query = getSelectQuery();
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
QueryProcessingStage::Enum from_stage = QueryProcessingStage::FetchColumns;
|
|
|
|
/// PREWHERE optimization
|
|
/// Turn off, if the table filter is applied.
|
|
if (storage && !context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter"))
|
|
{
|
|
if (!dry_run)
|
|
from_stage = storage->getQueryProcessingStage(context);
|
|
|
|
query_analyzer->makeSetsForIndex();
|
|
|
|
auto optimize_prewhere = [&](auto & merge_tree)
|
|
{
|
|
SelectQueryInfo query_info;
|
|
query_info.query = query_ptr;
|
|
query_info.syntax_analyzer_result = syntax_analyzer_result;
|
|
query_info.sets = query_analyzer->getPreparedSets();
|
|
|
|
/// Try transferring some condition from WHERE to PREWHERE if enabled and viable
|
|
if (settings.optimize_move_to_prewhere && query.where_expression && !query.prewhere_expression && !query.final())
|
|
MergeTreeWhereOptimizer{query_info, context, merge_tree.getData(), query_analyzer->getRequiredSourceColumns(), log};
|
|
};
|
|
|
|
if (const StorageMergeTree * merge_tree = dynamic_cast<const StorageMergeTree *>(storage.get()))
|
|
optimize_prewhere(*merge_tree);
|
|
else if (const StorageReplicatedMergeTree * replicated_merge_tree = dynamic_cast<const StorageReplicatedMergeTree *>(storage.get()))
|
|
optimize_prewhere(*replicated_merge_tree);
|
|
}
|
|
|
|
AnalysisResult expressions;
|
|
FilterInfoPtr filter_info;
|
|
|
|
/// We need proper `source_header` for `NullBlockInputStream` in dry-run.
|
|
if (storage && context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter"))
|
|
{
|
|
filter_info = std::make_shared<FilterInfo>();
|
|
filter_info->column_name = generateFilterActions(filter_info->actions, storage, context, required_columns);
|
|
source_header = storage->getSampleBlockForColumns(filter_info->actions->getRequiredColumns());
|
|
}
|
|
|
|
if (dry_run)
|
|
{
|
|
if constexpr (pipeline_with_processors)
|
|
pipeline.init({std::make_shared<NullSource>(source_header)});
|
|
else
|
|
pipeline.streams.emplace_back(std::make_shared<NullBlockInputStream>(source_header));
|
|
|
|
expressions = analyzeExpressions(QueryProcessingStage::FetchColumns, true, filter_info);
|
|
|
|
if (storage && expressions.filter_info && expressions.prewhere_info)
|
|
throw Exception("PREWHERE is not supported if the table is filtered by row-level security expression", ErrorCodes::ILLEGAL_PREWHERE);
|
|
|
|
if (expressions.prewhere_info)
|
|
{
|
|
if constexpr (pipeline_with_processors)
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<FilterTransform>(
|
|
header,
|
|
expressions.prewhere_info->prewhere_actions,
|
|
expressions.prewhere_info->prewhere_column_name,
|
|
expressions.prewhere_info->remove_prewhere_column);
|
|
});
|
|
else
|
|
pipeline.streams.back() = std::make_shared<FilterBlockInputStream>(
|
|
pipeline.streams.back(), expressions.prewhere_info->prewhere_actions,
|
|
expressions.prewhere_info->prewhere_column_name, expressions.prewhere_info->remove_prewhere_column);
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (prepared_input)
|
|
{
|
|
if constexpr (pipeline_with_processors)
|
|
pipeline.init({std::make_shared<SourceFromInputStream>(std::make_shared<InputStreamHolder>(prepared_input))});
|
|
else
|
|
pipeline.streams.push_back(prepared_input);
|
|
}
|
|
|
|
expressions = analyzeExpressions(from_stage, false, filter_info);
|
|
|
|
if (from_stage == QueryProcessingStage::WithMergeableState &&
|
|
options.to_stage == QueryProcessingStage::WithMergeableState)
|
|
throw Exception("Distributed on Distributed is not supported", ErrorCodes::NOT_IMPLEMENTED);
|
|
|
|
if (storage && expressions.filter_info && expressions.prewhere_info)
|
|
throw Exception("PREWHERE is not supported if the table is filtered by row-level security expression", ErrorCodes::ILLEGAL_PREWHERE);
|
|
|
|
/** Read the data from Storage. from_stage - to what stage the request was completed in Storage. */
|
|
executeFetchColumns(from_stage, pipeline, expressions.prewhere_info, expressions.columns_to_remove_after_prewhere);
|
|
|
|
LOG_TRACE(log, QueryProcessingStage::toString(from_stage) << " -> " << QueryProcessingStage::toString(options.to_stage));
|
|
}
|
|
|
|
if (options.to_stage > QueryProcessingStage::FetchColumns)
|
|
{
|
|
/// Do I need to aggregate in a separate row rows that have not passed max_rows_to_group_by.
|
|
bool aggregate_overflow_row =
|
|
expressions.need_aggregate &&
|
|
query.group_by_with_totals &&
|
|
settings.max_rows_to_group_by &&
|
|
settings.group_by_overflow_mode == OverflowMode::ANY &&
|
|
settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE;
|
|
|
|
/// Do I need to immediately finalize the aggregate functions after the aggregation?
|
|
bool aggregate_final =
|
|
expressions.need_aggregate &&
|
|
options.to_stage > QueryProcessingStage::WithMergeableState &&
|
|
!query.group_by_with_totals && !query.group_by_with_rollup && !query.group_by_with_cube;
|
|
|
|
if (expressions.first_stage)
|
|
{
|
|
if (expressions.filter_info)
|
|
{
|
|
if constexpr (pipeline_with_processors)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & block)
|
|
{
|
|
return std::make_shared<FilterTransform>(
|
|
block,
|
|
expressions.filter_info->actions,
|
|
expressions.filter_info->column_name,
|
|
expressions.filter_info->do_remove_column);
|
|
});
|
|
}
|
|
else
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<FilterBlockInputStream>(
|
|
stream,
|
|
expressions.filter_info->actions,
|
|
expressions.filter_info->column_name,
|
|
expressions.filter_info->do_remove_column);
|
|
});
|
|
}
|
|
}
|
|
|
|
if (expressions.hasJoin())
|
|
{
|
|
Block header_before_join;
|
|
|
|
if constexpr (pipeline_with_processors)
|
|
{
|
|
header_before_join = pipeline.getHeader();
|
|
|
|
/// In case joined subquery has totals, and we don't, add default chunk to totals.
|
|
bool default_totals = false;
|
|
if (!pipeline.hasTotals())
|
|
{
|
|
pipeline.addDefaultTotals();
|
|
default_totals = true;
|
|
}
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType type)
|
|
{
|
|
bool on_totals = type == QueryPipeline::StreamType::Totals;
|
|
return std::make_shared<ExpressionTransform>(header, expressions.before_join, on_totals, default_totals);
|
|
});
|
|
}
|
|
else
|
|
{
|
|
header_before_join = pipeline.firstStream()->getHeader();
|
|
/// Applies to all sources except stream_with_non_joined_data.
|
|
for (auto & stream : pipeline.streams)
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expressions.before_join);
|
|
}
|
|
|
|
const auto & join = query.join()->table_join->as<ASTTableJoin &>();
|
|
if (isRightOrFull(join.kind))
|
|
{
|
|
auto stream = expressions.before_join->createStreamWithNonJoinedDataIfFullOrRightJoin(
|
|
header_before_join, settings.max_block_size);
|
|
|
|
if constexpr (pipeline_with_processors)
|
|
{
|
|
auto holder = std::make_shared<InputStreamHolder>(std::move(stream));
|
|
auto source = std::make_shared<SourceFromInputStream>(std::move(holder));
|
|
pipeline.addDelayedStream(source);
|
|
}
|
|
else
|
|
pipeline.stream_with_non_joined_data = std::move(stream);
|
|
|
|
}
|
|
}
|
|
|
|
if (expressions.has_where)
|
|
executeWhere(pipeline, expressions.before_where, expressions.remove_where_filter);
|
|
|
|
if (expressions.need_aggregate)
|
|
executeAggregation(pipeline, expressions.before_aggregation, aggregate_overflow_row, aggregate_final);
|
|
else
|
|
{
|
|
executeExpression(pipeline, expressions.before_order_and_select);
|
|
executeDistinct(pipeline, true, expressions.selected_columns);
|
|
}
|
|
|
|
/** For distributed query processing,
|
|
* if no GROUP, HAVING set,
|
|
* but there is an ORDER or LIMIT,
|
|
* then we will perform the preliminary sorting and LIMIT on the remote server.
|
|
*/
|
|
if (!expressions.second_stage && !expressions.need_aggregate && !expressions.has_having)
|
|
{
|
|
if (expressions.has_order_by)
|
|
executeOrder(pipeline);
|
|
|
|
if (expressions.has_order_by && query.limit_length)
|
|
executeDistinct(pipeline, false, expressions.selected_columns);
|
|
|
|
if (expressions.has_limit_by)
|
|
{
|
|
executeExpression(pipeline, expressions.before_limit_by);
|
|
executeLimitBy(pipeline);
|
|
}
|
|
|
|
if (query.limit_length)
|
|
executePreLimit(pipeline);
|
|
}
|
|
|
|
// If there is no global subqueries, we can run subqueries only when receive them on server.
|
|
if (!query_analyzer->hasGlobalSubqueries() && !expressions.subqueries_for_sets.empty())
|
|
executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets);
|
|
}
|
|
|
|
if (expressions.second_stage)
|
|
{
|
|
bool need_second_distinct_pass = false;
|
|
bool need_merge_streams = false;
|
|
|
|
if (expressions.need_aggregate)
|
|
{
|
|
/// If you need to combine aggregated results from multiple servers
|
|
if (!expressions.first_stage)
|
|
executeMergeAggregated(pipeline, aggregate_overflow_row, aggregate_final);
|
|
|
|
if (!aggregate_final)
|
|
{
|
|
if (query.group_by_with_totals)
|
|
{
|
|
bool final = !query.group_by_with_rollup && !query.group_by_with_cube;
|
|
executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final);
|
|
}
|
|
|
|
if (query.group_by_with_rollup)
|
|
executeRollupOrCube(pipeline, Modificator::ROLLUP);
|
|
else if (query.group_by_with_cube)
|
|
executeRollupOrCube(pipeline, Modificator::CUBE);
|
|
|
|
if ((query.group_by_with_rollup || query.group_by_with_cube) && expressions.has_having)
|
|
{
|
|
if (query.group_by_with_totals)
|
|
throw Exception("WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING", ErrorCodes::NOT_IMPLEMENTED);
|
|
executeHaving(pipeline, expressions.before_having);
|
|
}
|
|
}
|
|
else if (expressions.has_having)
|
|
executeHaving(pipeline, expressions.before_having);
|
|
|
|
executeExpression(pipeline, expressions.before_order_and_select);
|
|
executeDistinct(pipeline, true, expressions.selected_columns);
|
|
|
|
need_second_distinct_pass = query.distinct && pipeline.hasMoreThanOneStream();
|
|
}
|
|
else
|
|
{
|
|
need_second_distinct_pass = query.distinct && pipeline.hasMoreThanOneStream();
|
|
|
|
if (query.group_by_with_totals && !aggregate_final)
|
|
{
|
|
bool final = !query.group_by_with_rollup && !query.group_by_with_cube;
|
|
executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final);
|
|
}
|
|
|
|
if ((query.group_by_with_rollup || query.group_by_with_cube) && !aggregate_final)
|
|
{
|
|
if (query.group_by_with_rollup)
|
|
executeRollupOrCube(pipeline, Modificator::ROLLUP);
|
|
else if (query.group_by_with_cube)
|
|
executeRollupOrCube(pipeline, Modificator::CUBE);
|
|
|
|
if (expressions.has_having)
|
|
{
|
|
if (query.group_by_with_totals)
|
|
throw Exception("WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING", ErrorCodes::NOT_IMPLEMENTED);
|
|
executeHaving(pipeline, expressions.before_having);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (expressions.has_order_by)
|
|
{
|
|
/** If there is an ORDER BY for distributed query processing,
|
|
* but there is no aggregation, then on the remote servers ORDER BY was made
|
|
* - therefore, we merge the sorted streams from remote servers.
|
|
*/
|
|
if (!expressions.first_stage && !expressions.need_aggregate && !(query.group_by_with_totals && !aggregate_final))
|
|
executeMergeSorted(pipeline);
|
|
else /// Otherwise, just sort.
|
|
executeOrder(pipeline);
|
|
}
|
|
|
|
/** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT,
|
|
* limiting the number of rows in each up to `offset + limit`.
|
|
*/
|
|
if (query.limit_length && pipeline.hasMoreThanOneStream() && !query.distinct && !expressions.has_limit_by && !settings.extremes)
|
|
{
|
|
executePreLimit(pipeline);
|
|
}
|
|
|
|
if (need_second_distinct_pass
|
|
|| query.limit_length
|
|
|| query.limit_by_expression_list
|
|
|| pipeline.hasDelayedStream())
|
|
{
|
|
need_merge_streams = true;
|
|
}
|
|
|
|
if (need_merge_streams)
|
|
{
|
|
if constexpr (pipeline_with_processors)
|
|
pipeline.resize(1);
|
|
else
|
|
executeUnion(pipeline);
|
|
}
|
|
|
|
/** If there was more than one stream,
|
|
* then DISTINCT needs to be performed once again after merging all streams.
|
|
*/
|
|
if (need_second_distinct_pass)
|
|
executeDistinct(pipeline, false, expressions.selected_columns);
|
|
|
|
if (expressions.has_limit_by)
|
|
{
|
|
executeExpression(pipeline, expressions.before_limit_by);
|
|
executeLimitBy(pipeline);
|
|
}
|
|
|
|
/** We must do projection after DISTINCT because projection may remove some columns.
|
|
*/
|
|
executeProjection(pipeline, expressions.final_projection);
|
|
|
|
/** Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok.
|
|
*/
|
|
executeExtremes(pipeline);
|
|
|
|
executeLimit(pipeline);
|
|
}
|
|
}
|
|
|
|
if (query_analyzer->hasGlobalSubqueries() && !expressions.subqueries_for_sets.empty())
|
|
executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets);
|
|
}
|
|
|
|
|
|
static UInt64 getLimitUIntValue(const ASTPtr & node, const Context & context)
|
|
{
|
|
const auto & [field, type] = evaluateConstantExpression(node, context);
|
|
|
|
if (!isNumber(type))
|
|
throw Exception("Illegal type " + type->getName() + " of LIMIT expression, must be numeric type", ErrorCodes::INVALID_LIMIT_EXPRESSION);
|
|
|
|
Field converted = convertFieldToType(field, DataTypeUInt64());
|
|
if (converted.isNull())
|
|
throw Exception("The value " + applyVisitor(FieldVisitorToString(), field) + " of LIMIT expression is not representable as UInt64", ErrorCodes::INVALID_LIMIT_EXPRESSION);
|
|
|
|
return converted.safeGet<UInt64>();
|
|
}
|
|
|
|
static std::pair<UInt64, UInt64> getLimitLengthAndOffset(const ASTSelectQuery & query, const Context & context)
|
|
{
|
|
UInt64 length = 0;
|
|
UInt64 offset = 0;
|
|
|
|
if (query.limit_length)
|
|
{
|
|
length = getLimitUIntValue(query.limit_length, context);
|
|
if (query.limit_offset)
|
|
offset = getLimitUIntValue(query.limit_offset, context);
|
|
}
|
|
|
|
return {length, offset};
|
|
}
|
|
|
|
static UInt64 getLimitForSorting(const ASTSelectQuery & query, const Context & context)
|
|
{
|
|
/// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY.
|
|
if (!query.distinct && !query.limit_by_expression_list)
|
|
{
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
return limit_length + limit_offset;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
template <typename TPipeline>
|
|
void InterpreterSelectQuery::executeFetchColumns(
|
|
QueryProcessingStage::Enum processing_stage, TPipeline & pipeline,
|
|
const PrewhereInfoPtr & prewhere_info, const Names & columns_to_remove_after_prewhere)
|
|
{
|
|
constexpr bool pipeline_with_processors = std::is_same<TPipeline, QueryPipeline>::value;
|
|
|
|
auto & query = getSelectQuery();
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
/// Actions to calculate ALIAS if required.
|
|
ExpressionActionsPtr alias_actions;
|
|
|
|
if (storage)
|
|
{
|
|
/// Append columns from the table filter to required
|
|
if (context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter"))
|
|
{
|
|
auto initial_required_columns = required_columns;
|
|
ExpressionActionsPtr actions;
|
|
generateFilterActions(actions, storage, context, initial_required_columns);
|
|
auto required_columns_from_filter = actions->getRequiredColumns();
|
|
|
|
for (const auto & column : required_columns_from_filter)
|
|
{
|
|
if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column))
|
|
required_columns.push_back(column);
|
|
}
|
|
}
|
|
|
|
/// Detect, if ALIAS columns are required for query execution
|
|
auto alias_columns_required = false;
|
|
const ColumnsDescription & storage_columns = storage->getColumns();
|
|
for (const auto & column_name : required_columns)
|
|
{
|
|
auto column_default = storage_columns.getDefault(column_name);
|
|
if (column_default && column_default->kind == ColumnDefaultKind::Alias)
|
|
{
|
|
alias_columns_required = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// There are multiple sources of required columns:
|
|
/// - raw required columns,
|
|
/// - columns deduced from ALIAS columns,
|
|
/// - raw required columns from PREWHERE,
|
|
/// - columns deduced from ALIAS columns from PREWHERE.
|
|
/// PREWHERE is a special case, since we need to resolve it and pass directly to `IStorage::read()`
|
|
/// before any other executions.
|
|
if (alias_columns_required)
|
|
{
|
|
NameSet required_columns_from_prewhere; /// Set of all (including ALIAS) required columns for PREWHERE
|
|
NameSet required_aliases_from_prewhere; /// Set of ALIAS required columns for PREWHERE
|
|
|
|
if (prewhere_info)
|
|
{
|
|
/// Get some columns directly from PREWHERE expression actions
|
|
auto prewhere_required_columns = prewhere_info->prewhere_actions->getRequiredColumns();
|
|
required_columns_from_prewhere.insert(prewhere_required_columns.begin(), prewhere_required_columns.end());
|
|
}
|
|
|
|
/// Expression, that contains all raw required columns
|
|
ASTPtr required_columns_all_expr = std::make_shared<ASTExpressionList>();
|
|
|
|
/// Expression, that contains raw required columns for PREWHERE
|
|
ASTPtr required_columns_from_prewhere_expr = std::make_shared<ASTExpressionList>();
|
|
|
|
/// Sort out already known required columns between expressions,
|
|
/// also populate `required_aliases_from_prewhere`.
|
|
for (const auto & column : required_columns)
|
|
{
|
|
ASTPtr column_expr;
|
|
const auto column_default = storage_columns.getDefault(column);
|
|
bool is_alias = column_default && column_default->kind == ColumnDefaultKind::Alias;
|
|
if (is_alias)
|
|
column_expr = setAlias(column_default->expression->clone(), column);
|
|
else
|
|
column_expr = std::make_shared<ASTIdentifier>(column);
|
|
|
|
if (required_columns_from_prewhere.count(column))
|
|
{
|
|
required_columns_from_prewhere_expr->children.emplace_back(std::move(column_expr));
|
|
|
|
if (is_alias)
|
|
required_aliases_from_prewhere.insert(column);
|
|
}
|
|
else
|
|
required_columns_all_expr->children.emplace_back(std::move(column_expr));
|
|
}
|
|
|
|
/// Columns, which we will get after prewhere and filter executions.
|
|
NamesAndTypesList required_columns_after_prewhere;
|
|
NameSet required_columns_after_prewhere_set;
|
|
|
|
/// Collect required columns from prewhere expression actions.
|
|
if (prewhere_info)
|
|
{
|
|
NameSet columns_to_remove(columns_to_remove_after_prewhere.begin(), columns_to_remove_after_prewhere.end());
|
|
Block prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock();
|
|
|
|
/// Populate required columns with the columns, added by PREWHERE actions and not removed afterwards.
|
|
/// XXX: looks hacky that we already know which columns after PREWHERE we won't need for sure.
|
|
for (const auto & column : prewhere_actions_result)
|
|
{
|
|
if (prewhere_info->remove_prewhere_column && column.name == prewhere_info->prewhere_column_name)
|
|
continue;
|
|
|
|
if (columns_to_remove.count(column.name))
|
|
continue;
|
|
|
|
required_columns_all_expr->children.emplace_back(std::make_shared<ASTIdentifier>(column.name));
|
|
required_columns_after_prewhere.emplace_back(column.name, column.type);
|
|
}
|
|
|
|
required_columns_after_prewhere_set
|
|
= ext::map<NameSet>(required_columns_after_prewhere, [](const auto & it) { return it.name; });
|
|
}
|
|
|
|
auto syntax_result = SyntaxAnalyzer(context).analyze(required_columns_all_expr, required_columns_after_prewhere, {}, storage);
|
|
alias_actions = ExpressionAnalyzer(required_columns_all_expr, syntax_result, context).getActions(true);
|
|
|
|
/// The set of required columns could be added as a result of adding an action to calculate ALIAS.
|
|
required_columns = alias_actions->getRequiredColumns();
|
|
|
|
/// Do not remove prewhere filter if it is a column which is used as alias.
|
|
if (prewhere_info && prewhere_info->remove_prewhere_column)
|
|
if (required_columns.end()
|
|
!= std::find(required_columns.begin(), required_columns.end(), prewhere_info->prewhere_column_name))
|
|
prewhere_info->remove_prewhere_column = false;
|
|
|
|
/// Remove columns which will be added by prewhere.
|
|
required_columns.erase(std::remove_if(required_columns.begin(), required_columns.end(), [&](const String & name)
|
|
{
|
|
return !!required_columns_after_prewhere_set.count(name);
|
|
}), required_columns.end());
|
|
|
|
if (prewhere_info)
|
|
{
|
|
/// Don't remove columns which are needed to be aliased.
|
|
auto new_actions = std::make_shared<ExpressionActions>(prewhere_info->prewhere_actions->getRequiredColumnsWithTypes(), context);
|
|
for (const auto & action : prewhere_info->prewhere_actions->getActions())
|
|
{
|
|
if (action.type != ExpressionAction::REMOVE_COLUMN
|
|
|| required_columns.end() == std::find(required_columns.begin(), required_columns.end(), action.source_name))
|
|
new_actions->add(action);
|
|
}
|
|
prewhere_info->prewhere_actions = std::move(new_actions);
|
|
|
|
auto analyzed_result
|
|
= SyntaxAnalyzer(context).analyze(required_columns_from_prewhere_expr, storage->getColumns().getAllPhysical());
|
|
prewhere_info->alias_actions
|
|
= ExpressionAnalyzer(required_columns_from_prewhere_expr, analyzed_result, context).getActions(true, false);
|
|
|
|
/// Add (physical?) columns required by alias actions.
|
|
auto required_columns_from_alias = prewhere_info->alias_actions->getRequiredColumns();
|
|
Block prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock();
|
|
for (auto & column : required_columns_from_alias)
|
|
if (!prewhere_actions_result.has(column))
|
|
if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column))
|
|
required_columns.push_back(column);
|
|
|
|
/// Add physical columns required by prewhere actions.
|
|
for (const auto & column : required_columns_from_prewhere)
|
|
if (required_aliases_from_prewhere.count(column) == 0)
|
|
if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column))
|
|
required_columns.push_back(column);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Limitation on the number of columns to read.
|
|
/// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns.
|
|
if (!options.only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read)
|
|
throw Exception("Limit for number of columns to read exceeded. "
|
|
"Requested: " + toString(required_columns.size())
|
|
+ ", maximum: " + settings.max_columns_to_read.toString(),
|
|
ErrorCodes::TOO_MANY_COLUMNS);
|
|
|
|
/** With distributed query processing, almost no computations are done in the threads,
|
|
* but wait and receive data from remote servers.
|
|
* If we have 20 remote servers, and max_threads = 8, then it would not be very good
|
|
* connect and ask only 8 servers at a time.
|
|
* To simultaneously query more remote servers,
|
|
* instead of max_threads, max_distributed_connections is used.
|
|
*/
|
|
bool is_remote = false;
|
|
if (storage && storage->isRemote())
|
|
{
|
|
is_remote = true;
|
|
max_streams = settings.max_distributed_connections;
|
|
}
|
|
|
|
UInt64 max_block_size = settings.max_block_size;
|
|
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
|
|
/** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, LIMIT BY but LIMIT is specified, and limit + offset < max_block_size,
|
|
* then as the block size we will use limit + offset (not to read more from the table than requested),
|
|
* and also set the number of threads to 1.
|
|
*/
|
|
if (!query.distinct
|
|
&& !query.prewhere_expression
|
|
&& !query.where_expression
|
|
&& !query.group_expression_list
|
|
&& !query.having_expression
|
|
&& !query.order_expression_list
|
|
&& !query.limit_by_expression_list
|
|
&& query.limit_length
|
|
&& !query_analyzer->hasAggregation()
|
|
&& limit_length + limit_offset < max_block_size)
|
|
{
|
|
max_block_size = std::max(UInt64(1), limit_length + limit_offset);
|
|
max_streams = 1;
|
|
}
|
|
|
|
if (!max_block_size)
|
|
throw Exception("Setting 'max_block_size' cannot be zero", ErrorCodes::PARAMETER_OUT_OF_BOUND);
|
|
|
|
/// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input?
|
|
if (pipeline.initialized())
|
|
{
|
|
/// Prepared input.
|
|
}
|
|
else if (interpreter_subquery)
|
|
{
|
|
/// Subquery.
|
|
/// If we need less number of columns that subquery have - update the interpreter.
|
|
if (required_columns.size() < source_header.columns())
|
|
{
|
|
ASTPtr subquery = extractTableExpression(query, 0);
|
|
if (!subquery)
|
|
throw Exception("Subquery expected", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>(
|
|
subquery, getSubqueryContext(context),
|
|
options.copy().subquery().noModify(), required_columns);
|
|
|
|
if (query_analyzer->hasAggregation())
|
|
interpreter_subquery->ignoreWithTotals();
|
|
}
|
|
|
|
if constexpr (pipeline_with_processors)
|
|
/// Just use pipeline from subquery.
|
|
pipeline = interpreter_subquery->executeWithProcessors();
|
|
else
|
|
pipeline.streams = interpreter_subquery->executeWithMultipleStreams();
|
|
}
|
|
else if (storage)
|
|
{
|
|
/// Table.
|
|
|
|
if (max_streams == 0)
|
|
throw Exception("Logical error: zero number of streams requested", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
/// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads.
|
|
if (max_streams > 1 && !is_remote)
|
|
max_streams *= settings.max_streams_to_max_threads_ratio;
|
|
|
|
SelectQueryInfo query_info;
|
|
query_info.query = query_ptr;
|
|
query_info.syntax_analyzer_result = syntax_analyzer_result;
|
|
query_info.sets = query_analyzer->getPreparedSets();
|
|
query_info.prewhere_info = prewhere_info;
|
|
|
|
auto streams = storage->read(required_columns, query_info, context, processing_stage, max_block_size, max_streams);
|
|
|
|
if (streams.empty())
|
|
{
|
|
streams = {std::make_shared<NullBlockInputStream>(storage->getSampleBlockForColumns(required_columns))};
|
|
|
|
if (query_info.prewhere_info)
|
|
streams.back() = std::make_shared<FilterBlockInputStream>(
|
|
streams.back(),
|
|
prewhere_info->prewhere_actions,
|
|
prewhere_info->prewhere_column_name,
|
|
prewhere_info->remove_prewhere_column);
|
|
|
|
}
|
|
|
|
for (auto & stream : streams)
|
|
stream->addTableLock(table_lock);
|
|
|
|
/// Set the limits and quota for reading data, the speed and time of the query.
|
|
{
|
|
IBlockInputStream::LocalLimits limits;
|
|
limits.mode = IBlockInputStream::LIMITS_TOTAL;
|
|
limits.size_limits = SizeLimits(settings.max_rows_to_read, settings.max_bytes_to_read, settings.read_overflow_mode);
|
|
limits.max_execution_time = settings.max_execution_time;
|
|
limits.timeout_overflow_mode = settings.timeout_overflow_mode;
|
|
|
|
/** Quota and minimal speed restrictions are checked on the initiating server of the request, and not on remote servers,
|
|
* because the initiating server has a summary of the execution of the request on all servers.
|
|
*
|
|
* But limits on data size to read and maximum execution time are reasonable to check both on initiator and
|
|
* additionally on each remote server, because these limits are checked per block of data processed,
|
|
* and remote servers may process way more blocks of data than are received by initiator.
|
|
*/
|
|
if (options.to_stage == QueryProcessingStage::Complete)
|
|
{
|
|
limits.min_execution_speed = settings.min_execution_speed;
|
|
limits.max_execution_speed = settings.max_execution_speed;
|
|
limits.min_execution_speed_bytes = settings.min_execution_speed_bytes;
|
|
limits.max_execution_speed_bytes = settings.max_execution_speed_bytes;
|
|
limits.timeout_before_checking_execution_speed = settings.timeout_before_checking_execution_speed;
|
|
}
|
|
|
|
QuotaForIntervals & quota = context.getQuota();
|
|
|
|
for (auto & stream : streams)
|
|
{
|
|
stream->setLimits(limits);
|
|
|
|
if (options.to_stage == QueryProcessingStage::Complete)
|
|
stream->setQuota(quota);
|
|
}
|
|
}
|
|
|
|
if constexpr (pipeline_with_processors)
|
|
{
|
|
Processors sources;
|
|
sources.reserve(streams.size());
|
|
|
|
for (auto & stream : streams)
|
|
{
|
|
bool force_add_agg_info = processing_stage == QueryProcessingStage::WithMergeableState;
|
|
auto source = std::make_shared<SourceFromInputStream>(stream, force_add_agg_info);
|
|
|
|
if (processing_stage == QueryProcessingStage::Complete)
|
|
source->addTotalsPort();
|
|
|
|
sources.emplace_back(std::move(source));
|
|
|
|
}
|
|
|
|
pipeline.init(std::move(sources));
|
|
}
|
|
else
|
|
pipeline.streams = std::move(streams);
|
|
}
|
|
else
|
|
throw Exception("Logical error in InterpreterSelectQuery: nowhere to read", ErrorCodes::LOGICAL_ERROR);
|
|
|
|
/// Aliases in table declaration.
|
|
if (processing_stage == QueryProcessingStage::FetchColumns && alias_actions)
|
|
{
|
|
if constexpr (pipeline_with_processors)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<ExpressionTransform>(header, alias_actions);
|
|
});
|
|
}
|
|
else
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, alias_actions);
|
|
});
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeWhere(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter)
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<FilterBlockInputStream>(stream, expression, getSelectQuery().where_expression->getColumnName(), remove_fiter);
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeWhere(QueryPipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & block)
|
|
{
|
|
return std::make_shared<FilterTransform>(block, expression, getSelectQuery().where_expression->getColumnName(), remove_fiter);
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeAggregation(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final)
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
|
|
});
|
|
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
Block header = pipeline.firstStream()->getHeader();
|
|
ColumnNumbers keys;
|
|
for (const auto & name : key_names)
|
|
keys.push_back(header.getPositionByName(name));
|
|
for (auto & descr : aggregates)
|
|
if (descr.arguments.empty())
|
|
for (const auto & name : descr.argument_names)
|
|
descr.arguments.push_back(header.getPositionByName(name));
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
/** Two-level aggregation is useful in two cases:
|
|
* 1. Parallel aggregation is done, and the results should be merged in parallel.
|
|
* 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way.
|
|
*/
|
|
bool allow_to_use_two_level_group_by = pipeline.streams.size() > 1 || settings.max_bytes_before_external_group_by != 0;
|
|
|
|
Aggregator::Params params(header, keys, aggregates,
|
|
overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode,
|
|
settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile,
|
|
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0),
|
|
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0),
|
|
settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set,
|
|
context.getTemporaryPath(), settings.max_threads);
|
|
|
|
/// If there are several sources, then we perform parallel aggregation
|
|
if (pipeline.streams.size() > 1)
|
|
{
|
|
pipeline.firstStream() = std::make_shared<ParallelAggregatingBlockInputStream>(
|
|
pipeline.streams, pipeline.stream_with_non_joined_data, params, final,
|
|
max_streams,
|
|
settings.aggregation_memory_efficient_merge_threads
|
|
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
|
|
: static_cast<size_t>(settings.max_threads));
|
|
|
|
pipeline.stream_with_non_joined_data = nullptr;
|
|
pipeline.streams.resize(1);
|
|
}
|
|
else
|
|
{
|
|
BlockInputStreams inputs;
|
|
if (!pipeline.streams.empty())
|
|
inputs.push_back(pipeline.firstStream());
|
|
else
|
|
pipeline.streams.resize(1);
|
|
|
|
if (pipeline.stream_with_non_joined_data)
|
|
inputs.push_back(pipeline.stream_with_non_joined_data);
|
|
|
|
pipeline.firstStream() = std::make_shared<AggregatingBlockInputStream>(std::make_shared<ConcatBlockInputStream>(inputs), params, final);
|
|
|
|
pipeline.stream_with_non_joined_data = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeAggregation(QueryPipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<ExpressionTransform>(header, expression);
|
|
});
|
|
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
Block header_before_aggregation = pipeline.getHeader();
|
|
ColumnNumbers keys;
|
|
for (const auto & name : key_names)
|
|
keys.push_back(header_before_aggregation.getPositionByName(name));
|
|
for (auto & descr : aggregates)
|
|
if (descr.arguments.empty())
|
|
for (const auto & name : descr.argument_names)
|
|
descr.arguments.push_back(header_before_aggregation.getPositionByName(name));
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
/** Two-level aggregation is useful in two cases:
|
|
* 1. Parallel aggregation is done, and the results should be merged in parallel.
|
|
* 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way.
|
|
*/
|
|
bool allow_to_use_two_level_group_by = pipeline.getNumMainStreams() > 1 || settings.max_bytes_before_external_group_by != 0;
|
|
|
|
Aggregator::Params params(header_before_aggregation, keys, aggregates,
|
|
overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode,
|
|
settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile,
|
|
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0),
|
|
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0),
|
|
settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set,
|
|
context.getTemporaryPath(), settings.max_threads);
|
|
|
|
auto transform_params = std::make_shared<AggregatingTransformParams>(params, final);
|
|
|
|
/// If there are several sources, then we perform parallel aggregation
|
|
if (pipeline.getNumMainStreams() > 1)
|
|
{
|
|
pipeline.resize(max_streams);
|
|
|
|
auto many_data = std::make_shared<ManyAggregatedData>(max_streams);
|
|
auto merge_threads = settings.aggregation_memory_efficient_merge_threads
|
|
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
|
|
: static_cast<size_t>(settings.max_threads);
|
|
|
|
size_t counter = 0;
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<AggregatingTransform>(header, transform_params, many_data, counter++, max_streams, merge_threads);
|
|
});
|
|
|
|
pipeline.resize(1);
|
|
}
|
|
else
|
|
{
|
|
pipeline.resize(1);
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<AggregatingTransform>(header, transform_params);
|
|
});
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeMergeAggregated(Pipeline & pipeline, bool overflow_row, bool final)
|
|
{
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
Block header = pipeline.firstStream()->getHeader();
|
|
|
|
ColumnNumbers keys;
|
|
for (const auto & name : key_names)
|
|
keys.push_back(header.getPositionByName(name));
|
|
|
|
/** There are two modes of distributed aggregation.
|
|
*
|
|
* 1. In different threads read from the remote servers blocks.
|
|
* Save all the blocks in the RAM. Merge blocks.
|
|
* If the aggregation is two-level - parallelize to the number of buckets.
|
|
*
|
|
* 2. In one thread, read blocks from different servers in order.
|
|
* RAM stores only one block from each server.
|
|
* If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level.
|
|
*
|
|
* The second option consumes less memory (up to 256 times less)
|
|
* in the case of two-level aggregation, which is used for large results after GROUP BY,
|
|
* but it can work more slowly.
|
|
*/
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
Aggregator::Params params(header, keys, aggregates, overflow_row, settings.max_threads);
|
|
|
|
if (!settings.distributed_aggregation_memory_efficient)
|
|
{
|
|
/// We union several sources into one, parallelizing the work.
|
|
executeUnion(pipeline);
|
|
|
|
/// Now merge the aggregated blocks
|
|
pipeline.firstStream() = std::make_shared<MergingAggregatedBlockInputStream>(pipeline.firstStream(), params, final, settings.max_threads);
|
|
}
|
|
else
|
|
{
|
|
pipeline.firstStream() = std::make_shared<MergingAggregatedMemoryEfficientBlockInputStream>(pipeline.streams, params, final,
|
|
max_streams,
|
|
settings.aggregation_memory_efficient_merge_threads
|
|
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
|
|
: static_cast<size_t>(settings.max_threads));
|
|
|
|
pipeline.streams.resize(1);
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeMergeAggregated(QueryPipeline & pipeline, bool overflow_row, bool final)
|
|
{
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
Block header_before_merge = pipeline.getHeader();
|
|
|
|
ColumnNumbers keys;
|
|
for (const auto & name : key_names)
|
|
keys.push_back(header_before_merge.getPositionByName(name));
|
|
|
|
/** There are two modes of distributed aggregation.
|
|
*
|
|
* 1. In different threads read from the remote servers blocks.
|
|
* Save all the blocks in the RAM. Merge blocks.
|
|
* If the aggregation is two-level - parallelize to the number of buckets.
|
|
*
|
|
* 2. In one thread, read blocks from different servers in order.
|
|
* RAM stores only one block from each server.
|
|
* If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level.
|
|
*
|
|
* The second option consumes less memory (up to 256 times less)
|
|
* in the case of two-level aggregation, which is used for large results after GROUP BY,
|
|
* but it can work more slowly.
|
|
*/
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
Aggregator::Params params(header_before_merge, keys, aggregates, overflow_row, settings.max_threads);
|
|
|
|
auto transform_params = std::make_shared<AggregatingTransformParams>(params, final);
|
|
|
|
if (!settings.distributed_aggregation_memory_efficient)
|
|
{
|
|
/// We union several sources into one, parallelizing the work.
|
|
pipeline.resize(1);
|
|
|
|
/// Now merge the aggregated blocks
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<MergingAggregatedTransform>(header, transform_params, settings.max_threads);
|
|
});
|
|
}
|
|
else
|
|
{
|
|
/// pipeline.resize(max_streams); - Seem we don't need it.
|
|
auto num_merge_threads = settings.aggregation_memory_efficient_merge_threads
|
|
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
|
|
: static_cast<size_t>(settings.max_threads);
|
|
|
|
auto pipe = createMergingAggregatedMemoryEfficientPipe(
|
|
pipeline.getHeader(),
|
|
transform_params,
|
|
pipeline.getNumStreams(),
|
|
num_merge_threads);
|
|
|
|
pipeline.addPipe(std::move(pipe));
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeHaving(Pipeline & pipeline, const ExpressionActionsPtr & expression)
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<FilterBlockInputStream>(stream, expression, getSelectQuery().having_expression->getColumnName());
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeHaving(QueryPipeline & pipeline, const ExpressionActionsPtr & expression)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<FilterTransform>(header, expression, getSelectQuery().having_expression->getColumnName(), false);
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeTotalsAndHaving(Pipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final)
|
|
{
|
|
executeUnion(pipeline);
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
pipeline.firstStream() = std::make_shared<TotalsHavingBlockInputStream>(
|
|
pipeline.firstStream(),
|
|
overflow_row,
|
|
expression,
|
|
has_having ? getSelectQuery().having_expression->getColumnName() : "",
|
|
settings.totals_mode,
|
|
settings.totals_auto_threshold,
|
|
final);
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeTotalsAndHaving(QueryPipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final)
|
|
{
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
auto totals_having = std::make_shared<TotalsHavingTransform>(
|
|
pipeline.getHeader(), overflow_row, expression,
|
|
has_having ? getSelectQuery().having_expression->getColumnName() : "",
|
|
settings.totals_mode, settings.totals_auto_threshold, final);
|
|
|
|
pipeline.addTotalsHavingTransform(std::move(totals_having));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeRollupOrCube(Pipeline & pipeline, Modificator modificator)
|
|
{
|
|
executeUnion(pipeline);
|
|
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
Block header = pipeline.firstStream()->getHeader();
|
|
|
|
ColumnNumbers keys;
|
|
|
|
for (const auto & name : key_names)
|
|
keys.push_back(header.getPositionByName(name));
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
Aggregator::Params params(header, keys, aggregates,
|
|
false, settings.max_rows_to_group_by, settings.group_by_overflow_mode,
|
|
settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile,
|
|
SettingUInt64(0), SettingUInt64(0),
|
|
settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set,
|
|
context.getTemporaryPath(), settings.max_threads);
|
|
|
|
if (modificator == Modificator::ROLLUP)
|
|
pipeline.firstStream() = std::make_shared<RollupBlockInputStream>(pipeline.firstStream(), params);
|
|
else
|
|
pipeline.firstStream() = std::make_shared<CubeBlockInputStream>(pipeline.firstStream(), params);
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeRollupOrCube(QueryPipeline & pipeline, Modificator modificator)
|
|
{
|
|
pipeline.resize(1);
|
|
|
|
Names key_names;
|
|
AggregateDescriptions aggregates;
|
|
query_analyzer->getAggregateInfo(key_names, aggregates);
|
|
|
|
Block header_before_transform = pipeline.getHeader();
|
|
|
|
ColumnNumbers keys;
|
|
|
|
for (const auto & name : key_names)
|
|
keys.push_back(header_before_transform.getPositionByName(name));
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
Aggregator::Params params(header_before_transform, keys, aggregates,
|
|
false, settings.max_rows_to_group_by, settings.group_by_overflow_mode,
|
|
settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile,
|
|
SettingUInt64(0), SettingUInt64(0),
|
|
settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set,
|
|
context.getTemporaryPath(), settings.max_threads);
|
|
|
|
auto transform_params = std::make_shared<AggregatingTransformParams>(params, true);
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header) -> ProcessorPtr
|
|
{
|
|
if (modificator == Modificator::ROLLUP)
|
|
return std::make_shared<RollupTransform>(header, std::move(transform_params));
|
|
else
|
|
return std::make_shared<CubeTransform>(header, std::move(transform_params));
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeExpression(Pipeline & pipeline, const ExpressionActionsPtr & expression)
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeExpression(QueryPipeline & pipeline, const ExpressionActionsPtr & expression)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<ExpressionTransform>(header, expression);
|
|
});
|
|
}
|
|
|
|
static SortDescription getSortDescription(const ASTSelectQuery & query)
|
|
{
|
|
SortDescription order_descr;
|
|
order_descr.reserve(query.order_expression_list->children.size());
|
|
for (const auto & elem : query.order_expression_list->children)
|
|
{
|
|
String name = elem->children.front()->getColumnName();
|
|
const auto & order_by_elem = elem->as<ASTOrderByElement &>();
|
|
|
|
std::shared_ptr<Collator> collator;
|
|
if (order_by_elem.collation)
|
|
collator = std::make_shared<Collator>(order_by_elem.collation->as<ASTLiteral &>().value.get<String>());
|
|
|
|
order_descr.emplace_back(name, order_by_elem.direction, order_by_elem.nulls_direction, collator);
|
|
}
|
|
|
|
return order_descr;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeOrder(Pipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
SortDescription order_descr = getSortDescription(query);
|
|
UInt64 limit = getLimitForSorting(query, context);
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
auto sorting_stream = std::make_shared<PartialSortingBlockInputStream>(stream, order_descr, limit);
|
|
|
|
/// Limits on sorting
|
|
IBlockInputStream::LocalLimits limits;
|
|
limits.mode = IBlockInputStream::LIMITS_TOTAL;
|
|
limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode);
|
|
sorting_stream->setLimits(limits);
|
|
|
|
stream = sorting_stream;
|
|
});
|
|
|
|
/// If there are several streams, we merge them into one
|
|
executeUnion(pipeline);
|
|
|
|
/// Merge the sorted blocks.
|
|
pipeline.firstStream() = std::make_shared<MergeSortingBlockInputStream>(
|
|
pipeline.firstStream(), order_descr, settings.max_block_size, limit,
|
|
settings.max_bytes_before_remerge_sort,
|
|
settings.max_bytes_before_external_sort, context.getTemporaryPath());
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeOrder(QueryPipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
SortDescription order_descr = getSortDescription(query);
|
|
UInt64 limit = getLimitForSorting(query, context);
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
/// TODO: Limits on sorting
|
|
// IBlockInputStream::LocalLimits limits;
|
|
// limits.mode = IBlockInputStream::LIMITS_TOTAL;
|
|
// limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode);
|
|
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type)
|
|
{
|
|
bool do_count_rows = stream_type == QueryPipeline::StreamType::Main;
|
|
return std::make_shared<PartialSortingTransform>(header, order_descr, limit, do_count_rows);
|
|
});
|
|
|
|
/// If there are several streams, we merge them into one
|
|
pipeline.resize(1);
|
|
|
|
/// Merge the sorted blocks.
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<MergeSortingTransform>(
|
|
header, order_descr, settings.max_block_size, limit,
|
|
settings.max_bytes_before_remerge_sort,
|
|
settings.max_bytes_before_external_sort, context.getTemporaryPath());
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeMergeSorted(Pipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
SortDescription order_descr = getSortDescription(query);
|
|
UInt64 limit = getLimitForSorting(query, context);
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
/// If there are several streams, then we merge them into one
|
|
if (pipeline.hasMoreThanOneStream())
|
|
{
|
|
unifyStreams(pipeline);
|
|
|
|
/** MergingSortedBlockInputStream reads the sources sequentially.
|
|
* To make the data on the remote servers prepared in parallel, we wrap it in AsynchronousBlockInputStream.
|
|
*/
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<AsynchronousBlockInputStream>(stream);
|
|
});
|
|
|
|
/// Merge the sorted sources into one sorted source.
|
|
pipeline.firstStream() = std::make_shared<MergingSortedBlockInputStream>(pipeline.streams, order_descr, settings.max_block_size, limit);
|
|
pipeline.streams.resize(1);
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeMergeSorted(QueryPipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
SortDescription order_descr = getSortDescription(query);
|
|
UInt64 limit = getLimitForSorting(query, context);
|
|
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
/// If there are several streams, then we merge them into one
|
|
if (pipeline.getNumStreams() > 1)
|
|
{
|
|
auto transform = std::make_shared<MergingSortedTransform>(
|
|
pipeline.getHeader(),
|
|
pipeline.getNumStreams(),
|
|
order_descr,
|
|
settings.max_block_size, limit);
|
|
|
|
pipeline.addPipe({ std::move(transform) });
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeProjection(Pipeline & pipeline, const ExpressionActionsPtr & expression)
|
|
{
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeProjection(QueryPipeline & pipeline, const ExpressionActionsPtr & expression)
|
|
{
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<ExpressionTransform>(header, expression);
|
|
});
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeDistinct(Pipeline & pipeline, bool before_order, Names columns)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (query.distinct)
|
|
{
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
UInt64 limit_for_distinct = 0;
|
|
|
|
/// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows.
|
|
if (!query.order_expression_list || !before_order)
|
|
limit_for_distinct = limit_length + limit_offset;
|
|
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode);
|
|
stream = std::make_shared<DistinctBlockInputStream>(stream, limits, limit_for_distinct, columns);
|
|
});
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeDistinct(QueryPipeline & pipeline, bool before_order, Names columns)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (query.distinct)
|
|
{
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
UInt64 limit_for_distinct = 0;
|
|
|
|
/// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows.
|
|
if (!query.order_expression_list || !before_order)
|
|
limit_for_distinct = limit_length + limit_offset;
|
|
|
|
SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode);
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header) -> ProcessorPtr
|
|
{
|
|
return std::make_shared<DistinctTransform>(header, limits, limit_for_distinct, columns);
|
|
});
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeUnion(Pipeline & pipeline)
|
|
{
|
|
/// If there are still several streams, then we combine them into one
|
|
if (pipeline.hasMoreThanOneStream())
|
|
{
|
|
unifyStreams(pipeline);
|
|
|
|
pipeline.firstStream() = std::make_shared<UnionBlockInputStream>(pipeline.streams, pipeline.stream_with_non_joined_data, max_streams);
|
|
pipeline.stream_with_non_joined_data = nullptr;
|
|
pipeline.streams.resize(1);
|
|
}
|
|
else if (pipeline.stream_with_non_joined_data)
|
|
{
|
|
pipeline.streams.push_back(pipeline.stream_with_non_joined_data);
|
|
pipeline.stream_with_non_joined_data = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
/// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined.
|
|
void InterpreterSelectQuery::executePreLimit(Pipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is LIMIT
|
|
if (query.limit_length)
|
|
{
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
pipeline.transform([&, limit = limit_length + limit_offset](auto & stream)
|
|
{
|
|
stream = std::make_shared<LimitBlockInputStream>(stream, limit, 0, false);
|
|
});
|
|
}
|
|
}
|
|
|
|
/// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined.
|
|
void InterpreterSelectQuery::executePreLimit(QueryPipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is LIMIT
|
|
if (query.limit_length)
|
|
{
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
pipeline.addSimpleTransform([&, limit = limit_length + limit_offset](const Block & header)
|
|
{
|
|
return std::make_shared<LimitTransform>(header, limit, 0, false);
|
|
});
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeLimitBy(Pipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (!query.limit_by_value || !query.limit_by_expression_list)
|
|
return;
|
|
|
|
Names columns;
|
|
for (const auto & elem : query.limit_by_expression_list->children)
|
|
columns.emplace_back(elem->getColumnName());
|
|
|
|
UInt64 value = getLimitUIntValue(query.limit_by_value, context);
|
|
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<LimitByBlockInputStream>(stream, value, columns);
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeLimitBy(QueryPipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (!query.limit_by_value || !query.limit_by_expression_list)
|
|
return;
|
|
|
|
Names columns;
|
|
for (const auto & elem : query.limit_by_expression_list->children)
|
|
columns.emplace_back(elem->getColumnName());
|
|
|
|
UInt64 value = getLimitUIntValue(query.limit_by_value, context);
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<LimitByTransform>(header, value, columns);
|
|
});
|
|
}
|
|
|
|
|
|
// TODO: move to anonymous namespace
|
|
bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query)
|
|
{
|
|
if (query.group_by_with_totals)
|
|
return true;
|
|
|
|
/** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard.
|
|
* In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end.
|
|
*/
|
|
|
|
if (auto query_table = extractTableExpression(query, 0))
|
|
{
|
|
if (const auto * ast_union = query_table->as<ASTSelectWithUnionQuery>())
|
|
{
|
|
for (const auto & elem : ast_union->list_of_selects->children)
|
|
if (hasWithTotalsInAnySubqueryInFromClause(elem->as<ASTSelectQuery &>()))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeLimit(Pipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is LIMIT
|
|
if (query.limit_length)
|
|
{
|
|
/** Rare case:
|
|
* if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels,
|
|
* then when using LIMIT, you should read the data to the end, rather than cancel the query earlier,
|
|
* because if you cancel the query, we will not get `totals` data from the remote server.
|
|
*
|
|
* Another case:
|
|
* if there is WITH TOTALS and there is no ORDER BY, then read the data to the end,
|
|
* otherwise TOTALS is counted according to incomplete data.
|
|
*/
|
|
bool always_read_till_end = false;
|
|
|
|
if (query.group_by_with_totals && !query.order_expression_list)
|
|
always_read_till_end = true;
|
|
|
|
if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query))
|
|
always_read_till_end = true;
|
|
|
|
UInt64 limit_length;
|
|
UInt64 limit_offset;
|
|
std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context);
|
|
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream = std::make_shared<LimitBlockInputStream>(stream, limit_length, limit_offset, always_read_till_end);
|
|
});
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeLimit(QueryPipeline & pipeline)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is LIMIT
|
|
if (query.limit_length)
|
|
{
|
|
/** Rare case:
|
|
* if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels,
|
|
* then when using LIMIT, you should read the data to the end, rather than cancel the query earlier,
|
|
* because if you cancel the query, we will not get `totals` data from the remote server.
|
|
*
|
|
* Another case:
|
|
* if there is WITH TOTALS and there is no ORDER BY, then read the data to the end,
|
|
* otherwise TOTALS is counted according to incomplete data.
|
|
*/
|
|
bool always_read_till_end = false;
|
|
|
|
if (query.group_by_with_totals && !query.order_expression_list)
|
|
always_read_till_end = true;
|
|
|
|
if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query))
|
|
always_read_till_end = true;
|
|
|
|
UInt64 limit_length;
|
|
UInt64 limit_offset;
|
|
std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context);
|
|
|
|
pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type)
|
|
{
|
|
bool do_count_rows_before_limit = stream_type == QueryPipeline::StreamType::Main;
|
|
return std::make_shared<LimitTransform>(
|
|
header, limit_length, limit_offset, always_read_till_end, do_count_rows_before_limit);
|
|
});
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeExtremes(Pipeline & pipeline)
|
|
{
|
|
if (!context.getSettingsRef().extremes)
|
|
return;
|
|
|
|
pipeline.transform([&](auto & stream)
|
|
{
|
|
stream->enableExtremes();
|
|
});
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeExtremes(QueryPipeline & pipeline)
|
|
{
|
|
if (!context.getSettingsRef().extremes)
|
|
return;
|
|
|
|
auto transform = std::make_shared<ExtremesTransform>(pipeline.getHeader());
|
|
pipeline.addExtremesTransform(std::move(transform));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(Pipeline & pipeline, SubqueriesForSets & subqueries_for_sets)
|
|
{
|
|
executeUnion(pipeline);
|
|
pipeline.firstStream() = std::make_shared<CreatingSetsBlockInputStream>(
|
|
pipeline.firstStream(), subqueries_for_sets, context);
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(QueryPipeline & pipeline, SubqueriesForSets & subqueries_for_sets)
|
|
{
|
|
const Settings & settings = context.getSettingsRef();
|
|
|
|
auto creating_sets = std::make_shared<CreatingSetsTransform>(
|
|
pipeline.getHeader(), subqueries_for_sets,
|
|
SizeLimits(settings.max_rows_to_transfer, settings.max_bytes_to_transfer, settings.transfer_overflow_mode),
|
|
context);
|
|
|
|
pipeline.addCreatingSetsTransform(std::move(creating_sets));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::unifyStreams(Pipeline & pipeline)
|
|
{
|
|
if (pipeline.hasMoreThanOneStream())
|
|
{
|
|
/// Unify streams in case they have different headers.
|
|
auto first_header = pipeline.streams.at(0)->getHeader();
|
|
for (size_t i = 1; i < pipeline.streams.size(); ++i)
|
|
{
|
|
auto & stream = pipeline.streams[i];
|
|
auto header = stream->getHeader();
|
|
auto mode = ConvertingBlockInputStream::MatchColumnsMode::Name;
|
|
if (!blocksHaveEqualStructure(first_header, header))
|
|
stream = std::make_shared<ConvertingBlockInputStream>(context, stream, first_header, mode);
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::ignoreWithTotals()
|
|
{
|
|
getSelectQuery().group_by_with_totals = false;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::initSettings()
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (query.settings)
|
|
InterpreterSetQuery(query.settings, context).executeForCurrentContext();
|
|
}
|
|
|
|
}
|