ClickHouse/src/Interpreters/AsynchronousMetrics.cpp
Azat Khuzhin 6a2abd3a68 jemalloc: remove jemalloc 4 support
Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
2022-02-17 21:25:58 +03:00

1475 lines
51 KiB
C++

#include <Interpreters/AsynchronousMetrics.h>
#include <Interpreters/AsynchronousMetricLog.h>
#include <Interpreters/JIT/CompiledExpressionCache.h>
#include <Interpreters/DatabaseCatalog.h>
#include <Interpreters/Context.h>
#include <Common/Exception.h>
#include <Common/setThreadName.h>
#include <Common/CurrentMetrics.h>
#include <Common/typeid_cast.h>
#include <Common/filesystemHelpers.h>
#include <Server/ProtocolServerAdapter.h>
#include <Storages/MarkCache.h>
#include <Storages/StorageMergeTree.h>
#include <Storages/StorageReplicatedMergeTree.h>
#include <IO/UncompressedCache.h>
#include <IO/MMappedFileCache.h>
#include <IO/ReadHelpers.h>
#include <Databases/IDatabase.h>
#include <chrono>
#include "config_core.h"
#if USE_JEMALLOC
# include <jemalloc/jemalloc.h>
#endif
namespace CurrentMetrics
{
extern const Metric MemoryTracking;
}
namespace DB
{
namespace ErrorCodes
{
extern const int CORRUPTED_DATA;
extern const int CANNOT_SYSCONF;
}
#if defined(OS_LINUX)
static constexpr size_t small_buffer_size = 4096;
static void openFileIfExists(const char * filename, std::optional<ReadBufferFromFilePRead> & out)
{
/// Ignoring time of check is not time of use cases, as procfs/sysfs files are fairly persistent.
std::error_code ec;
if (std::filesystem::is_regular_file(filename, ec))
out.emplace(filename, small_buffer_size);
}
static std::unique_ptr<ReadBufferFromFilePRead> openFileIfExists(const std::string & filename)
{
std::error_code ec;
if (std::filesystem::is_regular_file(filename, ec))
return std::make_unique<ReadBufferFromFilePRead>(filename, small_buffer_size);
return {};
}
#endif
AsynchronousMetrics::AsynchronousMetrics(
ContextPtr global_context_,
int update_period_seconds,
const ProtocolServerMetricsFunc & protocol_server_metrics_func_)
: WithContext(global_context_)
, update_period(update_period_seconds)
, protocol_server_metrics_func(protocol_server_metrics_func_)
, log(&Poco::Logger::get("AsynchronousMetrics"))
{
#if defined(OS_LINUX)
openFileIfExists("/proc/meminfo", meminfo);
openFileIfExists("/proc/loadavg", loadavg);
openFileIfExists("/proc/stat", proc_stat);
openFileIfExists("/proc/cpuinfo", cpuinfo);
openFileIfExists("/proc/sys/fs/file-nr", file_nr);
openFileIfExists("/proc/uptime", uptime);
openFileIfExists("/proc/net/dev", net_dev);
openSensors();
openBlockDevices();
openEDAC();
openSensorsChips();
#endif
}
#if defined(OS_LINUX)
void AsynchronousMetrics::openSensors()
{
LOG_TRACE(log, "Scanning /sys/class/thermal");
thermal.clear();
for (size_t thermal_device_index = 0;; ++thermal_device_index)
{
std::unique_ptr<ReadBufferFromFilePRead> file = openFileIfExists(fmt::format("/sys/class/thermal/thermal_zone{}/temp", thermal_device_index));
if (!file)
{
/// Sometimes indices are from zero sometimes from one.
if (thermal_device_index == 0)
continue;
else
break;
}
file->rewind();
Int64 temperature = 0;
try
{
readText(temperature, *file);
}
catch (const ErrnoException & e)
{
LOG_WARNING(
&Poco::Logger::get("AsynchronousMetrics"),
"Thermal monitor '{}' exists but could not be read, error {}.",
thermal_device_index,
e.getErrno());
continue;
}
thermal.emplace_back(std::move(file));
}
}
void AsynchronousMetrics::openBlockDevices()
{
LOG_TRACE(log, "Scanning /sys/block");
if (!std::filesystem::exists("/sys/block"))
return;
block_devices_rescan_delay.restart();
block_devs.clear();
for (const auto & device_dir : std::filesystem::directory_iterator("/sys/block"))
{
String device_name = device_dir.path().filename();
/// We are not interested in loopback devices.
if (device_name.starts_with("loop"))
continue;
std::unique_ptr<ReadBufferFromFilePRead> file = openFileIfExists(device_dir.path() / "stat");
if (!file)
continue;
block_devs[device_name] = std::move(file);
}
}
void AsynchronousMetrics::openEDAC()
{
LOG_TRACE(log, "Scanning /sys/devices/system/edac");
edac.clear();
for (size_t edac_index = 0;; ++edac_index)
{
String edac_correctable_file = fmt::format("/sys/devices/system/edac/mc/mc{}/ce_count", edac_index);
String edac_uncorrectable_file = fmt::format("/sys/devices/system/edac/mc/mc{}/ue_count", edac_index);
bool edac_correctable_file_exists = std::filesystem::exists(edac_correctable_file);
bool edac_uncorrectable_file_exists = std::filesystem::exists(edac_uncorrectable_file);
if (!edac_correctable_file_exists && !edac_uncorrectable_file_exists)
{
if (edac_index == 0)
continue;
else
break;
}
edac.emplace_back();
if (edac_correctable_file_exists)
edac.back().first = openFileIfExists(edac_correctable_file);
if (edac_uncorrectable_file_exists)
edac.back().second = openFileIfExists(edac_uncorrectable_file);
}
}
void AsynchronousMetrics::openSensorsChips()
{
LOG_TRACE(log, "Scanning /sys/class/hwmon");
hwmon_devices.clear();
for (size_t hwmon_index = 0;; ++hwmon_index)
{
String hwmon_name_file = fmt::format("/sys/class/hwmon/hwmon{}/name", hwmon_index);
if (!std::filesystem::exists(hwmon_name_file))
{
if (hwmon_index == 0)
continue;
else
break;
}
String hwmon_name;
ReadBufferFromFilePRead hwmon_name_in(hwmon_name_file, small_buffer_size);
readText(hwmon_name, hwmon_name_in);
std::replace(hwmon_name.begin(), hwmon_name.end(), ' ', '_');
for (size_t sensor_index = 0;; ++sensor_index)
{
String sensor_name_file = fmt::format("/sys/class/hwmon/hwmon{}/temp{}_label", hwmon_index, sensor_index);
String sensor_value_file = fmt::format("/sys/class/hwmon/hwmon{}/temp{}_input", hwmon_index, sensor_index);
bool sensor_name_file_exists = std::filesystem::exists(sensor_name_file);
bool sensor_value_file_exists = std::filesystem::exists(sensor_value_file);
/// Sometimes there are labels but there is no files with data or vice versa.
if (!sensor_name_file_exists && !sensor_value_file_exists)
{
if (sensor_index == 0)
continue;
else
break;
}
std::unique_ptr<ReadBufferFromFilePRead> file = openFileIfExists(sensor_value_file);
if (!file)
continue;
String sensor_name;
if (sensor_name_file_exists)
{
ReadBufferFromFilePRead sensor_name_in(sensor_name_file, small_buffer_size);
readText(sensor_name, sensor_name_in);
std::replace(sensor_name.begin(), sensor_name.end(), ' ', '_');
}
file->rewind();
Int64 temperature = 0;
try
{
readText(temperature, *file);
}
catch (const ErrnoException & e)
{
LOG_WARNING(
&Poco::Logger::get("AsynchronousMetrics"),
"Hardware monitor '{}', sensor '{}' exists but could not be read, error {}.",
hwmon_name,
sensor_name,
e.getErrno());
continue;
}
hwmon_devices[hwmon_name][sensor_name] = std::move(file);
}
}
}
#endif
void AsynchronousMetrics::start()
{
/// Update once right now, to make metrics available just after server start
/// (without waiting for asynchronous_metrics_update_period_s).
update(std::chrono::system_clock::now());
thread = std::make_unique<ThreadFromGlobalPool>([this] { run(); });
}
void AsynchronousMetrics::stop()
{
try
{
{
std::lock_guard lock{mutex};
quit = true;
}
wait_cond.notify_one();
if (thread)
{
thread->join();
thread.reset();
}
}
catch (...)
{
DB::tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
AsynchronousMetrics::~AsynchronousMetrics()
{
stop();
}
AsynchronousMetricValues AsynchronousMetrics::getValues() const
{
std::lock_guard lock{mutex};
return values;
}
static auto get_next_update_time(std::chrono::seconds update_period)
{
using namespace std::chrono;
const auto now = time_point_cast<seconds>(system_clock::now());
// Use seconds since the start of the hour, because we don't know when
// the epoch started, maybe on some weird fractional time.
const auto start_of_hour = time_point_cast<seconds>(time_point_cast<hours>(now));
const auto seconds_passed = now - start_of_hour;
// Rotate time forward by half a period -- e.g. if a period is a minute,
// we'll collect metrics on start of minute + 30 seconds. This is to
// achieve temporal separation with MetricTransmitter. Don't forget to
// rotate it back.
const auto rotation = update_period / 2;
const auto periods_passed = (seconds_passed + rotation) / update_period;
const auto seconds_next = (periods_passed + 1) * update_period - rotation;
const auto time_next = start_of_hour + seconds_next;
return time_next;
}
void AsynchronousMetrics::run()
{
setThreadName("AsyncMetrics");
while (true)
{
auto next_update_time = get_next_update_time(update_period);
{
// Wait first, so that the first metric collection is also on even time.
std::unique_lock lock{mutex};
if (wait_cond.wait_until(lock, next_update_time,
[this] { return quit; }))
{
break;
}
}
try
{
update(next_update_time);
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
}
template <typename Max, typename T>
static void calculateMax(Max & max, T x)
{
if (Max(x) > max)
max = x;
}
template <typename Max, typename Sum, typename T>
static void calculateMaxAndSum(Max & max, Sum & sum, T x)
{
sum += x;
if (Max(x) > max)
max = x;
}
#if USE_JEMALLOC
uint64_t updateJemallocEpoch()
{
uint64_t value = 0;
size_t size = sizeof(value);
mallctl("epoch", &value, &size, &value, size);
return value;
}
template <typename Value>
static void saveJemallocMetricImpl(AsynchronousMetricValues & values,
const std::string & jemalloc_full_name,
const std::string & clickhouse_full_name)
{
Value value{};
size_t size = sizeof(value);
mallctl(jemalloc_full_name.c_str(), &value, &size, nullptr, 0);
values[clickhouse_full_name] = value;
}
template<typename Value>
static void saveJemallocMetric(AsynchronousMetricValues & values,
const std::string & metric_name)
{
saveJemallocMetricImpl<Value>(values,
fmt::format("stats.{}", metric_name),
fmt::format("jemalloc.{}", metric_name));
}
template<typename Value>
static void saveAllArenasMetric(AsynchronousMetricValues & values,
const std::string & metric_name)
{
saveJemallocMetricImpl<Value>(values,
fmt::format("stats.arenas.{}.{}", MALLCTL_ARENAS_ALL, metric_name),
fmt::format("jemalloc.arenas.all.{}", metric_name));
}
#endif
#if defined(OS_LINUX)
void AsynchronousMetrics::ProcStatValuesCPU::read(ReadBuffer & in)
{
readText(user, in);
skipWhitespaceIfAny(in, true);
readText(nice, in);
skipWhitespaceIfAny(in, true);
readText(system, in);
skipWhitespaceIfAny(in, true);
readText(idle, in);
skipWhitespaceIfAny(in, true);
readText(iowait, in);
skipWhitespaceIfAny(in, true);
readText(irq, in);
skipWhitespaceIfAny(in, true);
readText(softirq, in);
/// Just in case for old Linux kernels, we check if these values present.
if (!checkChar('\n', in))
{
skipWhitespaceIfAny(in, true);
readText(steal, in);
}
if (!checkChar('\n', in))
{
skipWhitespaceIfAny(in, true);
readText(guest, in);
}
if (!checkChar('\n', in))
{
skipWhitespaceIfAny(in, true);
readText(guest_nice, in);
}
skipToNextLineOrEOF(in);
}
AsynchronousMetrics::ProcStatValuesCPU
AsynchronousMetrics::ProcStatValuesCPU::operator-(const AsynchronousMetrics::ProcStatValuesCPU & other) const
{
ProcStatValuesCPU res{};
res.user = user - other.user;
res.nice = nice - other.nice;
res.system = system - other.system;
res.idle = idle - other.idle;
res.iowait = iowait - other.iowait;
res.irq = irq - other.irq;
res.softirq = softirq - other.softirq;
res.steal = steal - other.steal;
res.guest = guest - other.guest;
res.guest_nice = guest_nice - other.guest_nice;
return res;
}
AsynchronousMetrics::ProcStatValuesOther
AsynchronousMetrics::ProcStatValuesOther::operator-(const AsynchronousMetrics::ProcStatValuesOther & other) const
{
ProcStatValuesOther res{};
res.interrupts = interrupts - other.interrupts;
res.context_switches = context_switches - other.context_switches;
res.processes_created = processes_created - other.processes_created;
return res;
}
void AsynchronousMetrics::BlockDeviceStatValues::read(ReadBuffer & in)
{
skipWhitespaceIfAny(in, true);
readText(read_ios, in);
skipWhitespaceIfAny(in, true);
readText(read_merges, in);
skipWhitespaceIfAny(in, true);
readText(read_sectors, in);
skipWhitespaceIfAny(in, true);
readText(read_ticks, in);
skipWhitespaceIfAny(in, true);
readText(write_ios, in);
skipWhitespaceIfAny(in, true);
readText(write_merges, in);
skipWhitespaceIfAny(in, true);
readText(write_sectors, in);
skipWhitespaceIfAny(in, true);
readText(write_ticks, in);
skipWhitespaceIfAny(in, true);
readText(in_flight_ios, in);
skipWhitespaceIfAny(in, true);
readText(io_ticks, in);
skipWhitespaceIfAny(in, true);
readText(time_in_queue, in);
skipWhitespaceIfAny(in, true);
readText(discard_ops, in);
skipWhitespaceIfAny(in, true);
readText(discard_merges, in);
skipWhitespaceIfAny(in, true);
readText(discard_sectors, in);
skipWhitespaceIfAny(in, true);
readText(discard_ticks, in);
}
AsynchronousMetrics::BlockDeviceStatValues
AsynchronousMetrics::BlockDeviceStatValues::operator-(const AsynchronousMetrics::BlockDeviceStatValues & other) const
{
BlockDeviceStatValues res{};
res.read_ios = read_ios - other.read_ios;
res.read_merges = read_merges - other.read_merges;
res.read_sectors = read_sectors - other.read_sectors;
res.read_ticks = read_ticks - other.read_ticks;
res.write_ios = write_ios - other.write_ios;
res.write_merges = write_merges - other.write_merges;
res.write_sectors = write_sectors - other.write_sectors;
res.write_ticks = write_ticks - other.write_ticks;
res.in_flight_ios = in_flight_ios; /// This is current value, not total.
res.io_ticks = io_ticks - other.io_ticks;
res.time_in_queue = time_in_queue - other.time_in_queue;
res.discard_ops = discard_ops - other.discard_ops;
res.discard_merges = discard_merges - other.discard_merges;
res.discard_sectors = discard_sectors - other.discard_sectors;
res.discard_ticks = discard_ticks - other.discard_ticks;
return res;
}
AsynchronousMetrics::NetworkInterfaceStatValues
AsynchronousMetrics::NetworkInterfaceStatValues::operator-(const AsynchronousMetrics::NetworkInterfaceStatValues & other) const
{
NetworkInterfaceStatValues res{};
res.recv_bytes = recv_bytes - other.recv_bytes;
res.recv_packets = recv_packets - other.recv_packets;
res.recv_errors = recv_errors - other.recv_errors;
res.recv_drop = recv_drop - other.recv_drop;
res.send_bytes = send_bytes - other.send_bytes;
res.send_packets = send_packets - other.send_packets;
res.send_errors = send_errors - other.send_errors;
res.send_drop = send_drop - other.send_drop;
return res;
}
#endif
void AsynchronousMetrics::update(std::chrono::system_clock::time_point update_time)
{
Stopwatch watch;
AsynchronousMetricValues new_values;
auto current_time = std::chrono::system_clock::now();
auto time_after_previous_update [[maybe_unused]] = current_time - previous_update_time;
previous_update_time = update_time;
/// This is also a good indicator of system responsiveness.
new_values["Jitter"] = std::chrono::duration_cast<std::chrono::nanoseconds>(current_time - update_time).count() / 1e9;
{
if (auto mark_cache = getContext()->getMarkCache())
{
new_values["MarkCacheBytes"] = mark_cache->weight();
new_values["MarkCacheFiles"] = mark_cache->count();
}
}
{
if (auto uncompressed_cache = getContext()->getUncompressedCache())
{
new_values["UncompressedCacheBytes"] = uncompressed_cache->weight();
new_values["UncompressedCacheCells"] = uncompressed_cache->count();
}
}
{
if (auto index_mark_cache = getContext()->getIndexMarkCache())
{
new_values["IndexMarkCacheBytes"] = index_mark_cache->weight();
new_values["IndexMarkCacheFiles"] = index_mark_cache->count();
}
}
{
if (auto index_uncompressed_cache = getContext()->getIndexUncompressedCache())
{
new_values["IndexUncompressedCacheBytes"] = index_uncompressed_cache->weight();
new_values["IndexUncompressedCacheCells"] = index_uncompressed_cache->count();
}
}
{
if (auto mmap_cache = getContext()->getMMappedFileCache())
{
new_values["MMapCacheCells"] = mmap_cache->count();
}
}
#if USE_EMBEDDED_COMPILER
{
if (auto * compiled_expression_cache = CompiledExpressionCacheFactory::instance().tryGetCache())
{
new_values["CompiledExpressionCacheBytes"] = compiled_expression_cache->weight();
new_values["CompiledExpressionCacheCount"] = compiled_expression_cache->count();
}
}
#endif
new_values["Uptime"] = getContext()->getUptimeSeconds();
/// Process process memory usage according to OS
#if defined(OS_LINUX)
{
MemoryStatisticsOS::Data data = memory_stat.get();
new_values["MemoryVirtual"] = data.virt;
new_values["MemoryResident"] = data.resident;
new_values["MemoryShared"] = data.shared;
new_values["MemoryCode"] = data.code;
new_values["MemoryDataAndStack"] = data.data_and_stack;
/// We must update the value of total_memory_tracker periodically.
/// Otherwise it might be calculated incorrectly - it can include a "drift" of memory amount.
/// See https://github.com/ClickHouse/ClickHouse/issues/10293
{
Int64 amount = total_memory_tracker.get();
Int64 peak = total_memory_tracker.getPeak();
Int64 new_amount = data.resident;
Int64 difference = new_amount - amount;
/// Log only if difference is high. This is for convenience. The threshold is arbitrary.
if (difference >= 1048576 || difference <= -1048576)
LOG_TRACE(log,
"MemoryTracking: was {}, peak {}, will set to {} (RSS), difference: {}",
ReadableSize(amount),
ReadableSize(peak),
ReadableSize(new_amount),
ReadableSize(difference));
total_memory_tracker.set(new_amount);
CurrentMetrics::set(CurrentMetrics::MemoryTracking, new_amount);
}
}
if (loadavg)
{
try
{
loadavg->rewind();
Float64 loadavg1 = 0;
Float64 loadavg5 = 0;
Float64 loadavg15 = 0;
UInt64 threads_runnable = 0;
UInt64 threads_total = 0;
readText(loadavg1, *loadavg);
skipWhitespaceIfAny(*loadavg);
readText(loadavg5, *loadavg);
skipWhitespaceIfAny(*loadavg);
readText(loadavg15, *loadavg);
skipWhitespaceIfAny(*loadavg);
readText(threads_runnable, *loadavg);
assertChar('/', *loadavg);
readText(threads_total, *loadavg);
new_values["LoadAverage1"] = loadavg1;
new_values["LoadAverage5"] = loadavg5;
new_values["LoadAverage15"] = loadavg15;
new_values["OSThreadsRunnable"] = threads_runnable;
new_values["OSThreadsTotal"] = threads_total;
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
if (uptime)
{
try
{
uptime->rewind();
Float64 uptime_seconds = 0;
readText(uptime_seconds, *uptime);
new_values["OSUptime"] = uptime_seconds;
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
if (proc_stat)
{
try
{
proc_stat->rewind();
int64_t hz = sysconf(_SC_CLK_TCK);
if (-1 == hz)
throwFromErrno("Cannot call 'sysconf' to obtain system HZ", ErrorCodes::CANNOT_SYSCONF);
double multiplier = 1.0 / hz / (std::chrono::duration_cast<std::chrono::nanoseconds>(time_after_previous_update).count() / 1e9);
size_t num_cpus = 0;
ProcStatValuesOther current_other_values{};
ProcStatValuesCPU delta_values_all_cpus{};
while (!proc_stat->eof())
{
String name;
readStringUntilWhitespace(name, *proc_stat);
skipWhitespaceIfAny(*proc_stat);
if (name.starts_with("cpu"))
{
String cpu_num_str = name.substr(strlen("cpu"));
UInt64 cpu_num = 0;
if (!cpu_num_str.empty())
{
cpu_num = parse<UInt64>(cpu_num_str);
if (cpu_num > 1000000) /// Safety check, arbitrary large number, suitable for supercomputing applications.
throw Exception(ErrorCodes::CORRUPTED_DATA, "Too many CPUs (at least {}) in '/proc/stat' file", cpu_num);
if (proc_stat_values_per_cpu.size() <= cpu_num)
proc_stat_values_per_cpu.resize(cpu_num + 1);
}
ProcStatValuesCPU current_values{};
current_values.read(*proc_stat);
ProcStatValuesCPU & prev_values = !cpu_num_str.empty() ? proc_stat_values_per_cpu[cpu_num] : proc_stat_values_all_cpus;
if (!first_run)
{
ProcStatValuesCPU delta_values = current_values - prev_values;
String cpu_suffix;
if (!cpu_num_str.empty())
{
cpu_suffix = "CPU" + cpu_num_str;
++num_cpus;
}
else
delta_values_all_cpus = delta_values;
new_values["OSUserTime" + cpu_suffix] = delta_values.user * multiplier;
new_values["OSNiceTime" + cpu_suffix] = delta_values.nice * multiplier;
new_values["OSSystemTime" + cpu_suffix] = delta_values.system * multiplier;
new_values["OSIdleTime" + cpu_suffix] = delta_values.idle * multiplier;
new_values["OSIOWaitTime" + cpu_suffix] = delta_values.iowait * multiplier;
new_values["OSIrqTime" + cpu_suffix] = delta_values.irq * multiplier;
new_values["OSSoftIrqTime" + cpu_suffix] = delta_values.softirq * multiplier;
new_values["OSStealTime" + cpu_suffix] = delta_values.steal * multiplier;
new_values["OSGuestTime" + cpu_suffix] = delta_values.guest * multiplier;
new_values["OSGuestNiceTime" + cpu_suffix] = delta_values.guest_nice * multiplier;
}
prev_values = current_values;
}
else if (name == "intr")
{
readText(current_other_values.interrupts, *proc_stat);
skipToNextLineOrEOF(*proc_stat);
}
else if (name == "ctxt")
{
readText(current_other_values.context_switches, *proc_stat);
skipToNextLineOrEOF(*proc_stat);
}
else if (name == "processes")
{
readText(current_other_values.processes_created, *proc_stat);
skipToNextLineOrEOF(*proc_stat);
}
else if (name == "procs_running")
{
UInt64 processes_running = 0;
readText(processes_running, *proc_stat);
skipToNextLineOrEOF(*proc_stat);
new_values["OSProcessesRunning"] = processes_running;
}
else if (name == "procs_blocked")
{
UInt64 processes_blocked = 0;
readText(processes_blocked, *proc_stat);
skipToNextLineOrEOF(*proc_stat);
new_values["OSProcessesBlocked"] = processes_blocked;
}
else
skipToNextLineOrEOF(*proc_stat);
}
if (!first_run)
{
ProcStatValuesOther delta_values = current_other_values - proc_stat_values_other;
new_values["OSInterrupts"] = delta_values.interrupts;
new_values["OSContextSwitches"] = delta_values.context_switches;
new_values["OSProcessesCreated"] = delta_values.processes_created;
/// Also write values normalized to 0..1 by diving to the number of CPUs.
/// These values are good to be averaged across the cluster of non-uniform servers.
if (num_cpus)
{
new_values["OSUserTimeNormalized"] = delta_values_all_cpus.user * multiplier / num_cpus;
new_values["OSNiceTimeNormalized"] = delta_values_all_cpus.nice * multiplier / num_cpus;
new_values["OSSystemTimeNormalized"] = delta_values_all_cpus.system * multiplier / num_cpus;
new_values["OSIdleTimeNormalized"] = delta_values_all_cpus.idle * multiplier / num_cpus;
new_values["OSIOWaitTimeNormalized"] = delta_values_all_cpus.iowait * multiplier / num_cpus;
new_values["OSIrqTimeNormalized"] = delta_values_all_cpus.irq * multiplier / num_cpus;
new_values["OSSoftIrqTimeNormalized"] = delta_values_all_cpus.softirq * multiplier / num_cpus;
new_values["OSStealTimeNormalized"] = delta_values_all_cpus.steal * multiplier / num_cpus;
new_values["OSGuestTimeNormalized"] = delta_values_all_cpus.guest * multiplier / num_cpus;
new_values["OSGuestNiceTimeNormalized"] = delta_values_all_cpus.guest_nice * multiplier / num_cpus;
}
}
proc_stat_values_other = current_other_values;
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
if (meminfo)
{
try
{
meminfo->rewind();
uint64_t free_plus_cached_bytes = 0;
while (!meminfo->eof())
{
String name;
readStringUntilWhitespace(name, *meminfo);
skipWhitespaceIfAny(*meminfo, true);
uint64_t kb = 0;
readText(kb, *meminfo);
if (!kb)
{
skipToNextLineOrEOF(*meminfo);
continue;
}
skipWhitespaceIfAny(*meminfo, true);
/**
* Not all entries in /proc/meminfo contain the kB suffix, e.g.
* HugePages_Total: 0
* HugePages_Free: 0
* We simply skip such entries as they're not needed
*/
if (*meminfo->position() == '\n')
{
skipToNextLineOrEOF(*meminfo);
continue;
}
assertString("kB", *meminfo);
uint64_t bytes = kb * 1024;
if (name == "MemTotal:")
{
new_values["OSMemoryTotal"] = bytes;
}
else if (name == "MemFree:")
{
/// We cannot simply name this metric "Free", because it confuses users.
/// See https://www.linuxatemyram.com/
/// For convenience we also provide OSMemoryFreePlusCached, that should be somewhat similar to OSMemoryAvailable.
free_plus_cached_bytes += bytes;
new_values["OSMemoryFreeWithoutCached"] = bytes;
}
else if (name == "MemAvailable:")
{
new_values["OSMemoryAvailable"] = bytes;
}
else if (name == "Buffers:")
{
new_values["OSMemoryBuffers"] = bytes;
}
else if (name == "Cached:")
{
free_plus_cached_bytes += bytes;
new_values["OSMemoryCached"] = bytes;
}
else if (name == "SwapCached:")
{
new_values["OSMemorySwapCached"] = bytes;
}
skipToNextLineOrEOF(*meminfo);
}
new_values["OSMemoryFreePlusCached"] = free_plus_cached_bytes;
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
// Try to add processor frequencies, ignoring errors.
if (cpuinfo)
{
try
{
cpuinfo->rewind();
// We need the following lines:
// processor : 4
// cpu MHz : 4052.941
// They contain tabs and are interspersed with other info.
int core_id = 0;
while (!cpuinfo->eof())
{
std::string s;
// We don't have any backslash escape sequences in /proc/cpuinfo, so
// this function will read the line until EOL, which is exactly what
// we need.
readEscapedStringUntilEOL(s, *cpuinfo);
// It doesn't read the EOL itself.
++cpuinfo->position();
if (s.rfind("processor", 0) == 0)
{
if (auto colon = s.find_first_of(':'))
{
core_id = std::stoi(s.substr(colon + 2));
}
}
else if (s.rfind("cpu MHz", 0) == 0)
{
if (auto colon = s.find_first_of(':'))
{
auto mhz = std::stod(s.substr(colon + 2));
new_values[fmt::format("CPUFrequencyMHz_{}", core_id)] = mhz;
}
}
}
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
if (file_nr)
{
try
{
file_nr->rewind();
uint64_t open_files = 0;
readText(open_files, *file_nr);
new_values["OSOpenFiles"] = open_files;
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
/// Update list of block devices periodically
/// (i.e. someone may add new disk to RAID array)
if (block_devices_rescan_delay.elapsedSeconds() >= 300)
openBlockDevices();
try
{
for (auto & [name, device] : block_devs)
{
device->rewind();
BlockDeviceStatValues current_values{};
BlockDeviceStatValues & prev_values = block_device_stats[name];
current_values.read(*device);
BlockDeviceStatValues delta_values = current_values - prev_values;
prev_values = current_values;
if (first_run)
continue;
/// Always 512 according to the docs.
static constexpr size_t sector_size = 512;
/// Always in milliseconds according to the docs.
static constexpr double time_multiplier = 1e-6;
new_values["BlockReadOps_" + name] = delta_values.read_ios;
new_values["BlockWriteOps_" + name] = delta_values.write_ios;
new_values["BlockDiscardOps_" + name] = delta_values.discard_ops;
new_values["BlockReadMerges_" + name] = delta_values.read_merges;
new_values["BlockWriteMerges_" + name] = delta_values.write_merges;
new_values["BlockDiscardMerges_" + name] = delta_values.discard_merges;
new_values["BlockReadBytes_" + name] = delta_values.read_sectors * sector_size;
new_values["BlockWriteBytes_" + name] = delta_values.write_sectors * sector_size;
new_values["BlockDiscardBytes_" + name] = delta_values.discard_sectors * sector_size;
new_values["BlockReadTime_" + name] = delta_values.read_ticks * time_multiplier;
new_values["BlockWriteTime_" + name] = delta_values.write_ticks * time_multiplier;
new_values["BlockDiscardTime_" + name] = delta_values.discard_ticks * time_multiplier;
new_values["BlockInFlightOps_" + name] = delta_values.in_flight_ios;
new_values["BlockActiveTime_" + name] = delta_values.io_ticks * time_multiplier;
new_values["BlockQueueTime_" + name] = delta_values.time_in_queue * time_multiplier;
if (delta_values.in_flight_ios)
{
/// TODO Check if these values are meaningful.
new_values["BlockActiveTimePerOp_" + name] = delta_values.io_ticks * time_multiplier / delta_values.in_flight_ios;
new_values["BlockQueueTimePerOp_" + name] = delta_values.time_in_queue * time_multiplier / delta_values.in_flight_ios;
}
}
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
/// Try to reopen block devices in case of error
/// (i.e. ENOENT means that some disk had been replaced, and it may apperas with a new name)
try
{
openBlockDevices();
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
if (net_dev)
{
try
{
net_dev->rewind();
/// Skip first two lines:
/// Inter-| Receive | Transmit
/// face |bytes packets errs drop fifo frame compressed multicast|bytes packets errs drop fifo colls carrier compressed
skipToNextLineOrEOF(*net_dev);
skipToNextLineOrEOF(*net_dev);
while (!net_dev->eof())
{
skipWhitespaceIfAny(*net_dev, true);
String interface_name;
readStringUntilWhitespace(interface_name, *net_dev);
/// We are not interested in loopback devices.
if (!interface_name.ends_with(':') || interface_name == "lo:" || interface_name.size() <= 1)
{
skipToNextLineOrEOF(*net_dev);
continue;
}
interface_name.pop_back();
NetworkInterfaceStatValues current_values{};
uint64_t unused;
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.recv_bytes, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.recv_packets, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.recv_errors, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.recv_drop, *net_dev);
/// NOTE We should pay more attention to the number of fields.
skipWhitespaceIfAny(*net_dev, true);
readText(unused, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(unused, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(unused, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(unused, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.send_bytes, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.send_packets, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.send_errors, *net_dev);
skipWhitespaceIfAny(*net_dev, true);
readText(current_values.send_drop, *net_dev);
skipToNextLineOrEOF(*net_dev);
NetworkInterfaceStatValues & prev_values = network_interface_stats[interface_name];
NetworkInterfaceStatValues delta_values = current_values - prev_values;
prev_values = current_values;
if (!first_run)
{
new_values["NetworkReceiveBytes_" + interface_name] = delta_values.recv_bytes;
new_values["NetworkReceivePackets_" + interface_name] = delta_values.recv_packets;
new_values["NetworkReceiveErrors_" + interface_name] = delta_values.recv_errors;
new_values["NetworkReceiveDrop_" + interface_name] = delta_values.recv_drop;
new_values["NetworkSendBytes_" + interface_name] = delta_values.send_bytes;
new_values["NetworkSendPackets_" + interface_name] = delta_values.send_packets;
new_values["NetworkSendErrors_" + interface_name] = delta_values.send_errors;
new_values["NetworkSendDrop_" + interface_name] = delta_values.send_drop;
}
}
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
try
{
for (size_t i = 0, size = thermal.size(); i < size; ++i)
{
ReadBufferFromFilePRead & in = *thermal[i];
in.rewind();
Int64 temperature = 0;
readText(temperature, in);
new_values[fmt::format("Temperature{}", i)] = temperature * 0.001;
}
}
catch (...)
{
if (errno != ENODATA) /// Ok for thermal sensors.
tryLogCurrentException(__PRETTY_FUNCTION__);
/// Files maybe re-created on module load/unload
try
{
openSensors();
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
try
{
for (const auto & [hwmon_name, sensors] : hwmon_devices)
{
for (const auto & [sensor_name, sensor_file] : sensors)
{
sensor_file->rewind();
Int64 temperature = 0;
try
{
readText(temperature, *sensor_file);
}
catch (const ErrnoException & e)
{
LOG_DEBUG(&Poco::Logger::get("AsynchronousMetrics"), "Hardware monitor '{}', sensor '{}' exists but could not be read, error {}.", hwmon_name, sensor_name, e.getErrno());
}
if (sensor_name.empty())
new_values[fmt::format("Temperature_{}", hwmon_name)] = temperature * 0.001;
else
new_values[fmt::format("Temperature_{}_{}", hwmon_name, sensor_name)] = temperature * 0.001;
}
}
}
catch (...)
{
if (errno != ENODATA) /// Ok for thermal sensors.
tryLogCurrentException(__PRETTY_FUNCTION__);
/// Files can be re-created on:
/// - module load/unload
/// - suspend/resume cycle
/// So file descriptors should be reopened.
try
{
openSensorsChips();
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
try
{
for (size_t i = 0, size = edac.size(); i < size; ++i)
{
/// NOTE maybe we need to take difference with previous values.
/// But these metrics should be exceptionally rare, so it's ok to keep them accumulated.
if (edac[i].first)
{
ReadBufferFromFilePRead & in = *edac[i].first;
in.rewind();
uint64_t errors = 0;
readText(errors, in);
new_values[fmt::format("EDAC{}_Correctable", i)] = errors;
}
if (edac[i].second)
{
ReadBufferFromFilePRead & in = *edac[i].second;
in.rewind();
uint64_t errors = 0;
readText(errors, in);
new_values[fmt::format("EDAC{}_Uncorrectable", i)] = errors;
}
}
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
/// EDAC files can be re-created on module load/unload
try
{
openEDAC();
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
#endif
/// Free space in filesystems at data path and logs path.
{
auto stat = getStatVFS(getContext()->getPath());
new_values["FilesystemMainPathTotalBytes"] = stat.f_blocks * stat.f_frsize;
new_values["FilesystemMainPathAvailableBytes"] = stat.f_bavail * stat.f_frsize;
new_values["FilesystemMainPathUsedBytes"] = (stat.f_blocks - stat.f_bavail) * stat.f_frsize;
new_values["FilesystemMainPathTotalINodes"] = stat.f_files;
new_values["FilesystemMainPathAvailableINodes"] = stat.f_favail;
new_values["FilesystemMainPathUsedINodes"] = stat.f_files - stat.f_favail;
}
{
/// Current working directory of the server is the directory with logs.
auto stat = getStatVFS(".");
new_values["FilesystemLogsPathTotalBytes"] = stat.f_blocks * stat.f_frsize;
new_values["FilesystemLogsPathAvailableBytes"] = stat.f_bavail * stat.f_frsize;
new_values["FilesystemLogsPathUsedBytes"] = (stat.f_blocks - stat.f_bavail) * stat.f_frsize;
new_values["FilesystemLogsPathTotalINodes"] = stat.f_files;
new_values["FilesystemLogsPathAvailableINodes"] = stat.f_favail;
new_values["FilesystemLogsPathUsedINodes"] = stat.f_files - stat.f_favail;
}
/// Free and total space on every configured disk.
{
DisksMap disks_map = getContext()->getDisksMap();
for (const auto & [name, disk] : disks_map)
{
auto total = disk->getTotalSpace();
/// Some disks don't support information about the space.
if (!total)
continue;
auto available = disk->getAvailableSpace();
auto unreserved = disk->getUnreservedSpace();
new_values[fmt::format("DiskTotal_{}", name)] = total;
new_values[fmt::format("DiskUsed_{}", name)] = total - available;
new_values[fmt::format("DiskAvailable_{}", name)] = available;
new_values[fmt::format("DiskUnreserved_{}", name)] = unreserved;
}
}
{
auto databases = DatabaseCatalog::instance().getDatabases();
size_t max_queue_size = 0;
size_t max_inserts_in_queue = 0;
size_t max_merges_in_queue = 0;
size_t sum_queue_size = 0;
size_t sum_inserts_in_queue = 0;
size_t sum_merges_in_queue = 0;
size_t max_absolute_delay = 0;
size_t max_relative_delay = 0;
size_t max_part_count_for_partition = 0;
size_t number_of_databases = databases.size();
size_t total_number_of_tables = 0;
size_t total_number_of_bytes = 0;
size_t total_number_of_rows = 0;
size_t total_number_of_parts = 0;
for (const auto & db : databases)
{
/// Check if database can contain MergeTree tables
if (!db.second->canContainMergeTreeTables())
continue;
for (auto iterator = db.second->getTablesIterator(getContext()); iterator->isValid(); iterator->next())
{
++total_number_of_tables;
const auto & table = iterator->table();
if (!table)
continue;
if (MergeTreeData * table_merge_tree = dynamic_cast<MergeTreeData *>(table.get()))
{
const auto & settings = getContext()->getSettingsRef();
calculateMax(max_part_count_for_partition, table_merge_tree->getMaxPartsCountForPartition());
total_number_of_bytes += table_merge_tree->totalBytes(settings).value();
total_number_of_rows += table_merge_tree->totalRows(settings).value();
total_number_of_parts += table_merge_tree->getPartsCount();
}
if (StorageReplicatedMergeTree * table_replicated_merge_tree = typeid_cast<StorageReplicatedMergeTree *>(table.get()))
{
StorageReplicatedMergeTree::Status status;
table_replicated_merge_tree->getStatus(status, false);
calculateMaxAndSum(max_queue_size, sum_queue_size, status.queue.queue_size);
calculateMaxAndSum(max_inserts_in_queue, sum_inserts_in_queue, status.queue.inserts_in_queue);
calculateMaxAndSum(max_merges_in_queue, sum_merges_in_queue, status.queue.merges_in_queue);
if (!status.is_readonly)
{
try
{
time_t absolute_delay = 0;
time_t relative_delay = 0;
table_replicated_merge_tree->getReplicaDelays(absolute_delay, relative_delay);
calculateMax(max_absolute_delay, absolute_delay);
calculateMax(max_relative_delay, relative_delay);
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__,
"Cannot get replica delay for table: " + backQuoteIfNeed(db.first) + "." + backQuoteIfNeed(iterator->name()));
}
}
}
}
}
new_values["ReplicasMaxQueueSize"] = max_queue_size;
new_values["ReplicasMaxInsertsInQueue"] = max_inserts_in_queue;
new_values["ReplicasMaxMergesInQueue"] = max_merges_in_queue;
new_values["ReplicasSumQueueSize"] = sum_queue_size;
new_values["ReplicasSumInsertsInQueue"] = sum_inserts_in_queue;
new_values["ReplicasSumMergesInQueue"] = sum_merges_in_queue;
new_values["ReplicasMaxAbsoluteDelay"] = max_absolute_delay;
new_values["ReplicasMaxRelativeDelay"] = max_relative_delay;
new_values["MaxPartCountForPartition"] = max_part_count_for_partition;
new_values["NumberOfDatabases"] = number_of_databases;
new_values["NumberOfTables"] = total_number_of_tables;
new_values["TotalBytesOfMergeTreeTables"] = total_number_of_bytes;
new_values["TotalRowsOfMergeTreeTables"] = total_number_of_rows;
new_values["TotalPartsOfMergeTreeTables"] = total_number_of_parts;
auto get_metric_name = [](const String & name) -> const char *
{
static std::map<String, const char *> metric_map =
{
{"tcp_port", "TCPThreads"},
{"tcp_port_secure", "TCPSecureThreads"},
{"http_port", "HTTPThreads"},
{"https_port", "HTTPSecureThreads"},
{"interserver_http_port", "InterserverThreads"},
{"interserver_https_port", "InterserverSecureThreads"},
{"mysql_port", "MySQLThreads"},
{"postgresql_port", "PostgreSQLThreads"},
{"grpc_port", "GRPCThreads"},
{"prometheus.port", "PrometheusThreads"}
};
auto it = metric_map.find(name);
if (it == metric_map.end())
return nullptr;
else
return it->second;
};
const auto server_metrics = protocol_server_metrics_func();
for (const auto & server_metric : server_metrics)
{
if (const auto * name = get_metric_name(server_metric.port_name))
new_values[name] = server_metric.current_threads;
}
}
#if USE_JEMALLOC
// 'epoch' is a special mallctl -- it updates the statistics. Without it, all
// the following calls will return stale values. It increments and returns
// the current epoch number, which might be useful to log as a sanity check.
auto epoch = updateJemallocEpoch();
new_values["jemalloc.epoch"] = epoch;
// Collect the statistics themselves.
saveJemallocMetric<size_t>(new_values, "allocated");
saveJemallocMetric<size_t>(new_values, "active");
saveJemallocMetric<size_t>(new_values, "metadata");
saveJemallocMetric<size_t>(new_values, "metadata_thp");
saveJemallocMetric<size_t>(new_values, "resident");
saveJemallocMetric<size_t>(new_values, "mapped");
saveJemallocMetric<size_t>(new_values, "retained");
saveJemallocMetric<size_t>(new_values, "background_thread.num_threads");
saveJemallocMetric<uint64_t>(new_values, "background_thread.num_runs");
saveJemallocMetric<uint64_t>(new_values, "background_thread.run_intervals");
saveAllArenasMetric<size_t>(new_values, "pactive");
saveAllArenasMetric<size_t>(new_values, "pdirty");
saveAllArenasMetric<size_t>(new_values, "pmuzzy");
saveAllArenasMetric<size_t>(new_values, "dirty_purged");
saveAllArenasMetric<size_t>(new_values, "muzzy_purged");
#endif
/// Add more metrics as you wish.
new_values["AsynchronousMetricsCalculationTimeSpent"] = watch.elapsedSeconds();
/// Log the new metrics.
if (auto asynchronous_metric_log = getContext()->getAsynchronousMetricLog())
{
asynchronous_metric_log->addValues(new_values);
}
first_run = false;
// Finally, update the current metrics.
std::lock_guard lock(mutex);
values = new_values;
}
}