ClickHouse/dbms/src/Interpreters/InterpreterSelectQuery.cpp

1196 lines
46 KiB
C++

#include <DataStreams/ExpressionBlockInputStream.h>
#include <DataStreams/FilterBlockInputStream.h>
#include <DataStreams/LimitBlockInputStream.h>
#include <DataStreams/LimitByBlockInputStream.h>
#include <DataStreams/PartialSortingBlockInputStream.h>
#include <DataStreams/MergeSortingBlockInputStream.h>
#include <DataStreams/MergingSortedBlockInputStream.h>
#include <DataStreams/AggregatingBlockInputStream.h>
#include <DataStreams/MergingAggregatedBlockInputStream.h>
#include <DataStreams/MergingAggregatedMemoryEfficientBlockInputStream.h>
#include <DataStreams/AsynchronousBlockInputStream.h>
#include <DataStreams/UnionBlockInputStream.h>
#include <DataStreams/ParallelAggregatingBlockInputStream.h>
#include <DataStreams/DistinctBlockInputStream.h>
#include <DataStreams/NullBlockInputStream.h>
#include <DataStreams/TotalsHavingBlockInputStream.h>
#include <DataStreams/copyData.h>
#include <DataStreams/CreatingSetsBlockInputStream.h>
#include <DataStreams/MaterializingBlockInputStream.h>
#include <DataStreams/ConcatBlockInputStream.h>
#include <Parsers/ASTSelectQuery.h>
#include <Parsers/ASTSelectWithUnionQuery.h>
#include <Parsers/ASTIdentifier.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTOrderByElement.h>
#include <Parsers/ASTTablesInSelectQuery.h>
#include <Interpreters/InterpreterSelectQuery.h>
#include <Interpreters/InterpreterSelectWithUnionQuery.h>
#include <Interpreters/InterpreterSetQuery.h>
#include <Interpreters/ExpressionAnalyzer.h>
#include <Storages/MergeTree/MergeTreeWhereOptimizer.h>
#include <Storages/IStorage.h>
#include <Storages/StorageMergeTree.h>
#include <Storages/StorageReplicatedMergeTree.h>
#include <TableFunctions/ITableFunction.h>
#include <TableFunctions/TableFunctionFactory.h>
#include <Core/Field.h>
#include <Columns/Collator.h>
#include <Common/typeid_cast.h>
namespace DB
{
namespace ErrorCodes
{
extern const int TOO_DEEP_SUBQUERIES;
extern const int THERE_IS_NO_COLUMN;
extern const int SAMPLING_NOT_SUPPORTED;
extern const int ILLEGAL_FINAL;
extern const int ILLEGAL_PREWHERE;
extern const int TOO_MANY_COLUMNS;
extern const int LOGICAL_ERROR;
extern const int NOT_IMPLEMENTED;
}
InterpreterSelectQuery::InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const Names & required_result_column_names,
QueryProcessingStage::Enum to_stage_,
size_t subquery_depth_,
bool only_analyze_)
: InterpreterSelectQuery(query_ptr_, context_, nullptr, nullptr, required_result_column_names, to_stage_, subquery_depth_, only_analyze_)
{
}
InterpreterSelectQuery::InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const BlockInputStreamPtr & input_,
QueryProcessingStage::Enum to_stage_,
bool only_analyze_)
: InterpreterSelectQuery(query_ptr_, context_, input_, nullptr, Names{}, to_stage_, 0, only_analyze_)
{
}
InterpreterSelectQuery::InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const StoragePtr & storage_,
QueryProcessingStage::Enum to_stage_,
bool only_analyze_)
: InterpreterSelectQuery(query_ptr_, context_, nullptr, storage_, Names{}, to_stage_, 0, only_analyze_)
{
}
InterpreterSelectQuery::~InterpreterSelectQuery() = default;
/** There are no limits on the maximum size of the result for the subquery.
* Since the result of the query is not the result of the entire query.
*/
static Context getSubqueryContext(const Context & context)
{
Context subquery_context = context;
Settings subquery_settings = context.getSettings();
subquery_settings.max_result_rows = 0;
subquery_settings.max_result_bytes = 0;
/// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query).
subquery_settings.extremes = 0;
subquery_context.setSettings(subquery_settings);
return subquery_context;
}
InterpreterSelectQuery::InterpreterSelectQuery(
const ASTPtr & query_ptr_,
const Context & context_,
const BlockInputStreamPtr & input_,
const StoragePtr & storage_,
const Names & required_result_column_names,
QueryProcessingStage::Enum to_stage_,
size_t subquery_depth_,
bool only_analyze_)
: query_ptr(query_ptr_->clone()) /// Note: the query is cloned because it will be modified during analysis.
, query(typeid_cast<ASTSelectQuery &>(*query_ptr))
, context(context_)
, to_stage(to_stage_)
, subquery_depth(subquery_depth_)
, only_analyze(only_analyze_)
, storage(storage_)
, input(input_)
, log(&Logger::get("InterpreterSelectQuery"))
{
if (!context.hasQueryContext())
context.setQueryContext(context);
initSettings();
const Settings & settings = context.getSettingsRef();
if (settings.max_subquery_depth && subquery_depth > settings.max_subquery_depth)
throw Exception("Too deep subqueries. Maximum: " + settings.max_subquery_depth.toString(),
ErrorCodes::TOO_DEEP_SUBQUERIES);
max_streams = settings.max_threads;
const auto & table_expression = query.table();
if (input)
{
/// Read from prepared input.
source_header = input->getHeader();
}
else if (table_expression && typeid_cast<const ASTSelectWithUnionQuery *>(table_expression.get()))
{
/// Read from subquery.
interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>(
table_expression, getSubqueryContext(context), required_columns, QueryProcessingStage::Complete, subquery_depth + 1, only_analyze);
source_header = interpreter_subquery->getSampleBlock();
}
else if (!storage)
{
if (table_expression && typeid_cast<const ASTFunction *>(table_expression.get()))
{
/// Read from table function.
storage = context.getQueryContext().executeTableFunction(table_expression);
}
else
{
/// Read from table. Even without table expression (implicit SELECT ... FROM system.one).
String database_name;
String table_name;
getDatabaseAndTableNames(database_name, table_name);
storage = context.getTable(database_name, table_name);
}
}
if (storage)
table_lock = storage->lockStructure(false, __PRETTY_FUNCTION__);
query_analyzer = std::make_unique<ExpressionAnalyzer>(
query_ptr, context, storage, source_header.getNamesAndTypesList(), required_result_column_names, subquery_depth, !only_analyze);
if (!only_analyze)
{
if (query.sample_size() && (input || !storage || !storage->supportsSampling()))
throw Exception("Illegal SAMPLE: table doesn't support sampling", ErrorCodes::SAMPLING_NOT_SUPPORTED);
if (query.final() && (input || !storage || !storage->supportsFinal()))
throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support FINAL" : "Illegal FINAL", ErrorCodes::ILLEGAL_FINAL);
if (query.prewhere_expression && (input || !storage || !storage->supportsPrewhere()))
throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support PREWHERE" : "Illegal PREWHERE", ErrorCodes::ILLEGAL_PREWHERE);
/// Save the new temporary tables in the query context
for (const auto & it : query_analyzer->getExternalTables())
if (!context.tryGetExternalTable(it.first))
context.addExternalTable(it.first, it.second);
}
if (interpreter_subquery)
{
/// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery.
if (query_analyzer->hasAggregation())
interpreter_subquery->ignoreWithTotals();
}
required_columns = query_analyzer->getRequiredSourceColumns();
if (storage)
source_header = storage->getSampleBlockForColumns(required_columns);
/// Calculate structure of the result.
{
Pipeline pipeline;
executeImpl(pipeline, input, true);
result_header = pipeline.firstStream()->getHeader();
}
}
void InterpreterSelectQuery::getDatabaseAndTableNames(String & database_name, String & table_name)
{
auto query_database = query.database();
auto query_table = query.table();
/** If the table is not specified - use the table `system.one`.
* If the database is not specified - use the current database.
*/
if (query_database)
database_name = typeid_cast<ASTIdentifier &>(*query_database).name;
if (query_table)
table_name = typeid_cast<ASTIdentifier &>(*query_table).name;
if (!query_table)
{
database_name = "system";
table_name = "one";
}
else if (!query_database)
{
if (context.tryGetTable("", table_name))
database_name = "";
else
database_name = context.getCurrentDatabase();
}
}
Block InterpreterSelectQuery::getSampleBlock()
{
return result_header;
}
BlockIO InterpreterSelectQuery::execute()
{
Pipeline pipeline;
executeImpl(pipeline, input, only_analyze);
executeUnion(pipeline);
BlockIO res;
res.in = pipeline.firstStream();
return res;
}
BlockInputStreams InterpreterSelectQuery::executeWithMultipleStreams()
{
Pipeline pipeline;
executeImpl(pipeline, input, only_analyze);
return pipeline.streams;
}
InterpreterSelectQuery::AnalysisResult InterpreterSelectQuery::analyzeExpressions(QueryProcessingStage::Enum from_stage, bool dry_run)
{
AnalysisResult res;
/// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing.
res.first_stage = from_stage < QueryProcessingStage::WithMergeableState
&& to_stage >= QueryProcessingStage::WithMergeableState;
/// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing.
res.second_stage = from_stage <= QueryProcessingStage::WithMergeableState
&& to_stage > QueryProcessingStage::WithMergeableState;
/** First we compose a chain of actions and remember the necessary steps from it.
* Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and
* throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries.
*/
{
ExpressionActionsChain chain;
res.need_aggregate = query_analyzer->hasAggregation();
query_analyzer->appendArrayJoin(chain, dry_run || !res.first_stage);
if (query_analyzer->appendJoin(chain, dry_run || !res.first_stage))
{
res.has_join = true;
res.before_join = chain.getLastActions();
chain.addStep();
}
if (query_analyzer->appendWhere(chain, dry_run || !res.first_stage))
{
res.has_where = true;
res.before_where = chain.getLastActions();
chain.addStep();
}
if (res.need_aggregate)
{
query_analyzer->appendGroupBy(chain, dry_run || !res.first_stage);
query_analyzer->appendAggregateFunctionsArguments(chain, dry_run || !res.first_stage);
res.before_aggregation = chain.getLastActions();
chain.finalize();
chain.clear();
if (query_analyzer->appendHaving(chain, dry_run || !res.second_stage))
{
res.has_having = true;
res.before_having = chain.getLastActions();
chain.addStep();
}
}
/// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers.
query_analyzer->appendSelect(chain, dry_run || (res.need_aggregate ? !res.second_stage : !res.first_stage));
res.selected_columns = chain.getLastStep().required_output;
res.has_order_by = query_analyzer->appendOrderBy(chain, dry_run || (res.need_aggregate ? !res.second_stage : !res.first_stage));
res.before_order_and_select = chain.getLastActions();
chain.addStep();
if (query_analyzer->appendLimitBy(chain, dry_run || !res.second_stage))
{
res.has_limit_by = true;
res.before_limit_by = chain.getLastActions();
chain.addStep();
}
query_analyzer->appendProjectResult(chain);
res.final_projection = chain.getLastActions();
chain.finalize();
chain.clear();
}
/// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys).
if (res.has_where)
res.before_where->prependProjectInput();
if (res.has_having)
res.before_having->prependProjectInput();
res.subqueries_for_sets = query_analyzer->getSubqueriesForSets();
return res;
}
void InterpreterSelectQuery::executeImpl(Pipeline & pipeline, const BlockInputStreamPtr & input, bool dry_run)
{
if (input)
pipeline.streams.push_back(input);
/** Streams of data. When the query is executed in parallel, we have several data streams.
* If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then
* if there is an ORDER BY, then glue the streams using UnionBlockInputStream, and then MergeSortingBlockInputStream,
* if not, then glue it using UnionBlockInputStream,
* then apply LIMIT.
* If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel;
* a parallel GROUP BY will glue streams into one,
* then perform the remaining operations with one resulting stream.
*/
AnalysisResult expressions;
if (dry_run)
{
pipeline.streams.emplace_back(std::make_shared<NullBlockInputStream>(source_header));
expressions = analyzeExpressions(QueryProcessingStage::FetchColumns, true);
}
else
{
/** Read the data from Storage. from_stage - to what stage the request was completed in Storage. */
QueryProcessingStage::Enum from_stage = executeFetchColumns(pipeline);
if (from_stage == QueryProcessingStage::WithMergeableState && to_stage == QueryProcessingStage::WithMergeableState)
throw Exception("Distributed on Distributed is not supported", ErrorCodes::NOT_IMPLEMENTED);
LOG_TRACE(log, QueryProcessingStage::toString(from_stage) << " -> " << QueryProcessingStage::toString(to_stage));
expressions = analyzeExpressions(from_stage, false);
}
const Settings & settings = context.getSettingsRef();
if (to_stage > QueryProcessingStage::FetchColumns)
{
/// Now we will compose block streams that perform the necessary actions.
/// Do I need to aggregate in a separate row rows that have not passed max_rows_to_group_by.
bool aggregate_overflow_row =
expressions.need_aggregate &&
query.group_by_with_totals &&
settings.max_rows_to_group_by &&
settings.group_by_overflow_mode == OverflowMode::ANY &&
settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE;
/// Do I need to immediately finalize the aggregate functions after the aggregation?
bool aggregate_final =
expressions.need_aggregate &&
to_stage > QueryProcessingStage::WithMergeableState &&
!query.group_by_with_totals;
if (expressions.first_stage)
{
if (expressions.has_join)
{
const ASTTableJoin & join = static_cast<const ASTTableJoin &>(*query.join()->table_join);
if (join.kind == ASTTableJoin::Kind::Full || join.kind == ASTTableJoin::Kind::Right)
pipeline.stream_with_non_joined_data = expressions.before_join->createStreamWithNonJoinedDataIfFullOrRightJoin(
pipeline.firstStream()->getHeader(), settings.max_block_size);
for (auto & stream : pipeline.streams) /// Applies to all sources except stream_with_non_joined_data.
stream = std::make_shared<ExpressionBlockInputStream>(stream, expressions.before_join);
}
if (expressions.has_where)
executeWhere(pipeline, expressions.before_where);
if (expressions.need_aggregate)
executeAggregation(pipeline, expressions.before_aggregation, aggregate_overflow_row, aggregate_final);
else
{
executeExpression(pipeline, expressions.before_order_and_select);
executeDistinct(pipeline, true, expressions.selected_columns);
}
/** For distributed query processing,
* if no GROUP, HAVING set,
* but there is an ORDER or LIMIT,
* then we will perform the preliminary sorting and LIMIT on the remote server.
*/
if (!expressions.second_stage && !expressions.need_aggregate && !expressions.has_having)
{
if (expressions.has_order_by)
executeOrder(pipeline);
if (expressions.has_order_by && query.limit_length)
executeDistinct(pipeline, false, expressions.selected_columns);
if (query.limit_length)
executePreLimit(pipeline);
}
}
if (expressions.second_stage)
{
bool need_second_distinct_pass = false;
bool need_merge_streams = false;
if (expressions.need_aggregate)
{
/// If you need to combine aggregated results from multiple servers
if (!expressions.first_stage)
executeMergeAggregated(pipeline, aggregate_overflow_row, aggregate_final);
if (!aggregate_final)
executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row);
else if (expressions.has_having)
executeHaving(pipeline, expressions.before_having);
executeExpression(pipeline, expressions.before_order_and_select);
executeDistinct(pipeline, true, expressions.selected_columns);
need_second_distinct_pass = query.distinct && pipeline.hasMoreThanOneStream();
}
else
{
need_second_distinct_pass = query.distinct && pipeline.hasMoreThanOneStream();
if (query.group_by_with_totals && !aggregate_final)
executeTotalsAndHaving(pipeline, false, nullptr, aggregate_overflow_row);
}
if (expressions.has_order_by)
{
/** If there is an ORDER BY for distributed query processing,
* but there is no aggregation, then on the remote servers ORDER BY was made
* - therefore, we merge the sorted streams from remote servers.
*/
if (!expressions.first_stage && !expressions.need_aggregate && !(query.group_by_with_totals && !aggregate_final))
executeMergeSorted(pipeline);
else /// Otherwise, just sort.
executeOrder(pipeline);
}
/** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT,
* limiting the number of rows in each up to `offset + limit`.
*/
if (query.limit_length && pipeline.hasMoreThanOneStream() && !query.distinct && !expressions.has_limit_by && !settings.extremes)
{
executePreLimit(pipeline);
}
if (need_second_distinct_pass
|| query.limit_length
|| query.limit_by_expression_list
|| pipeline.stream_with_non_joined_data)
{
need_merge_streams = true;
}
if (need_merge_streams)
executeUnion(pipeline);
/** If there was more than one stream,
* then DISTINCT needs to be performed once again after merging all streams.
*/
if (need_second_distinct_pass)
executeDistinct(pipeline, false, expressions.selected_columns);
if (expressions.has_limit_by)
{
executeExpression(pipeline, expressions.before_limit_by);
executeLimitBy(pipeline);
}
/** We must do projection after DISTINCT because projection may remove some columns.
*/
executeProjection(pipeline, expressions.final_projection);
/** Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok.
*/
executeExtremes(pipeline);
executeLimit(pipeline);
}
}
if (!expressions.subqueries_for_sets.empty())
executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets);
}
static void getLimitLengthAndOffset(ASTSelectQuery & query, size_t & length, size_t & offset)
{
length = 0;
offset = 0;
if (query.limit_length)
{
length = safeGet<UInt64>(typeid_cast<ASTLiteral &>(*query.limit_length).value);
if (query.limit_offset)
offset = safeGet<UInt64>(typeid_cast<ASTLiteral &>(*query.limit_offset).value);
}
}
QueryProcessingStage::Enum InterpreterSelectQuery::executeFetchColumns(Pipeline & pipeline)
{
/// Actions to calculate ALIAS if required.
ExpressionActionsPtr alias_actions;
/// Are ALIAS columns required for query execution?
auto alias_columns_required = false;
if (storage && !storage->getColumns().aliases.empty())
{
const auto & column_defaults = storage->getColumns().defaults;
for (const auto & column : required_columns)
{
const auto default_it = column_defaults.find(column);
if (default_it != std::end(column_defaults) && default_it->second.kind == ColumnDefaultKind::Alias)
{
alias_columns_required = true;
break;
}
}
if (alias_columns_required)
{
/// We will create an expression to return all the requested columns, with the calculation of the required ALIAS columns.
auto required_columns_expr_list = std::make_shared<ASTExpressionList>();
for (const auto & column : required_columns)
{
const auto default_it = column_defaults.find(column);
if (default_it != std::end(column_defaults) && default_it->second.kind == ColumnDefaultKind::Alias)
required_columns_expr_list->children.emplace_back(setAlias(default_it->second.expression->clone(), column));
else
required_columns_expr_list->children.emplace_back(std::make_shared<ASTIdentifier>(column));
}
alias_actions = ExpressionAnalyzer(required_columns_expr_list, context, storage).getActions(true);
/// The set of required columns could be added as a result of adding an action to calculate ALIAS.
required_columns = alias_actions->getRequiredColumns();
}
}
const Settings & settings = context.getSettingsRef();
/// Limitation on the number of columns to read.
/// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns.
if (!only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read)
throw Exception("Limit for number of columns to read exceeded. "
"Requested: " + toString(required_columns.size())
+ ", maximum: " + settings.max_columns_to_read.toString(),
ErrorCodes::TOO_MANY_COLUMNS);
size_t limit_length = 0;
size_t limit_offset = 0;
getLimitLengthAndOffset(query, limit_length, limit_offset);
/** With distributed query processing, almost no computations are done in the threads,
* but wait and receive data from remote servers.
* If we have 20 remote servers, and max_threads = 8, then it would not be very good
* connect and ask only 8 servers at a time.
* To simultaneously query more remote servers,
* instead of max_threads, max_distributed_connections is used.
*/
bool is_remote = false;
if (storage && storage->isRemote())
{
is_remote = true;
max_streams = settings.max_distributed_connections;
}
size_t max_block_size = settings.max_block_size;
/** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, LIMIT BY but LIMIT is specified, and limit + offset < max_block_size,
* then as the block size we will use limit + offset (not to read more from the table than requested),
* and also set the number of threads to 1.
*/
if (!query.distinct
&& !query.prewhere_expression
&& !query.where_expression
&& !query.group_expression_list
&& !query.having_expression
&& !query.order_expression_list
&& !query.limit_by_expression_list
&& query.limit_length
&& !query_analyzer->hasAggregation()
&& limit_length + limit_offset < max_block_size)
{
max_block_size = limit_length + limit_offset;
max_streams = 1;
}
QueryProcessingStage::Enum from_stage = QueryProcessingStage::FetchColumns;
/// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input?
if (!pipeline.streams.empty())
{
/// Prepared input.
}
else if (interpreter_subquery)
{
/// Subquery.
/// If we need less number of columns that subquery have - update the interpreter.
if (required_columns.size() < source_header.columns())
{
interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>(
query.table(), getSubqueryContext(context), required_columns, QueryProcessingStage::Complete, subquery_depth + 1, only_analyze);
if (query_analyzer->hasAggregation())
interpreter_subquery->ignoreWithTotals();
}
pipeline.streams = interpreter_subquery->executeWithMultipleStreams();
}
else if (storage)
{
/// Table.
if (max_streams == 0)
throw Exception("Logical error: zero number of streams requested", ErrorCodes::LOGICAL_ERROR);
/// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads.
if (max_streams > 1 && !is_remote)
max_streams *= settings.max_streams_to_max_threads_ratio;
query_analyzer->makeSetsForIndex();
SelectQueryInfo query_info;
query_info.query = query_ptr;
query_info.sets = query_analyzer->getPreparedSets();
/// PREWHERE optimization
{
auto optimize_prewhere = [&](auto & merge_tree)
{
/// Try transferring some condition from WHERE to PREWHERE if enabled and viable
if (settings.optimize_move_to_prewhere && query.where_expression && !query.prewhere_expression && !query.final())
MergeTreeWhereOptimizer{query_info, context, merge_tree.getData(), required_columns, log};
};
if (const StorageMergeTree * merge_tree = dynamic_cast<const StorageMergeTree *>(storage.get()))
optimize_prewhere(*merge_tree);
else if (const StorageReplicatedMergeTree * merge_tree = dynamic_cast<const StorageReplicatedMergeTree *>(storage.get()))
optimize_prewhere(*merge_tree);
}
pipeline.streams = storage->read(required_columns, query_info, context, from_stage, max_block_size, max_streams);
if (pipeline.streams.empty())
pipeline.streams.emplace_back(std::make_shared<NullBlockInputStream>(storage->getSampleBlockForColumns(required_columns)));
pipeline.transform([&](auto & stream)
{
stream->addTableLock(table_lock);
});
/// Set the limits and quota for reading data, the speed and time of the query.
{
IProfilingBlockInputStream::LocalLimits limits;
limits.mode = IProfilingBlockInputStream::LIMITS_TOTAL;
limits.size_limits = SizeLimits(settings.max_rows_to_read, settings.max_bytes_to_read, settings.read_overflow_mode);
limits.max_execution_time = settings.max_execution_time;
limits.timeout_overflow_mode = settings.timeout_overflow_mode;
/** Quota and minimal speed restrictions are checked on the initiating server of the request, and not on remote servers,
* because the initiating server has a summary of the execution of the request on all servers.
*
* But limits on data size to read and maximum execution time are reasonable to check both on initiator and
* additionally on each remote server, because these limits are checked per block of data processed,
* and remote servers may process way more blocks of data than are received by initiator.
*/
if (to_stage == QueryProcessingStage::Complete)
{
limits.min_execution_speed = settings.min_execution_speed;
limits.timeout_before_checking_execution_speed = settings.timeout_before_checking_execution_speed;
}
QuotaForIntervals & quota = context.getQuota();
pipeline.transform([&](auto & stream)
{
if (IProfilingBlockInputStream * p_stream = dynamic_cast<IProfilingBlockInputStream *>(stream.get()))
{
p_stream->setLimits(limits);
if (to_stage == QueryProcessingStage::Complete)
p_stream->setQuota(quota);
}
});
}
}
else
throw Exception("Logical error in InterpreterSelectQuery: nowhere to read", ErrorCodes::LOGICAL_ERROR);
/// Aliases in table declaration.
if (from_stage == QueryProcessingStage::FetchColumns && alias_actions)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<ExpressionBlockInputStream>(stream, alias_actions);
});
}
return from_stage;
}
void InterpreterSelectQuery::executeWhere(Pipeline & pipeline, const ExpressionActionsPtr & expression)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<FilterBlockInputStream>(stream, expression, query.where_expression->getColumnName());
});
}
void InterpreterSelectQuery::executeAggregation(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
});
Names key_names;
AggregateDescriptions aggregates;
query_analyzer->getAggregateInfo(key_names, aggregates);
Block header = pipeline.firstStream()->getHeader();
ColumnNumbers keys;
for (const auto & name : key_names)
keys.push_back(header.getPositionByName(name));
for (auto & descr : aggregates)
if (descr.arguments.empty())
for (const auto & name : descr.argument_names)
descr.arguments.push_back(header.getPositionByName(name));
const Settings & settings = context.getSettingsRef();
/** Two-level aggregation is useful in two cases:
* 1. Parallel aggregation is done, and the results should be merged in parallel.
* 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way.
*/
bool allow_to_use_two_level_group_by = pipeline.streams.size() > 1 || settings.max_bytes_before_external_group_by != 0;
Aggregator::Params params(header, keys, aggregates,
overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode,
settings.compile ? &context.getCompiler() : nullptr, settings.min_count_to_compile,
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0),
allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0),
settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set,
context.getTemporaryPath());
/// If there are several sources, then we perform parallel aggregation
if (pipeline.streams.size() > 1)
{
pipeline.firstStream() = std::make_shared<ParallelAggregatingBlockInputStream>(
pipeline.streams, pipeline.stream_with_non_joined_data, params, final,
max_streams,
settings.aggregation_memory_efficient_merge_threads
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
: static_cast<size_t>(settings.max_threads));
pipeline.stream_with_non_joined_data = nullptr;
pipeline.streams.resize(1);
}
else
{
BlockInputStreams inputs;
if (!pipeline.streams.empty())
inputs.push_back(pipeline.firstStream());
else
pipeline.streams.resize(1);
if (pipeline.stream_with_non_joined_data)
inputs.push_back(pipeline.stream_with_non_joined_data);
pipeline.firstStream() = std::make_shared<AggregatingBlockInputStream>(std::make_shared<ConcatBlockInputStream>(inputs), params, final);
pipeline.stream_with_non_joined_data = nullptr;
}
}
void InterpreterSelectQuery::executeMergeAggregated(Pipeline & pipeline, bool overflow_row, bool final)
{
Names key_names;
AggregateDescriptions aggregates;
query_analyzer->getAggregateInfo(key_names, aggregates);
Block header = pipeline.firstStream()->getHeader();
ColumnNumbers keys;
for (const auto & name : key_names)
keys.push_back(header.getPositionByName(name));
/** There are two modes of distributed aggregation.
*
* 1. In different threads read from the remote servers blocks.
* Save all the blocks in the RAM. Merge blocks.
* If the aggregation is two-level - parallelize to the number of buckets.
*
* 2. In one thread, read blocks from different servers in order.
* RAM stores only one block from each server.
* If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level.
*
* The second option consumes less memory (up to 256 times less)
* in the case of two-level aggregation, which is used for large results after GROUP BY,
* but it can work more slowly.
*/
Aggregator::Params params(header, keys, aggregates, overflow_row);
const Settings & settings = context.getSettingsRef();
if (!settings.distributed_aggregation_memory_efficient)
{
/// We union several sources into one, parallelizing the work.
executeUnion(pipeline);
/// Now merge the aggregated blocks
pipeline.firstStream() = std::make_shared<MergingAggregatedBlockInputStream>(pipeline.firstStream(), params, final, settings.max_threads);
}
else
{
pipeline.firstStream() = std::make_shared<MergingAggregatedMemoryEfficientBlockInputStream>(pipeline.streams, params, final,
max_streams,
settings.aggregation_memory_efficient_merge_threads
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
: static_cast<size_t>(settings.max_threads));
pipeline.streams.resize(1);
}
}
void InterpreterSelectQuery::executeHaving(Pipeline & pipeline, const ExpressionActionsPtr & expression)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<FilterBlockInputStream>(stream, expression, query.having_expression->getColumnName());
});
}
void InterpreterSelectQuery::executeTotalsAndHaving(Pipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row)
{
executeUnion(pipeline);
const Settings & settings = context.getSettingsRef();
pipeline.firstStream() = std::make_shared<TotalsHavingBlockInputStream>(
pipeline.firstStream(), overflow_row, expression,
has_having ? query.having_expression->getColumnName() : "", settings.totals_mode, settings.totals_auto_threshold);
}
void InterpreterSelectQuery::executeExpression(Pipeline & pipeline, const ExpressionActionsPtr & expression)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
});
}
static SortDescription getSortDescription(ASTSelectQuery & query)
{
SortDescription order_descr;
order_descr.reserve(query.order_expression_list->children.size());
for (const auto & elem : query.order_expression_list->children)
{
String name = elem->children.front()->getColumnName();
const ASTOrderByElement & order_by_elem = typeid_cast<const ASTOrderByElement &>(*elem);
std::shared_ptr<Collator> collator;
if (order_by_elem.collation)
collator = std::make_shared<Collator>(typeid_cast<const ASTLiteral &>(*order_by_elem.collation).value.get<String>());
order_descr.emplace_back(name, order_by_elem.direction, order_by_elem.nulls_direction, collator);
}
return order_descr;
}
static size_t getLimitForSorting(ASTSelectQuery & query)
{
/// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY.
size_t limit = 0;
if (!query.distinct && !query.limit_by_expression_list)
{
size_t limit_length = 0;
size_t limit_offset = 0;
getLimitLengthAndOffset(query, limit_length, limit_offset);
limit = limit_length + limit_offset;
}
return limit;
}
void InterpreterSelectQuery::executeOrder(Pipeline & pipeline)
{
SortDescription order_descr = getSortDescription(query);
size_t limit = getLimitForSorting(query);
const Settings & settings = context.getSettingsRef();
pipeline.transform([&](auto & stream)
{
auto sorting_stream = std::make_shared<PartialSortingBlockInputStream>(stream, order_descr, limit);
/// Limits on sorting
IProfilingBlockInputStream::LocalLimits limits;
limits.mode = IProfilingBlockInputStream::LIMITS_TOTAL;
limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode);
sorting_stream->setLimits(limits);
stream = sorting_stream;
});
/// If there are several streams, we merge them into one
executeUnion(pipeline);
/// Merge the sorted blocks.
pipeline.firstStream() = std::make_shared<MergeSortingBlockInputStream>(
pipeline.firstStream(), order_descr, settings.max_block_size, limit,
settings.max_bytes_before_external_sort, context.getTemporaryPath());
}
void InterpreterSelectQuery::executeMergeSorted(Pipeline & pipeline)
{
SortDescription order_descr = getSortDescription(query);
size_t limit = getLimitForSorting(query);
const Settings & settings = context.getSettingsRef();
/// If there are several streams, then we merge them into one
if (pipeline.hasMoreThanOneStream())
{
/** MergingSortedBlockInputStream reads the sources sequentially.
* To make the data on the remote servers prepared in parallel, we wrap it in AsynchronousBlockInputStream.
*/
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<AsynchronousBlockInputStream>(stream);
});
/// Merge the sorted sources into one sorted source.
pipeline.firstStream() = std::make_shared<MergingSortedBlockInputStream>(pipeline.streams, order_descr, settings.max_block_size, limit);
pipeline.streams.resize(1);
}
}
void InterpreterSelectQuery::executeProjection(Pipeline & pipeline, const ExpressionActionsPtr & expression)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<ExpressionBlockInputStream>(stream, expression);
});
}
void InterpreterSelectQuery::executeDistinct(Pipeline & pipeline, bool before_order, Names columns)
{
if (query.distinct)
{
const Settings & settings = context.getSettingsRef();
size_t limit_length = 0;
size_t limit_offset = 0;
getLimitLengthAndOffset(query, limit_length, limit_offset);
size_t limit_for_distinct = 0;
/// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows.
if (!query.order_expression_list || !before_order)
limit_for_distinct = limit_length + limit_offset;
pipeline.transform([&](auto & stream)
{
SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode);
stream = std::make_shared<DistinctBlockInputStream>(stream, limits, limit_for_distinct, columns);
});
}
}
void InterpreterSelectQuery::executeUnion(Pipeline & pipeline)
{
/// If there are still several streams, then we combine them into one
if (pipeline.hasMoreThanOneStream())
{
pipeline.firstStream() = std::make_shared<UnionBlockInputStream<>>(pipeline.streams, pipeline.stream_with_non_joined_data, max_streams);
pipeline.stream_with_non_joined_data = nullptr;
pipeline.streams.resize(1);
}
else if (pipeline.stream_with_non_joined_data)
{
pipeline.streams.push_back(pipeline.stream_with_non_joined_data);
pipeline.stream_with_non_joined_data = nullptr;
}
}
/// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined.
void InterpreterSelectQuery::executePreLimit(Pipeline & pipeline)
{
size_t limit_length = 0;
size_t limit_offset = 0;
getLimitLengthAndOffset(query, limit_length, limit_offset);
/// If there is LIMIT
if (query.limit_length)
{
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<LimitBlockInputStream>(stream, limit_length + limit_offset, 0, false);
});
}
}
void InterpreterSelectQuery::executeLimitBy(Pipeline & pipeline)
{
if (!query.limit_by_value || !query.limit_by_expression_list)
return;
Names columns;
for (const auto & elem : query.limit_by_expression_list->children)
columns.emplace_back(elem->getColumnName());
size_t value = safeGet<UInt64>(typeid_cast<ASTLiteral &>(*query.limit_by_value).value);
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<LimitByBlockInputStream>(stream, value, columns);
});
}
bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query)
{
if (query.group_by_with_totals)
return true;
/** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard.
* In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end.
*/
auto query_table = query.table();
if (query_table)
{
auto ast_union = typeid_cast<const ASTSelectWithUnionQuery *>(query_table.get());
if (ast_union)
{
for (const auto & elem : ast_union->list_of_selects->children)
if (hasWithTotalsInAnySubqueryInFromClause(typeid_cast<const ASTSelectQuery &>(*elem)))
return true;
}
}
return false;
}
void InterpreterSelectQuery::executeLimit(Pipeline & pipeline)
{
size_t limit_length = 0;
size_t limit_offset = 0;
getLimitLengthAndOffset(query, limit_length, limit_offset);
/// If there is LIMIT
if (query.limit_length)
{
/** Rare case:
* if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels,
* then when using LIMIT, you should read the data to the end, rather than cancel the query earlier,
* because if you cancel the query, we will not get `totals` data from the remote server.
*
* Another case:
* if there is WITH TOTALS and there is no ORDER BY, then read the data to the end,
* otherwise TOTALS is counted according to incomplete data.
*/
bool always_read_till_end = false;
if (query.group_by_with_totals && !query.order_expression_list)
always_read_till_end = true;
if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query))
always_read_till_end = true;
pipeline.transform([&](auto & stream)
{
stream = std::make_shared<LimitBlockInputStream>(stream, limit_length, limit_offset, always_read_till_end);
});
}
}
void InterpreterSelectQuery::executeExtremes(Pipeline & pipeline)
{
if (!context.getSettingsRef().extremes)
return;
pipeline.transform([&](auto & stream)
{
if (IProfilingBlockInputStream * p_stream = dynamic_cast<IProfilingBlockInputStream *>(stream.get()))
p_stream->enableExtremes();
});
}
void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(Pipeline & pipeline, SubqueriesForSets & subqueries_for_sets)
{
const Settings & settings = context.getSettingsRef();
executeUnion(pipeline);
pipeline.firstStream() = std::make_shared<CreatingSetsBlockInputStream>(
pipeline.firstStream(), subqueries_for_sets,
SizeLimits(settings.max_rows_to_transfer, settings.max_bytes_to_transfer, settings.transfer_overflow_mode));
}
void InterpreterSelectQuery::ignoreWithTotals()
{
query.group_by_with_totals = false;
}
void InterpreterSelectQuery::initSettings()
{
if (query.settings)
InterpreterSetQuery(query.settings, context).executeForCurrentContext();
}
}