mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-25 00:52:02 +00:00
1485 lines
47 KiB
C++
1485 lines
47 KiB
C++
#include <Columns/IColumn.h>
|
|
#include <Columns/ColumnVector.h>
|
|
#include <Columns/ColumnString.h>
|
|
#include <Columns/ColumnArray.h>
|
|
#include <Columns/ColumnNullable.h>
|
|
#include <Columns/ColumnFixedString.h>
|
|
#include <DataTypes/IDataType.h>
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
#include <DataTypes/DataTypeDate.h>
|
|
#include <DataTypes/DataTypeDateTime.h>
|
|
#include <DataTypes/DataTypeString.h>
|
|
#include <DataTypes/DataTypeFixedString.h>
|
|
#include <DataTypes/DataTypeArray.h>
|
|
#include <DataTypes/DataTypeNullable.h>
|
|
#include <DataTypes/DataTypeFactory.h>
|
|
#include <DataTypes/DataTypeUUID.h>
|
|
#include <Interpreters/Context.h>
|
|
#include <QueryPipeline/Pipe.h>
|
|
#include <Processors/LimitTransform.h>
|
|
#include <Common/SipHash.h>
|
|
#include <Common/UTF8Helpers.h>
|
|
#include <Common/StringUtils.h>
|
|
#include <Common/HashTable/HashMap.h>
|
|
#include <Common/typeid_cast.h>
|
|
#include <Common/assert_cast.h>
|
|
#include <Formats/registerFormats.h>
|
|
#include <Formats/ReadSchemaUtils.h>
|
|
#include <Processors/Formats/IInputFormat.h>
|
|
#include <QueryPipeline/QueryPipelineBuilder.h>
|
|
#include <Processors/Executors/PullingPipelineExecutor.h>
|
|
#include <Processors/Executors/PushingPipelineExecutor.h>
|
|
#include <Core/Block.h>
|
|
#include <Common/DateLUT.h>
|
|
#include <IO/ReadBufferFromFileDescriptor.h>
|
|
#include <IO/WriteBufferFromFileDescriptor.h>
|
|
#include <IO/ReadBufferFromFile.h>
|
|
#include <IO/WriteBufferFromFile.h>
|
|
#include <Compression/CompressedReadBuffer.h>
|
|
#include <Compression/CompressedWriteBuffer.h>
|
|
#include <Interpreters/parseColumnsListForTableFunction.h>
|
|
#include <memory>
|
|
#include <cmath>
|
|
#include <unistd.h>
|
|
#include <boost/program_options/options_description.hpp>
|
|
#include <boost/program_options.hpp>
|
|
#include <boost/algorithm/string.hpp>
|
|
#include <boost/container/flat_map.hpp>
|
|
#include <Common/TerminalSize.h>
|
|
#include <bit>
|
|
|
|
|
|
static const char * documentation = R"(
|
|
Simple tool for table data obfuscation.
|
|
|
|
It reads input table and produces output table, that retain some properties of input, but contains different data.
|
|
It allows to publish almost real production data for usage in benchmarks.
|
|
|
|
It is designed to retain the following properties of data:
|
|
- cardinalities of values (number of distinct values) for every column and for every tuple of columns;
|
|
- conditional cardinalities: number of distinct values of one column under condition on value of another column;
|
|
- probability distributions of absolute value of integers; sign of signed integers; exponent and sign for floats;
|
|
- probability distributions of length of strings;
|
|
- probability of zero values of numbers; empty strings and arrays, NULLs;
|
|
- data compression ratio when compressed with LZ77 and entropy family of codecs;
|
|
- continuity (magnitude of difference) of time values across table; continuity of floating point values.
|
|
- date component of DateTime values;
|
|
- UTF-8 validity of string values;
|
|
- string values continue to look somewhat natural.
|
|
|
|
Most of the properties above are viable for performance testing:
|
|
- reading data, filtering, aggregation and sorting will work at almost the same speed
|
|
as on original data due to saved cardinalities, magnitudes, compression ratios, etc.
|
|
|
|
It works in deterministic fashion: you define a seed value and transform is totally determined by input data and by seed.
|
|
Some transforms are one to one and could be reversed, so you need to have large enough seed and keep it in secret.
|
|
|
|
It use some cryptographic primitives to transform data, but from the cryptographic point of view,
|
|
it doesn't do anything properly and you should never consider the result as secure, unless you have other reasons for it.
|
|
|
|
It may retain some data you don't want to publish.
|
|
|
|
It always leave numbers 0, 1, -1 as is. Also it leaves dates, lengths of arrays and null flags exactly as in source data.
|
|
For example, you have a column IsMobile in your table with values 0 and 1. In transformed data, it will have the same value.
|
|
So, the user will be able to count exact ratio of mobile traffic.
|
|
|
|
Another example, suppose you have some private data in your table, like user email and you don't want to publish any single email address.
|
|
If your table is large enough and contain multiple different emails and there is no email that have very high frequency than all others,
|
|
it will perfectly anonymize all data. But if you have small amount of different values in a column, it can possibly reproduce some of them.
|
|
And you should take care and look at exact algorithm, how this tool works, and probably fine tune some of it command line parameters.
|
|
|
|
This tool works fine only with reasonable amount of data (at least 1000s of rows).
|
|
)";
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int LOGICAL_ERROR;
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int CANNOT_SEEK_THROUGH_FILE;
|
|
extern const int UNKNOWN_FORMAT_VERSION;
|
|
extern const int INCORRECT_NUMBER_OF_COLUMNS;
|
|
extern const int TYPE_MISMATCH;
|
|
}
|
|
|
|
|
|
/// Model is used to transform columns with source data to columns
|
|
/// with similar by structure and by probability distributions but anonymized data.
|
|
class IModel
|
|
{
|
|
public:
|
|
/// Call train iteratively for each block to train a model.
|
|
virtual void train(const IColumn & column) = 0;
|
|
|
|
/// Call finalize one time after training before generating.
|
|
virtual void finalize() = 0;
|
|
|
|
/// Call generate: pass source data column to obtain a column with anonymized data as a result.
|
|
virtual ColumnPtr generate(const IColumn & column) = 0;
|
|
|
|
/// Deterministically change seed to some other value. This can be used to generate more values than were in source.
|
|
virtual void updateSeed() = 0;
|
|
|
|
/// Save into file. Binary, platform-dependent, version-dependent serialization.
|
|
virtual void serialize(WriteBuffer & out) const = 0;
|
|
|
|
/// Read from file
|
|
virtual void deserialize(ReadBuffer & in) = 0;
|
|
|
|
virtual ~IModel() = default;
|
|
};
|
|
|
|
using ModelPtr = std::unique_ptr<IModel>;
|
|
|
|
|
|
template <typename... Ts>
|
|
UInt64 hash(Ts... xs)
|
|
{
|
|
SipHash hash;
|
|
(hash.update(xs), ...);
|
|
return hash.get64();
|
|
}
|
|
|
|
|
|
static UInt64 maskBits(UInt64 x, size_t num_bits)
|
|
{
|
|
return x & ((1ULL << num_bits) - 1);
|
|
}
|
|
|
|
|
|
/// Apply Feistel network round to least significant num_bits part of x.
|
|
static UInt64 feistelRound(UInt64 x, size_t num_bits, UInt64 seed, size_t round)
|
|
{
|
|
size_t num_bits_left_half = num_bits / 2;
|
|
size_t num_bits_right_half = num_bits - num_bits_left_half;
|
|
|
|
UInt64 left_half = maskBits(x >> num_bits_right_half, num_bits_left_half);
|
|
UInt64 right_half = maskBits(x, num_bits_right_half);
|
|
|
|
UInt64 new_left_half = right_half;
|
|
UInt64 new_right_half = left_half ^ maskBits(hash(right_half, seed, round), num_bits_left_half);
|
|
|
|
return (new_left_half << num_bits_left_half) ^ new_right_half;
|
|
}
|
|
|
|
|
|
/// Apply Feistel network with num_rounds to least significant num_bits part of x.
|
|
static UInt64 feistelNetwork(UInt64 x, size_t num_bits, UInt64 seed, size_t num_rounds = 4)
|
|
{
|
|
UInt64 bits = maskBits(x, num_bits);
|
|
for (size_t i = 0; i < num_rounds; ++i)
|
|
bits = feistelRound(bits, num_bits, seed, i);
|
|
return (x & ~((1ULL << num_bits) - 1)) ^ bits;
|
|
}
|
|
|
|
|
|
/// Pseudorandom permutation within set of numbers with the same log2(x).
|
|
static UInt64 transform(UInt64 x, UInt64 seed)
|
|
{
|
|
/// Keep 0 and 1 as is.
|
|
if (x == 0 || x == 1)
|
|
return x;
|
|
|
|
/// Pseudorandom permutation of two elements.
|
|
if (x == 2 || x == 3)
|
|
return x ^ (seed & 1);
|
|
|
|
size_t num_leading_zeros = std::countl_zero(x);
|
|
|
|
return feistelNetwork(x, 64 - num_leading_zeros - 1, seed);
|
|
}
|
|
|
|
|
|
class UnsignedIntegerModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
|
|
public:
|
|
explicit UnsignedIntegerModel(UInt64 seed_) : seed(seed_) {}
|
|
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
MutableColumnPtr res = column.cloneEmpty();
|
|
|
|
size_t size = column.size();
|
|
res->reserve(size);
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
res->insert(transform(column.getUInt(i), seed));
|
|
|
|
return res;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
};
|
|
|
|
|
|
/// Keep sign and apply pseudorandom permutation after converting to unsigned as above.
|
|
static Int64 transformSigned(Int64 x, UInt64 seed)
|
|
{
|
|
if (x >= 0)
|
|
return transform(x, seed);
|
|
else
|
|
return -transform(-x, seed); /// It works Ok even for minimum signed number.
|
|
}
|
|
|
|
|
|
class SignedIntegerModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
|
|
public:
|
|
explicit SignedIntegerModel(UInt64 seed_) : seed(seed_) {}
|
|
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
MutableColumnPtr res = column.cloneEmpty();
|
|
|
|
size_t size = column.size();
|
|
res->reserve(size);
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
res->insert(transformSigned(column.getInt(i), seed));
|
|
|
|
return res;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
};
|
|
|
|
|
|
/// Pseudorandom permutation of mantissa.
|
|
template <typename Float>
|
|
Float transformFloatMantissa(Float x, UInt64 seed)
|
|
{
|
|
using UInt = std::conditional_t<std::is_same_v<Float, Float32>, UInt32, UInt64>;
|
|
constexpr size_t mantissa_num_bits = std::is_same_v<Float, Float32> ? 23 : 52;
|
|
|
|
UInt x_uint = std::bit_cast<UInt>(x);
|
|
x_uint = static_cast<UInt>(feistelNetwork(x_uint, mantissa_num_bits, seed));
|
|
return std::bit_cast<Float>(x_uint);
|
|
}
|
|
|
|
|
|
/// Transform difference from previous number by applying pseudorandom permutation to mantissa part of it.
|
|
/// It allows to retain some continuity property of source data.
|
|
template <typename Float>
|
|
class FloatModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
Float src_prev_value = 0;
|
|
Float res_prev_value = 0;
|
|
|
|
public:
|
|
explicit FloatModel(UInt64 seed_) : seed(seed_) {}
|
|
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const auto & src_data = assert_cast<const ColumnVector<Float> &>(column).getData();
|
|
size_t size = src_data.size();
|
|
|
|
auto res_column = ColumnVector<Float>::create(size);
|
|
auto & res_data = assert_cast<ColumnVector<Float> &>(*res_column).getData();
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
res_data[i] = res_prev_value + transformFloatMantissa(src_data[i] - src_prev_value, seed);
|
|
src_prev_value = src_data[i];
|
|
res_prev_value = res_data[i];
|
|
}
|
|
|
|
return res_column;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
};
|
|
|
|
|
|
/// Leave all data as is. For example, it is used for columns of type Date.
|
|
class IdentityModel : public IModel
|
|
{
|
|
public:
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
return column.cloneResized(column.size());
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
}
|
|
};
|
|
|
|
|
|
/// Pseudorandom function, but keep word characters as word characters.
|
|
static void transformFixedString(const UInt8 * src, UInt8 * dst, size_t size, UInt64 seed)
|
|
{
|
|
{
|
|
SipHash hash;
|
|
hash.update(seed);
|
|
hash.update(reinterpret_cast<const char *>(src), size);
|
|
seed = hash.get64();
|
|
}
|
|
|
|
UInt8 * pos = dst;
|
|
UInt8 * end = dst + size;
|
|
|
|
size_t i = 0;
|
|
while (pos < end)
|
|
{
|
|
SipHash hash;
|
|
hash.update(seed);
|
|
hash.update(i);
|
|
|
|
const auto checksum = getSipHash128AsArray(hash);
|
|
if (size >= 16)
|
|
{
|
|
auto * hash_dst = std::min(pos, end - 16);
|
|
memcpy(hash_dst, checksum.data(), checksum.size());
|
|
}
|
|
else
|
|
memcpy(dst, checksum.data(), end - dst);
|
|
|
|
pos += 16;
|
|
++i;
|
|
}
|
|
|
|
for (size_t j = 0; j < size; ++j)
|
|
{
|
|
if (isWordCharASCII(src[j]))
|
|
{
|
|
static constexpr char word_chars[] = "_01234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ";
|
|
dst[j] = word_chars[dst[j] % (sizeof(word_chars) - 1)];
|
|
}
|
|
}
|
|
}
|
|
|
|
static void transformUUID(const UUID & src_uuid, UUID & dst_uuid, UInt64 seed)
|
|
{
|
|
auto src_copy = src_uuid;
|
|
transformEndianness<std::endian::little, std::endian::native>(src_copy);
|
|
|
|
const UInt128 & src = src_copy.toUnderType();
|
|
UInt128 & dst = dst_uuid.toUnderType();
|
|
|
|
SipHash hash;
|
|
hash.update(seed);
|
|
hash.update(reinterpret_cast<const char *>(&src), sizeof(UUID));
|
|
|
|
/// Saving version and variant from an old UUID
|
|
dst = hash.get128();
|
|
|
|
const UInt64 trace[2] = {0x000000000000f000ull, 0xe000000000000000ull};
|
|
UUIDHelpers::getLowBytes(dst_uuid) = (UUIDHelpers::getLowBytes(dst_uuid) & (0xffffffffffffffffull - trace[1])) | (UUIDHelpers::getLowBytes(src_uuid) & trace[1]);
|
|
UUIDHelpers::getHighBytes(dst_uuid) = (UUIDHelpers::getHighBytes(dst_uuid) & (0xffffffffffffffffull - trace[0])) | (UUIDHelpers::getHighBytes(src_uuid) & trace[0]);
|
|
}
|
|
|
|
class FixedStringModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
|
|
public:
|
|
explicit FixedStringModel(UInt64 seed_) : seed(seed_) {}
|
|
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const ColumnFixedString & column_fixed_string = assert_cast<const ColumnFixedString &>(column);
|
|
const size_t string_size = column_fixed_string.getN();
|
|
|
|
const auto & src_data = column_fixed_string.getChars();
|
|
size_t size = column_fixed_string.size();
|
|
|
|
auto res_column = ColumnFixedString::create(string_size);
|
|
auto & res_data = res_column->getChars();
|
|
|
|
res_data.resize(src_data.size());
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
transformFixedString(&src_data[i * string_size], &res_data[i * string_size], string_size, seed);
|
|
|
|
return res_column;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
};
|
|
|
|
class UUIDModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
|
|
public:
|
|
explicit UUIDModel(UInt64 seed_) : seed(seed_) {}
|
|
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const ColumnUUID & src_column = assert_cast<const ColumnUUID &>(column);
|
|
const auto & src_data = src_column.getData();
|
|
|
|
auto res_column = ColumnUUID::create();
|
|
auto & res_data = res_column->getData();
|
|
|
|
res_data.resize(src_data.size());
|
|
for (size_t i = 0; i < src_column.size(); ++i)
|
|
transformUUID(src_data[i], res_data[i], seed);
|
|
|
|
return res_column;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
};
|
|
|
|
|
|
/// Leave date part as is and apply pseudorandom permutation to time difference with previous value within the same log2 class.
|
|
class DateTimeModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
UInt32 src_prev_value = 0;
|
|
UInt32 res_prev_value = 0;
|
|
|
|
const DateLUTImpl & date_lut;
|
|
|
|
public:
|
|
explicit DateTimeModel(UInt64 seed_) : seed(seed_), date_lut(DateLUT::serverTimezoneInstance()) {}
|
|
|
|
void train(const IColumn &) override {}
|
|
void finalize() override {}
|
|
void serialize(WriteBuffer &) const override {}
|
|
void deserialize(ReadBuffer &) override {}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const auto & src_data = assert_cast<const ColumnVector<UInt32> &>(column).getData();
|
|
size_t size = src_data.size();
|
|
|
|
auto res_column = ColumnVector<UInt32>::create(size);
|
|
auto & res_data = assert_cast<ColumnVector<UInt32> &>(*res_column).getData();
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
UInt32 src_datetime = src_data[i];
|
|
UInt32 src_date = static_cast<UInt32>(date_lut.toDate(src_datetime));
|
|
|
|
Int32 src_diff = src_datetime - src_prev_value;
|
|
Int32 res_diff = static_cast<Int32>(transformSigned(src_diff, seed));
|
|
|
|
UInt32 new_datetime = res_prev_value + res_diff;
|
|
UInt32 new_time = new_datetime - static_cast<UInt32>(date_lut.toDate(new_datetime));
|
|
res_data[i] = src_date + new_time;
|
|
|
|
src_prev_value = src_datetime;
|
|
res_prev_value = res_data[i];
|
|
}
|
|
|
|
return res_column;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
};
|
|
|
|
|
|
struct MarkovModelParameters
|
|
{
|
|
size_t order;
|
|
size_t frequency_cutoff;
|
|
size_t num_buckets_cutoff;
|
|
size_t frequency_add;
|
|
double frequency_desaturate;
|
|
size_t determinator_sliding_window_size;
|
|
|
|
void serialize(WriteBuffer & out) const
|
|
{
|
|
writeBinary(order, out);
|
|
writeBinary(frequency_cutoff, out);
|
|
writeBinary(num_buckets_cutoff, out);
|
|
writeBinary(frequency_add, out);
|
|
writeBinary(frequency_desaturate, out);
|
|
writeBinary(determinator_sliding_window_size, out);
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in)
|
|
{
|
|
readBinary(order, in);
|
|
readBinary(frequency_cutoff, in);
|
|
readBinary(num_buckets_cutoff, in);
|
|
readBinary(frequency_add, in);
|
|
readBinary(frequency_desaturate, in);
|
|
readBinary(determinator_sliding_window_size, in);
|
|
}
|
|
};
|
|
|
|
|
|
/** Actually it's not an order-N model, but a mix of order-{0..N} models.
|
|
*
|
|
* We calculate code point counts for every context of 0..N previous code points.
|
|
* Then throw off some context with low amount of statistics.
|
|
*
|
|
* When generating data, we try to find statistics for a context of maximum order.
|
|
* And if not found - use context of smaller order, up to 0.
|
|
*/
|
|
class MarkovModel
|
|
{
|
|
private:
|
|
using CodePoint = UInt32;
|
|
using NGramHash = UInt32;
|
|
|
|
struct Histogram
|
|
{
|
|
UInt64 total = 0; /// Not including count_end.
|
|
UInt64 count_end = 0;
|
|
using Buckets = boost::container::flat_map<CodePoint, UInt64>;
|
|
Buckets buckets;
|
|
|
|
void add(CodePoint code)
|
|
{
|
|
++total;
|
|
++buckets[code];
|
|
}
|
|
|
|
void addEnd()
|
|
{
|
|
++count_end;
|
|
}
|
|
|
|
CodePoint sample(UInt64 random, double end_multiplier) const
|
|
{
|
|
UInt64 range = total + static_cast<UInt64>(count_end * end_multiplier);
|
|
if (range == 0)
|
|
return END;
|
|
|
|
random %= range;
|
|
|
|
UInt64 sum = 0;
|
|
for (const auto & elem : buckets)
|
|
{
|
|
sum += elem.second;
|
|
if (sum > random)
|
|
return elem.first;
|
|
}
|
|
|
|
return END;
|
|
}
|
|
|
|
void serialize(WriteBuffer & out) const
|
|
{
|
|
writeBinary(total, out);
|
|
writeBinary(count_end, out);
|
|
|
|
size_t size = buckets.size();
|
|
writeBinary(size, out);
|
|
|
|
for (const auto & elem : buckets)
|
|
{
|
|
writeBinary(elem.first, out);
|
|
writeBinary(elem.second, out);
|
|
}
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in)
|
|
{
|
|
readBinary(total, in);
|
|
readBinary(count_end, in);
|
|
|
|
size_t size = 0;
|
|
readBinary(size, in);
|
|
|
|
buckets.reserve(size);
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
Buckets::value_type elem;
|
|
readBinary(elem.first, in);
|
|
readBinary(elem.second, in);
|
|
buckets.emplace(std::move(elem));
|
|
}
|
|
}
|
|
};
|
|
|
|
using Table = HashMap<NGramHash, Histogram, TrivialHash>;
|
|
Table table;
|
|
|
|
MarkovModelParameters params;
|
|
|
|
std::vector<CodePoint> code_points;
|
|
|
|
/// Special code point to form context before beginning of string.
|
|
static constexpr CodePoint BEGIN = -1;
|
|
/// Special code point to indicate end of string.
|
|
static constexpr CodePoint END = -2;
|
|
|
|
|
|
static NGramHash hashContext(const CodePoint * begin, const CodePoint * end)
|
|
{
|
|
return CRC32Hash()(StringRef(reinterpret_cast<const char *>(begin), (end - begin) * sizeof(CodePoint)));
|
|
}
|
|
|
|
/// By the way, we don't have to use actual Unicode numbers. We use just arbitrary bijective mapping.
|
|
static CodePoint readCodePoint(const char *& pos, const char * end)
|
|
{
|
|
size_t length = UTF8::seqLength(*pos);
|
|
|
|
if (pos + length > end)
|
|
length = end - pos;
|
|
length = std::min(length, sizeof(CodePoint));
|
|
|
|
CodePoint res = 0;
|
|
memcpy(&res, pos, length);
|
|
pos += length;
|
|
return res;
|
|
}
|
|
|
|
static bool writeCodePoint(CodePoint code, char *& pos, const char * end)
|
|
{
|
|
size_t length
|
|
= (code & 0xFF000000) ? 4
|
|
: (code & 0xFFFF0000) ? 3
|
|
: (code & 0xFFFFFF00) ? 2
|
|
: 1;
|
|
|
|
if (pos + length > end)
|
|
return false;
|
|
|
|
memcpy(pos, &code, length);
|
|
pos += length;
|
|
return true;
|
|
}
|
|
|
|
public:
|
|
explicit MarkovModel(MarkovModelParameters params_)
|
|
: params(std::move(params_)), code_points(params.order, BEGIN) {}
|
|
|
|
void serialize(WriteBuffer & out) const
|
|
{
|
|
params.serialize(out);
|
|
|
|
size_t size = table.size();
|
|
writeBinary(size, out);
|
|
|
|
for (const auto & elem : table)
|
|
{
|
|
writeBinary(elem.getKey(), out);
|
|
elem.getMapped().serialize(out);
|
|
}
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in)
|
|
{
|
|
params.deserialize(in);
|
|
|
|
size_t size = 0;
|
|
readBinary(size, in);
|
|
|
|
table.reserve(size);
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
NGramHash key{};
|
|
readBinary(key, in);
|
|
Histogram & histogram = table[key];
|
|
histogram.deserialize(in);
|
|
}
|
|
}
|
|
|
|
void consume(const char * data, size_t size)
|
|
{
|
|
/// First 'order' number of code points are pre-filled with BEGIN.
|
|
code_points.resize(params.order);
|
|
|
|
const char * pos = data;
|
|
const char * end = data + size;
|
|
|
|
while (true)
|
|
{
|
|
const bool inside = pos < end;
|
|
|
|
CodePoint next_code_point {};
|
|
|
|
if (inside)
|
|
next_code_point = readCodePoint(pos, end);
|
|
|
|
for (size_t context_size = 0; context_size < params.order; ++context_size)
|
|
{
|
|
NGramHash context_hash = hashContext(code_points.data() + code_points.size() - context_size, code_points.data() + code_points.size());
|
|
|
|
if (inside)
|
|
table[context_hash].add(next_code_point);
|
|
else /// if (context_size != 0 || order == 0) /// Don't allow to break string without context (except order-0 model).
|
|
table[context_hash].addEnd();
|
|
}
|
|
|
|
if (inside)
|
|
code_points.push_back(next_code_point);
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
void finalize()
|
|
{
|
|
if (params.num_buckets_cutoff)
|
|
{
|
|
for (auto & elem : table)
|
|
{
|
|
Histogram & histogram = elem.getMapped();
|
|
|
|
if (histogram.buckets.size() < params.num_buckets_cutoff)
|
|
{
|
|
histogram.buckets.clear();
|
|
histogram.total = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params.frequency_cutoff)
|
|
{
|
|
for (auto & elem : table)
|
|
{
|
|
Histogram & histogram = elem.getMapped();
|
|
if (!histogram.total)
|
|
continue;
|
|
|
|
if (histogram.total + histogram.count_end < params.frequency_cutoff)
|
|
{
|
|
histogram.buckets.clear();
|
|
histogram.total = 0;
|
|
}
|
|
else
|
|
{
|
|
Histogram::Buckets new_buckets;
|
|
UInt64 erased_count = 0;
|
|
|
|
for (const auto & bucket : histogram.buckets)
|
|
{
|
|
if (bucket.second >= params.frequency_cutoff)
|
|
new_buckets.emplace(bucket);
|
|
else
|
|
erased_count += bucket.second;
|
|
}
|
|
|
|
histogram.buckets.swap(new_buckets);
|
|
histogram.total -= erased_count;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (params.frequency_add)
|
|
{
|
|
for (auto & elem : table)
|
|
{
|
|
Histogram & histogram = elem.getMapped();
|
|
if (!histogram.total)
|
|
continue;
|
|
|
|
for (auto & bucket : histogram.buckets)
|
|
bucket.second += params.frequency_add;
|
|
|
|
histogram.count_end += params.frequency_add;
|
|
histogram.total += params.frequency_add * histogram.buckets.size();
|
|
}
|
|
}
|
|
|
|
if (params.frequency_desaturate > 0.0)
|
|
{
|
|
for (auto & elem : table)
|
|
{
|
|
Histogram & histogram = elem.getMapped();
|
|
if (!histogram.total)
|
|
continue;
|
|
|
|
double average = static_cast<double>(histogram.total) / histogram.buckets.size();
|
|
|
|
UInt64 new_total = 0;
|
|
for (auto & bucket : histogram.buckets)
|
|
{
|
|
bucket.second = static_cast<UInt64>(bucket.second * (1.0 - params.frequency_desaturate) + average * params.frequency_desaturate);
|
|
new_total += bucket.second;
|
|
}
|
|
|
|
histogram.total = new_total;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
size_t generate(char * data, size_t desired_size, size_t buffer_size,
|
|
UInt64 seed, const char * determinator_data, size_t determinator_size)
|
|
{
|
|
code_points.resize(params.order);
|
|
|
|
char * pos = data;
|
|
char * end = data + buffer_size;
|
|
|
|
while (pos < end)
|
|
{
|
|
Table::LookupResult it;
|
|
|
|
size_t context_size = params.order;
|
|
while (true)
|
|
{
|
|
it = table.find(hashContext(code_points.data() + code_points.size() - context_size, code_points.data() + code_points.size()));
|
|
if (it && it->getMapped().total + it->getMapped().count_end != 0)
|
|
break;
|
|
|
|
if (context_size == 0)
|
|
break;
|
|
--context_size;
|
|
}
|
|
|
|
if (!it)
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error in markov model");
|
|
|
|
size_t offset_from_begin_of_string = pos - data;
|
|
size_t determinator_sliding_window_size = std::min(params.determinator_sliding_window_size, determinator_size);
|
|
|
|
size_t determinator_sliding_window_overflow = offset_from_begin_of_string + determinator_sliding_window_size > determinator_size
|
|
? offset_from_begin_of_string + determinator_sliding_window_size - determinator_size : 0;
|
|
|
|
const char * determinator_sliding_window_begin = determinator_data + offset_from_begin_of_string - determinator_sliding_window_overflow;
|
|
|
|
SipHash hash;
|
|
hash.update(seed);
|
|
hash.update(determinator_sliding_window_begin, determinator_sliding_window_size);
|
|
hash.update(determinator_sliding_window_overflow);
|
|
UInt64 determinator = hash.get64();
|
|
|
|
/// If string is greater than desired_size, increase probability of end.
|
|
double end_probability_multiplier = 0;
|
|
Int64 num_bytes_after_desired_size = (pos - data) - desired_size;
|
|
|
|
if (num_bytes_after_desired_size > 0)
|
|
end_probability_multiplier = std::pow(1.25, num_bytes_after_desired_size);
|
|
|
|
CodePoint code = it->getMapped().sample(determinator, end_probability_multiplier);
|
|
|
|
if (code == END)
|
|
break;
|
|
|
|
if (num_bytes_after_desired_size > 0)
|
|
{
|
|
/// Heuristic: break at ASCII non-alnum code point.
|
|
/// This allows to be close to desired_size but not break natural looking words.
|
|
if (code < 128 && !isAlphaNumericASCII(code))
|
|
break;
|
|
}
|
|
|
|
if (!writeCodePoint(code, pos, end))
|
|
break;
|
|
|
|
code_points.push_back(code);
|
|
}
|
|
|
|
return pos - data;
|
|
}
|
|
};
|
|
|
|
|
|
/// Generate length of strings as above.
|
|
/// To generate content of strings, use
|
|
/// order-N Markov model on Unicode code points,
|
|
/// and to generate next code point use deterministic RNG
|
|
/// determined by hash of a sliding window (default 8 bytes) of source string.
|
|
/// This is intended to generate locally-similar strings from locally-similar sources.
|
|
class StringModel : public IModel
|
|
{
|
|
private:
|
|
UInt64 seed;
|
|
MarkovModel markov_model;
|
|
|
|
public:
|
|
StringModel(UInt64 seed_, MarkovModelParameters params_) : seed(seed_), markov_model(std::move(params_)) {}
|
|
|
|
void train(const IColumn & column) override
|
|
{
|
|
const ColumnString & column_string = assert_cast<const ColumnString &>(column);
|
|
size_t size = column_string.size();
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StringRef string = column_string.getDataAt(i);
|
|
markov_model.consume(string.data, string.size);
|
|
}
|
|
}
|
|
|
|
void finalize() override
|
|
{
|
|
markov_model.finalize();
|
|
}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const ColumnString & column_string = assert_cast<const ColumnString &>(column);
|
|
size_t size = column_string.size();
|
|
|
|
auto res_column = ColumnString::create();
|
|
res_column->reserve(size);
|
|
|
|
std::string new_string;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
StringRef src_string = column_string.getDataAt(i);
|
|
size_t desired_string_size = transform(src_string.size, seed);
|
|
new_string.resize(desired_string_size * 2);
|
|
|
|
size_t actual_size = 0;
|
|
if (desired_string_size != 0)
|
|
actual_size = markov_model.generate(new_string.data(), desired_string_size, new_string.size(), seed, src_string.data, src_string.size);
|
|
|
|
res_column->insertData(new_string.data(), actual_size);
|
|
}
|
|
|
|
return res_column;
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
seed = hash(seed);
|
|
}
|
|
|
|
void serialize(WriteBuffer & out) const override
|
|
{
|
|
markov_model.serialize(out);
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in) override
|
|
{
|
|
markov_model.deserialize(in);
|
|
}
|
|
};
|
|
|
|
|
|
class ArrayModel : public IModel
|
|
{
|
|
private:
|
|
ModelPtr nested_model;
|
|
|
|
public:
|
|
explicit ArrayModel(ModelPtr nested_model_) : nested_model(std::move(nested_model_)) {}
|
|
|
|
void train(const IColumn & column) override
|
|
{
|
|
const ColumnArray & column_array = assert_cast<const ColumnArray &>(column);
|
|
const IColumn & nested_column = column_array.getData();
|
|
|
|
nested_model->train(nested_column);
|
|
}
|
|
|
|
void finalize() override
|
|
{
|
|
nested_model->finalize();
|
|
}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const ColumnArray & column_array = assert_cast<const ColumnArray &>(column);
|
|
const IColumn & nested_column = column_array.getData();
|
|
|
|
ColumnPtr new_nested_column = nested_model->generate(nested_column);
|
|
|
|
return ColumnArray::create(IColumn::mutate(std::move(new_nested_column)), IColumn::mutate(column_array.getOffsetsPtr()));
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
nested_model->updateSeed();
|
|
}
|
|
|
|
void serialize(WriteBuffer & out) const override
|
|
{
|
|
nested_model->serialize(out);
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in) override
|
|
{
|
|
nested_model->deserialize(in);
|
|
}
|
|
};
|
|
|
|
|
|
class NullableModel : public IModel
|
|
{
|
|
private:
|
|
ModelPtr nested_model;
|
|
|
|
public:
|
|
explicit NullableModel(ModelPtr nested_model_) : nested_model(std::move(nested_model_)) {}
|
|
|
|
void train(const IColumn & column) override
|
|
{
|
|
const ColumnNullable & column_nullable = assert_cast<const ColumnNullable &>(column);
|
|
const IColumn & nested_column = column_nullable.getNestedColumn();
|
|
|
|
nested_model->train(nested_column);
|
|
}
|
|
|
|
void finalize() override
|
|
{
|
|
nested_model->finalize();
|
|
}
|
|
|
|
ColumnPtr generate(const IColumn & column) override
|
|
{
|
|
const ColumnNullable & column_nullable = assert_cast<const ColumnNullable &>(column);
|
|
const IColumn & nested_column = column_nullable.getNestedColumn();
|
|
|
|
ColumnPtr new_nested_column = nested_model->generate(nested_column);
|
|
|
|
return ColumnNullable::create(IColumn::mutate(std::move(new_nested_column)), IColumn::mutate(column_nullable.getNullMapColumnPtr()));
|
|
}
|
|
|
|
void updateSeed() override
|
|
{
|
|
nested_model->updateSeed();
|
|
}
|
|
|
|
void serialize(WriteBuffer & out) const override
|
|
{
|
|
nested_model->serialize(out);
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in) override
|
|
{
|
|
nested_model->deserialize(in);
|
|
}
|
|
};
|
|
|
|
|
|
class ModelFactory
|
|
{
|
|
public:
|
|
ModelPtr get(const IDataType & data_type, UInt64 seed, MarkovModelParameters markov_model_params) const
|
|
{
|
|
if (isInteger(data_type))
|
|
{
|
|
if (isUInt(data_type))
|
|
return std::make_unique<UnsignedIntegerModel>(seed);
|
|
else
|
|
return std::make_unique<SignedIntegerModel>(seed);
|
|
}
|
|
|
|
if (typeid_cast<const DataTypeFloat32 *>(&data_type))
|
|
return std::make_unique<FloatModel<Float32>>(seed);
|
|
|
|
if (typeid_cast<const DataTypeFloat64 *>(&data_type))
|
|
return std::make_unique<FloatModel<Float64>>(seed);
|
|
|
|
if (typeid_cast<const DataTypeDate *>(&data_type))
|
|
return std::make_unique<IdentityModel>();
|
|
|
|
if (typeid_cast<const DataTypeDateTime *>(&data_type))
|
|
return std::make_unique<DateTimeModel>(seed);
|
|
|
|
if (typeid_cast<const DataTypeString *>(&data_type))
|
|
return std::make_unique<StringModel>(seed, markov_model_params);
|
|
|
|
if (typeid_cast<const DataTypeFixedString *>(&data_type))
|
|
return std::make_unique<FixedStringModel>(seed);
|
|
|
|
if (typeid_cast<const DataTypeUUID *>(&data_type))
|
|
return std::make_unique<UUIDModel>(seed);
|
|
|
|
if (const auto * type = typeid_cast<const DataTypeArray *>(&data_type))
|
|
return std::make_unique<ArrayModel>(get(*type->getNestedType(), seed, markov_model_params));
|
|
|
|
if (const auto * type = typeid_cast<const DataTypeNullable *>(&data_type))
|
|
return std::make_unique<NullableModel>(get(*type->getNestedType(), seed, markov_model_params));
|
|
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Unsupported data type");
|
|
}
|
|
};
|
|
|
|
|
|
class Obfuscator
|
|
{
|
|
private:
|
|
std::vector<ModelPtr> models;
|
|
|
|
public:
|
|
Obfuscator(const Block & header, UInt64 seed, MarkovModelParameters markov_model_params)
|
|
{
|
|
ModelFactory factory;
|
|
|
|
size_t columns = header.columns();
|
|
models.reserve(columns);
|
|
|
|
for (const auto & elem : header)
|
|
models.emplace_back(factory.get(*elem.type, hash(seed, elem.name), markov_model_params));
|
|
}
|
|
|
|
void train(const Columns & columns)
|
|
{
|
|
size_t size = columns.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
models[i]->train(*columns[i]);
|
|
}
|
|
|
|
void finalize()
|
|
{
|
|
for (auto & model : models)
|
|
model->finalize();
|
|
}
|
|
|
|
Columns generate(const Columns & columns)
|
|
{
|
|
size_t size = columns.size();
|
|
Columns res(size);
|
|
for (size_t i = 0; i < size; ++i)
|
|
res[i] = models[i]->generate(*columns[i]);
|
|
return res;
|
|
}
|
|
|
|
void updateSeed()
|
|
{
|
|
for (auto & model : models)
|
|
model->updateSeed();
|
|
}
|
|
|
|
void serialize(WriteBuffer & out) const
|
|
{
|
|
for (const auto & model : models)
|
|
model->serialize(out);
|
|
}
|
|
|
|
void deserialize(ReadBuffer & in)
|
|
{
|
|
for (auto & model : models)
|
|
model->deserialize(in);
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
#pragma clang diagnostic ignored "-Wunused-function"
|
|
#pragma clang diagnostic ignored "-Wmissing-declarations"
|
|
|
|
int mainEntryClickHouseObfuscator(int argc, char ** argv)
|
|
try
|
|
{
|
|
using namespace DB;
|
|
namespace po = boost::program_options;
|
|
|
|
registerFormats();
|
|
|
|
po::options_description description = createOptionsDescription("Options", getTerminalWidth());
|
|
description.add_options()
|
|
("help", "produce help message")
|
|
("structure,S", po::value<std::string>(), "structure of the initial table (list of column and type names)")
|
|
("input-format", po::value<std::string>(), "input format of the initial table data")
|
|
("output-format", po::value<std::string>(), "default output format")
|
|
("seed", po::value<std::string>(), "seed (arbitrary string), must be random string with at least 10 bytes length; note that a seed for each column is derived from this seed and a column name: you can obfuscate data for different tables and as long as you use identical seed and identical column names, the data for corresponding non-text columns for different tables will be transformed in the same way, so the data for different tables can be JOINed after obfuscation")
|
|
("limit", po::value<UInt64>(), "if specified - stop after generating that number of rows; the limit can be also greater than the number of source dataset - in this case it will process the dataset in a loop more than one time, using different seeds on every iteration, generating result as large as needed")
|
|
("silent", po::value<bool>()->default_value(false), "don't print information messages to stderr")
|
|
("save", po::value<std::string>(), "save the models after training to the specified file. You can use --limit 0 to skip the generation step. The file is using binary, platform-dependent, opaque serialization format. The model parameters are saved, while the seed is not.")
|
|
("load", po::value<std::string>(), "load the models instead of training from the specified file. The table structure must match the saved file. The seed should be specified separately, while other model parameters are loaded.")
|
|
("order", po::value<UInt64>()->default_value(5), "order of markov model to generate strings")
|
|
("frequency-cutoff", po::value<UInt64>()->default_value(5), "frequency cutoff for markov model: remove all buckets with count less than specified")
|
|
("num-buckets-cutoff", po::value<UInt64>()->default_value(0), "cutoff for number of different possible continuations for a context: remove all histograms with less than specified number of buckets")
|
|
("frequency-add", po::value<UInt64>()->default_value(0), "add a constant to every count to lower probability distribution skew")
|
|
("frequency-desaturate", po::value<double>()->default_value(0), "0..1 - move every frequency towards average to lower probability distribution skew")
|
|
("determinator-sliding-window-size", po::value<UInt64>()->default_value(8), "size of a sliding window in a source string - its hash is used as a seed for RNG in markov model")
|
|
;
|
|
|
|
po::parsed_options parsed = po::command_line_parser(argc, argv).options(description).run();
|
|
po::variables_map options;
|
|
po::store(parsed, options);
|
|
|
|
if (options.count("help")
|
|
|| !options.count("seed")
|
|
|| !options.count("input-format")
|
|
|| !options.count("output-format"))
|
|
{
|
|
std::cout << documentation << "\n"
|
|
<< "\nUsage: " << argv[0] << " [options] < in > out\n"
|
|
<< "\nInput must be seekable file (it will be read twice).\n"
|
|
<< "\n" << description << "\n"
|
|
<< "\nExample:\n " << argv[0] << " --seed \"$(head -c16 /dev/urandom | base64)\" --input-format TSV --output-format TSV --structure 'CounterID UInt32, URLDomain String, URL String, SearchPhrase String, Title String' < stats.tsv\n";
|
|
return 0;
|
|
}
|
|
|
|
if (options.count("save") && options.count("load"))
|
|
{
|
|
std::cerr << "The options --save and --load cannot be used together.\n";
|
|
return 1;
|
|
}
|
|
|
|
UInt64 seed = sipHash64(options["seed"].as<std::string>());
|
|
|
|
std::string structure;
|
|
|
|
if (options.count("structure"))
|
|
structure = options["structure"].as<std::string>();
|
|
|
|
std::string input_format = options["input-format"].as<std::string>();
|
|
std::string output_format = options["output-format"].as<std::string>();
|
|
|
|
std::string load_from_file;
|
|
std::string save_into_file;
|
|
|
|
if (options.count("load"))
|
|
load_from_file = options["load"].as<std::string>();
|
|
else if (options.count("save"))
|
|
save_into_file = options["save"].as<std::string>();
|
|
|
|
UInt64 limit = 0;
|
|
if (options.count("limit"))
|
|
limit = options["limit"].as<UInt64>();
|
|
|
|
bool silent = options["silent"].as<bool>();
|
|
|
|
MarkovModelParameters markov_model_params;
|
|
|
|
markov_model_params.order = options["order"].as<UInt64>();
|
|
markov_model_params.frequency_cutoff = options["frequency-cutoff"].as<UInt64>();
|
|
markov_model_params.num_buckets_cutoff = options["num-buckets-cutoff"].as<UInt64>();
|
|
markov_model_params.frequency_add = options["frequency-add"].as<UInt64>();
|
|
markov_model_params.frequency_desaturate = options["frequency-desaturate"].as<double>();
|
|
markov_model_params.determinator_sliding_window_size = options["determinator-sliding-window-size"].as<UInt64>();
|
|
|
|
/// Create the header block
|
|
SharedContextHolder shared_context = Context::createShared();
|
|
auto context = Context::createGlobal(shared_context.get());
|
|
auto context_const = WithContext(context).getContext();
|
|
context->makeGlobalContext();
|
|
|
|
Block header;
|
|
|
|
ColumnsDescription schema_columns;
|
|
|
|
if (structure.empty())
|
|
{
|
|
auto file = std::make_unique<ReadBufferFromFileDescriptor>(STDIN_FILENO);
|
|
|
|
/// stdin must be seekable
|
|
auto res = lseek(file->getFD(), 0, SEEK_SET);
|
|
if (-1 == res)
|
|
throw ErrnoException(ErrorCodes::CANNOT_SEEK_THROUGH_FILE, "Input must be seekable file (it will be read twice)");
|
|
|
|
SingleReadBufferIterator read_buffer_iterator(std::move(file));
|
|
|
|
schema_columns = readSchemaFromFormat(input_format, {}, read_buffer_iterator, context_const);
|
|
}
|
|
else
|
|
{
|
|
schema_columns = parseColumnsListFromString(structure, context_const);
|
|
}
|
|
|
|
auto schema_columns_info = schema_columns.getOrdinary();
|
|
|
|
for (auto & info : schema_columns_info)
|
|
{
|
|
ColumnWithTypeAndName column;
|
|
column.name = info.name;
|
|
column.type = info.type;
|
|
column.column = column.type->createColumn();
|
|
header.insert(std::move(column));
|
|
}
|
|
|
|
ReadBufferFromFileDescriptor file_in(STDIN_FILENO);
|
|
WriteBufferFromFileDescriptor file_out(STDOUT_FILENO);
|
|
|
|
if (load_from_file.empty() || structure.empty())
|
|
{
|
|
/// stdin must be seekable
|
|
auto res = lseek(file_in.getFD(), 0, SEEK_SET);
|
|
if (-1 == res)
|
|
throw ErrnoException(ErrorCodes::CANNOT_SEEK_THROUGH_FILE, "Input must be seekable file (it will be read twice)");
|
|
}
|
|
|
|
Obfuscator obfuscator(header, seed, markov_model_params);
|
|
|
|
UInt64 max_block_size = 8192;
|
|
|
|
/// Train step
|
|
UInt64 source_rows = 0;
|
|
|
|
bool rewind_needed = false;
|
|
if (load_from_file.empty())
|
|
{
|
|
if (!silent)
|
|
std::cerr << "Training models\n";
|
|
|
|
Pipe pipe(context->getInputFormat(input_format, file_in, header, max_block_size));
|
|
|
|
QueryPipeline pipeline(std::move(pipe));
|
|
PullingPipelineExecutor executor(pipeline);
|
|
|
|
Block block;
|
|
while (executor.pull(block))
|
|
{
|
|
obfuscator.train(block.getColumns());
|
|
source_rows += block.rows();
|
|
if (!silent)
|
|
std::cerr << "Processed " << source_rows << " rows\n";
|
|
}
|
|
|
|
obfuscator.finalize();
|
|
rewind_needed = true;
|
|
}
|
|
else
|
|
{
|
|
if (!silent)
|
|
std::cerr << "Loading models\n";
|
|
|
|
ReadBufferFromFile model_file_in(load_from_file);
|
|
CompressedReadBuffer model_in(model_file_in);
|
|
|
|
UInt8 version = 0;
|
|
readBinary(version, model_in);
|
|
if (version != 0)
|
|
throw Exception(ErrorCodes::UNKNOWN_FORMAT_VERSION, "Unknown version of the model file");
|
|
|
|
readBinary(source_rows, model_in);
|
|
|
|
Names data_types = header.getDataTypeNames();
|
|
size_t header_size = 0;
|
|
readBinary(header_size, model_in);
|
|
if (header_size != data_types.size())
|
|
throw Exception(ErrorCodes::INCORRECT_NUMBER_OF_COLUMNS, "The saved model was created for different number of columns");
|
|
|
|
for (size_t i = 0; i < header_size; ++i)
|
|
{
|
|
String type;
|
|
readBinary(type, model_in);
|
|
if (type != data_types[i])
|
|
throw Exception(ErrorCodes::TYPE_MISMATCH, "The saved model was created for different types of columns");
|
|
}
|
|
|
|
obfuscator.deserialize(model_in);
|
|
}
|
|
|
|
if (!save_into_file.empty())
|
|
{
|
|
if (!silent)
|
|
std::cerr << "Saving models\n";
|
|
|
|
WriteBufferFromFile model_file_out(save_into_file);
|
|
CompressedWriteBuffer model_out(model_file_out, CompressionCodecFactory::instance().get("ZSTD", 1));
|
|
|
|
/// You can change version on format change, it is currently set to zero.
|
|
UInt8 version = 0;
|
|
writeBinary(version, model_out);
|
|
|
|
writeBinary(source_rows, model_out);
|
|
|
|
/// We are writing the data types for validation, because the models serialization depends on the data types.
|
|
Names data_types = header.getDataTypeNames();
|
|
size_t header_size = data_types.size();
|
|
writeBinary(header_size, model_out);
|
|
for (const auto & type : data_types)
|
|
writeBinary(type, model_out);
|
|
|
|
/// Write the models.
|
|
obfuscator.serialize(model_out);
|
|
|
|
model_out.finalize();
|
|
model_file_out.finalize();
|
|
}
|
|
|
|
if (!options.count("limit"))
|
|
limit = source_rows;
|
|
|
|
/// Generation step
|
|
UInt64 processed_rows = 0;
|
|
while (processed_rows < limit)
|
|
{
|
|
if (!silent)
|
|
std::cerr << "Generating data\n";
|
|
|
|
if (rewind_needed)
|
|
file_in.rewind();
|
|
|
|
Pipe pipe(context->getInputFormat(input_format, file_in, header, max_block_size));
|
|
|
|
if (processed_rows + source_rows > limit)
|
|
{
|
|
pipe.addSimpleTransform([&](const Block & cur_header)
|
|
{
|
|
return std::make_shared<LimitTransform>(cur_header, limit - processed_rows, 0);
|
|
});
|
|
}
|
|
|
|
QueryPipeline in_pipeline(std::move(pipe));
|
|
|
|
auto output = context->getOutputFormatParallelIfPossible(output_format, file_out, header);
|
|
QueryPipeline out_pipeline(std::move(output));
|
|
|
|
PullingPipelineExecutor in_executor(in_pipeline);
|
|
PushingPipelineExecutor out_executor(out_pipeline);
|
|
|
|
Block block;
|
|
out_executor.start();
|
|
while (in_executor.pull(block))
|
|
{
|
|
Columns columns = obfuscator.generate(block.getColumns());
|
|
out_executor.push(header.cloneWithColumns(columns));
|
|
processed_rows += block.rows();
|
|
if (!silent)
|
|
std::cerr << "Processed " << processed_rows << " rows\n";
|
|
}
|
|
out_executor.finish();
|
|
|
|
obfuscator.updateSeed();
|
|
rewind_needed = true;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
catch (...)
|
|
{
|
|
std::cerr << DB::getCurrentExceptionMessage(true) << "\n";
|
|
auto code = DB::getCurrentExceptionCode();
|
|
return code ? code : 1;
|
|
}
|