ClickHouse/src/Dictionaries/IPAddressDictionary.cpp

1194 lines
41 KiB
C++

#include "IPAddressDictionary.h"
#include <stack>
#include <charconv>
#include <Common/assert_cast.h>
#include <Common/IPv6ToBinary.h>
#include <Common/memcmpSmall.h>
#include <Common/memcpySmall.h>
#include <Common/typeid_cast.h>
#include <DataTypes/DataTypeFixedString.h>
#include <DataTypes/DataTypeString.h>
#include <IO/WriteIntText.h>
#include <Poco/ByteOrder.h>
#include <Common/formatIPv6.h>
#include <common/itoa.h>
#include <ext/map.h>
#include <ext/range.h>
#include "DictionaryBlockInputStream.h"
#include "DictionaryFactory.h"
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int TYPE_MISMATCH;
extern const int BAD_ARGUMENTS;
extern const int DICTIONARY_IS_EMPTY;
}
namespace
{
/// Intermediate structure that are used in loading procedure
struct IPRecord
{
Poco::Net::IPAddress addr;
UInt8 prefix;
size_t row;
bool isv6;
IPRecord(const Poco::Net::IPAddress & addr_, UInt8 prefix_, size_t row_)
: addr(addr_)
, prefix(prefix_)
, row(row_)
, isv6(addr.family() == Poco::Net::IPAddress::IPv6)
{
}
const uint8_t * asIPv6Binary(uint8_t * buf) const
{
if (isv6)
return reinterpret_cast<const uint8_t *>(addr.addr());
memset(buf, 0, 10);
buf[10] = '\xFF';
buf[11] = '\xFF';
memcpy(&buf[12], addr.addr(), 4);
return buf;
}
inline UInt8 prefixIPv6() const
{
return isv6 ? prefix : prefix + 96;
}
};
struct IPv4Subnet
{
UInt32 addr;
UInt8 prefix;
};
struct IPv6Subnet
{
const uint8_t * addr;
UInt8 prefix;
};
}
static std::pair<Poco::Net::IPAddress, UInt8> parseIPFromString(const std::string_view addr_str)
{
try
{
size_t pos = addr_str.find('/');
if (pos != std::string::npos)
{
Poco::Net::IPAddress addr{std::string(addr_str.substr(0, pos))};
uint8_t prefix = 0;
const auto * addr_str_end = addr_str.data() + addr_str.size();
auto [p, ec] = std::from_chars(addr_str.data() + pos + 1, addr_str_end, prefix);
if (p != addr_str_end)
throw DB::Exception("extra characters at the end", ErrorCodes::LOGICAL_ERROR);
if (ec != std::errc())
throw DB::Exception("mask is not a valid number", ErrorCodes::LOGICAL_ERROR);
addr = addr & Poco::Net::IPAddress(prefix, addr.family());
return {addr, prefix};
}
Poco::Net::IPAddress addr{std::string(addr_str)};
return {addr, addr.length() * 8};
}
catch (Poco::Exception & ex)
{
throw DB::Exception("can't parse address \"" + std::string(addr_str) + "\": " + ex.what(),
ErrorCodes::LOGICAL_ERROR);
}
}
static void validateKeyTypes(const DataTypes & key_types)
{
if (key_types.empty() || key_types.size() > 2)
throw Exception{"Expected a single IP address or IP with mask", ErrorCodes::TYPE_MISMATCH};
const auto * key_ipv4type = typeid_cast<const DataTypeUInt32 *>(key_types[0].get());
const auto * key_ipv6type = typeid_cast<const DataTypeFixedString *>(key_types[0].get());
if (key_ipv4type == nullptr && (key_ipv6type == nullptr || key_ipv6type->getN() != 16))
throw Exception{"Key does not match, expected either `IPv4` (`UInt32`) or `IPv6` (`FixedString(16)`)",
ErrorCodes::TYPE_MISMATCH};
if (key_types.size() > 1)
{
const auto * mask_col_type = typeid_cast<const DataTypeUInt8 *>(key_types[1].get());
if (mask_col_type == nullptr)
throw Exception{"Mask do not match, expected UInt8", ErrorCodes::TYPE_MISMATCH};
}
}
template <typename T, typename Comp>
size_t sortAndUnique(std::vector<T> & vec, Comp comp)
{
std::sort(vec.begin(), vec.end(),
[&](const auto & a, const auto & b) { return comp(a, b) < 0; });
auto new_end = std::unique(vec.begin(), vec.end(),
[&](const auto & a, const auto & b) { return comp(a, b) == 0; });
size_t deleted_count = std::distance(new_end, vec.end());
vec.erase(new_end, vec.end());
return deleted_count;
}
template <typename T>
static inline int compareTo(T a, T b)
{
return a > b ? 1 : (a < b ? -1 : 0);
}
inline static UInt32 IPv4AsUInt32(const void * addr)
{
return Poco::ByteOrder::fromNetwork(*reinterpret_cast<const UInt32 *>(addr));
}
/// Convert mapped IPv6 to IPv4 if possible
inline static UInt32 mappedIPv4ToBinary(const uint8_t * addr, bool & success)
{
success = addr[0] == 0x0 && addr[1] == 0x0 &&
addr[2] == 0x0 && addr[3] == 0x0 &&
addr[4] == 0x0 && addr[5] == 0x0 &&
addr[6] == 0x0 && addr[7] == 0x0 &&
addr[8] == 0x0 && addr[9] == 0x0 &&
addr[10] == 0xff && addr[11] == 0xff;
if (!success)
return 0;
return IPv4AsUInt32(&addr[12]);
}
/// Convert IPv4 to IPv6-mapped and save results to buf
inline static void mapIPv4ToIPv6(UInt32 addr, uint8_t * buf)
{
memset(buf, 0, 10);
buf[10] = '\xFF';
buf[11] = '\xFF';
addr = Poco::ByteOrder::toNetwork(addr);
memcpy(&buf[12], &addr, 4);
}
static bool matchIPv4Subnet(UInt32 target, UInt32 addr, UInt8 prefix)
{
UInt32 mask = (prefix >= 32) ? 0xffffffffu : ~(0xffffffffu >> prefix);
return (target & mask) == addr;
}
#if defined(__SSE2__)
#include <emmintrin.h>
static bool matchIPv6Subnet(const uint8_t * target, const uint8_t * addr, UInt8 prefix)
{
uint16_t mask = _mm_movemask_epi8(_mm_cmpeq_epi8(
_mm_loadu_si128(reinterpret_cast<const __m128i *>(target)),
_mm_loadu_si128(reinterpret_cast<const __m128i *>(addr))));
mask = ~mask;
if (mask)
{
auto offset = __builtin_ctz(mask);
if (prefix / 8 != offset)
return prefix / 8 < offset;
auto cmpmask = ~(0xff >> (prefix % 8));
return (target[offset] & cmpmask) == addr[offset];
}
return true;
}
# else
static bool matchIPv6Subnet(const uint8_t * target, const uint8_t * addr, UInt8 prefix)
{
if (prefix > IPV6_BINARY_LENGTH * 8U)
prefix = IPV6_BINARY_LENGTH * 8U;
size_t i = 0;
for (; prefix >= 8; ++i, prefix -= 8)
{
if (target[i] != addr[i])
return false;
}
if (prefix == 0)
return true;
auto mask = ~(0xff >> prefix);
return (target[i] & mask) == addr[i];
}
#endif // __SSE2__
IPAddressDictionary::IPAddressDictionary(
const StorageID & dict_id_,
const DictionaryStructure & dict_struct_,
DictionarySourcePtr source_ptr_,
const DictionaryLifetime dict_lifetime_,
bool require_nonempty_)
: IDictionaryBase(dict_id_)
, dict_struct(dict_struct_)
, source_ptr{std::move(source_ptr_)}
, dict_lifetime(dict_lifetime_)
, require_nonempty(require_nonempty_)
, logger(&Poco::Logger::get("IPAddressDictionary"))
{
createAttributes();
loadData();
calculateBytesAllocated();
}
#define DECLARE(TYPE) \
void IPAddressDictionary::get##TYPE( \
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, ResultArrayType<TYPE> & out) const \
{ \
validateKeyTypes(key_types); \
\
const auto & attribute = getAttribute(attribute_name); \
checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::ut##TYPE); \
\
const auto null_value = std::get<TYPE>(attribute.null_values); \
\
getItemsImpl<TYPE, TYPE>( \
attribute, \
key_columns, \
[&](const size_t row, const auto value) { out[row] = value; }, \
[&](const size_t) { return null_value; }); \
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
void IPAddressDictionary::getString(
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types, ColumnString * out) const
{
validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::utString);
const auto & null_value = StringRef{std::get<String>(attribute.null_values)};
getItemsImpl<StringRef, StringRef>(
attribute,
key_columns,
[&](const size_t, const StringRef value) { out->insertData(value.data, value.size); },
[&](const size_t) { return null_value; });
}
#define DECLARE(TYPE) \
void IPAddressDictionary::get##TYPE( \
const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
const PaddedPODArray<TYPE> & def, \
ResultArrayType<TYPE> & out) const \
{ \
validateKeyTypes(key_types); \
\
const auto & attribute = getAttribute(attribute_name); \
checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::ut##TYPE); \
\
getItemsImpl<TYPE, TYPE>( \
attribute, \
key_columns, \
[&](const size_t row, const auto value) { out[row] = value; }, \
[&](const size_t row) { return def[row]; }); \
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
void IPAddressDictionary::getString(
const std::string & attribute_name,
const Columns & key_columns,
const DataTypes & key_types,
const ColumnString * const def,
ColumnString * const out) const
{
validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::utString);
getItemsImpl<StringRef, StringRef>(
attribute,
key_columns,
[&](const size_t, const StringRef value) { out->insertData(value.data, value.size); },
[&](const size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE) \
void IPAddressDictionary::get##TYPE( \
const std::string & attribute_name, \
const Columns & key_columns, \
const DataTypes & key_types, \
const TYPE def, \
ResultArrayType<TYPE> & out) const \
{ \
validateKeyTypes(key_types); \
\
const auto & attribute = getAttribute(attribute_name); \
checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::ut##TYPE); \
\
getItemsImpl<TYPE, TYPE>( \
attribute, key_columns, [&](const size_t row, const auto value) { out[row] = value; }, [&](const size_t) { return def; }); \
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(UInt128)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
DECLARE(Decimal32)
DECLARE(Decimal64)
DECLARE(Decimal128)
#undef DECLARE
void IPAddressDictionary::getString(
const std::string & attribute_name,
const Columns & key_columns,
const DataTypes & key_types,
const String & def,
ColumnString * const out) const
{
validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
checkAttributeType(this, attribute_name, attribute.type, AttributeUnderlyingType::utString);
getItemsImpl<StringRef, StringRef>(
attribute,
key_columns,
[&](const size_t, const StringRef value) { out->insertData(value.data, value.size); },
[&](const size_t) { return StringRef{def}; });
}
void IPAddressDictionary::has(const Columns & key_columns, const DataTypes & key_types, PaddedPODArray<UInt8> & out) const
{
validateKeyTypes(key_types);
const auto & attribute = attributes.front();
switch (attribute.type)
{
case AttributeUnderlyingType::utUInt8:
has<UInt8>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utUInt16:
has<UInt16>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utUInt32:
has<UInt32>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utUInt64:
has<UInt64>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utUInt128:
has<UInt128>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utInt8:
has<Int8>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utInt16:
has<Int16>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utInt32:
has<Int32>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utInt64:
has<Int64>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utFloat32:
has<Float32>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utFloat64:
has<Float64>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utString:
has<StringRef>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utDecimal32:
has<Decimal32>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utDecimal64:
has<Decimal64>(attribute, key_columns, out);
break;
case AttributeUnderlyingType::utDecimal128:
has<Decimal128>(attribute, key_columns, out);
break;
}
}
void IPAddressDictionary::createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{full_name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH};
}
}
void IPAddressDictionary::loadData()
{
auto stream = source_ptr->loadAll();
stream->readPrefix();
/// created upfront to avoid excess allocations
const auto keys_size = dict_struct.key->size();
const auto attributes_size = attributes.size();
std::vector<IPRecord> ip_records;
row_idx.reserve(keys_size);
mask_column.reserve(keys_size);
bool has_ipv6 = false;
while (const auto block = stream->read())
{
const auto rows = block.rows();
element_count += rows;
const auto key_column_ptrs = ext::map<Columns>(
ext::range(0, keys_size), [&](const size_t attribute_idx) { return block.safeGetByPosition(attribute_idx).column; });
const auto attribute_column_ptrs = ext::map<Columns>(ext::range(0, attributes_size), [&](const size_t attribute_idx)
{
return block.safeGetByPosition(keys_size + attribute_idx).column;
});
for (const auto row : ext::range(0, rows))
{
/// calculate key once per row
const auto key_column = key_column_ptrs.front();
for (const auto attribute_idx : ext::range(0, attributes_size))
{
const auto & attribute_column = *attribute_column_ptrs[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, attribute_column[row]);
}
const auto [addr, prefix] = parseIPFromString(std::string_view(key_column->getDataAt(row)));
has_ipv6 = has_ipv6 || (addr.family() == Poco::Net::IPAddress::IPv6);
size_t row_number = ip_records.size();
ip_records.emplace_back(addr, prefix, row_number);
}
}
stream->readSuffix();
if (has_ipv6)
{
auto deleted_count = sortAndUnique(ip_records,
[](const auto & record_a, const auto & record_b)
{
uint8_t a_buf[IPV6_BINARY_LENGTH];
uint8_t b_buf[IPV6_BINARY_LENGTH];
auto cmpres = memcmp16(record_a.asIPv6Binary(a_buf), record_b.asIPv6Binary(b_buf));
if (cmpres == 0)
return compareTo(record_a.prefixIPv6(), record_b.prefixIPv6());
return cmpres;
});
if (deleted_count > 0)
LOG_WARNING(logger, "removing {} non-unique subnets from input", deleted_count);
auto & ipv6_col = ip_column.emplace<IPv6Container>();
ipv6_col.resize_fill(IPV6_BINARY_LENGTH * ip_records.size());
for (const auto & record : ip_records)
{
size_t i = row_idx.size();
IPv6ToRawBinary(record.addr, reinterpret_cast<char *>(&ipv6_col[i * IPV6_BINARY_LENGTH]));
mask_column.push_back(record.prefixIPv6());
row_idx.push_back(record.row);
}
}
else
{
auto deleted_count = sortAndUnique(ip_records,
[](const auto & record_a, const auto & record_b)
{
UInt32 a = IPv4AsUInt32(record_a.addr.addr());
UInt32 b = IPv4AsUInt32(record_b.addr.addr());
if (a == b)
return compareTo(record_a.prefix, record_b.prefix);
return compareTo(a, b);
});
if (deleted_count > 0)
LOG_WARNING(logger, "removing {} non-unique subnets from input", deleted_count);
auto & ipv4_col = ip_column.emplace<IPv4Container>();
ipv4_col.reserve(ip_records.size());
for (const auto & record : ip_records)
{
auto addr = IPv4AsUInt32(record.addr.addr());
ipv4_col.push_back(addr);
mask_column.push_back(record.prefix);
row_idx.push_back(record.row);
}
}
parent_subnet.resize(ip_records.size());
std::stack<size_t> subnets_stack;
for (const auto i : ext::range(0, ip_records.size()))
{
parent_subnet[i] = i;
while (!subnets_stack.empty())
{
size_t pi = subnets_stack.top();
if (has_ipv6)
{
uint8_t a_buf[IPV6_BINARY_LENGTH];
uint8_t b_buf[IPV6_BINARY_LENGTH];
const auto * cur_address = ip_records[i].asIPv6Binary(a_buf);
const auto * cur_subnet = ip_records[pi].asIPv6Binary(b_buf);
bool is_mask_smaller = ip_records[pi].prefixIPv6() < ip_records[i].prefixIPv6();
if (is_mask_smaller && matchIPv6Subnet(cur_address, cur_subnet, ip_records[pi].prefixIPv6()))
{
parent_subnet[i] = pi;
break;
}
}
else
{
UInt32 cur_address = IPv4AsUInt32(ip_records[i].addr.addr());
UInt32 cur_subnet = IPv4AsUInt32(ip_records[pi].addr.addr());
bool is_mask_smaller = ip_records[pi].prefix < ip_records[i].prefix;
if (is_mask_smaller && matchIPv4Subnet(cur_address, cur_subnet, ip_records[pi].prefix))
{
parent_subnet[i] = pi;
break;
}
}
subnets_stack.pop();
}
subnets_stack.push(i);
}
LOG_TRACE(logger, "{} ip records are read", ip_records.size());
if (require_nonempty && 0 == element_count)
throw Exception{full_name + ": dictionary source is empty and 'require_nonempty' property is set.", ErrorCodes::DICTIONARY_IS_EMPTY};
}
template <typename T>
void IPAddressDictionary::addAttributeSize(const Attribute & attribute)
{
const auto & vec = std::get<ContainerType<T>>(attribute.maps);
bytes_allocated += sizeof(ContainerType<T>) + (vec.capacity() * sizeof(T));
bucket_count = vec.size();
}
void IPAddressDictionary::calculateBytesAllocated()
{
if (auto * ipv4_col = std::get_if<IPv4Container>(&ip_column))
{
bytes_allocated += ipv4_col->size() * sizeof((*ipv4_col)[0]);
}
else if (auto * ipv6_col = std::get_if<IPv6Container>(&ip_column))
{
bytes_allocated += ipv6_col->size() * sizeof((*ipv6_col)[0]);
}
bytes_allocated += mask_column.size() * sizeof(mask_column[0]);
bytes_allocated += parent_subnet.size() * sizeof(parent_subnet[0]);
bytes_allocated += row_idx.size() * sizeof(row_idx[0]);
bytes_allocated += attributes.size() * sizeof(attributes.front());
for (const auto & attribute : attributes)
{
switch (attribute.type)
{
case AttributeUnderlyingType::utUInt8:
addAttributeSize<UInt8>(attribute);
break;
case AttributeUnderlyingType::utUInt16:
addAttributeSize<UInt16>(attribute);
break;
case AttributeUnderlyingType::utUInt32:
addAttributeSize<UInt32>(attribute);
break;
case AttributeUnderlyingType::utUInt64:
addAttributeSize<UInt64>(attribute);
break;
case AttributeUnderlyingType::utUInt128:
addAttributeSize<UInt128>(attribute);
break;
case AttributeUnderlyingType::utInt8:
addAttributeSize<Int8>(attribute);
break;
case AttributeUnderlyingType::utInt16:
addAttributeSize<Int16>(attribute);
break;
case AttributeUnderlyingType::utInt32:
addAttributeSize<Int32>(attribute);
break;
case AttributeUnderlyingType::utInt64:
addAttributeSize<Int64>(attribute);
break;
case AttributeUnderlyingType::utFloat32:
addAttributeSize<Float32>(attribute);
break;
case AttributeUnderlyingType::utFloat64:
addAttributeSize<Float64>(attribute);
break;
case AttributeUnderlyingType::utDecimal32:
addAttributeSize<Decimal32>(attribute);
break;
case AttributeUnderlyingType::utDecimal64:
addAttributeSize<Decimal64>(attribute);
break;
case AttributeUnderlyingType::utDecimal128:
addAttributeSize<Decimal128>(attribute);
break;
case AttributeUnderlyingType::utString:
{
addAttributeSize<StringRef>(attribute);
bytes_allocated += sizeof(Arena) + attribute.string_arena->size();
break;
}
}
}
}
template <typename T>
void IPAddressDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value)
{
attribute.null_values = T(null_value.get<NearestFieldType<T>>());
attribute.maps.emplace<ContainerType<T>>();
}
IPAddressDictionary::Attribute IPAddressDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
Attribute attr{type, {}, {}, {}};
switch (type)
{
case AttributeUnderlyingType::utUInt8:
createAttributeImpl<UInt8>(attr, null_value);
break;
case AttributeUnderlyingType::utUInt16:
createAttributeImpl<UInt16>(attr, null_value);
break;
case AttributeUnderlyingType::utUInt32:
createAttributeImpl<UInt32>(attr, null_value);
break;
case AttributeUnderlyingType::utUInt64:
createAttributeImpl<UInt64>(attr, null_value);
break;
case AttributeUnderlyingType::utUInt128:
createAttributeImpl<UInt128>(attr, null_value);
break;
case AttributeUnderlyingType::utInt8:
createAttributeImpl<Int8>(attr, null_value);
break;
case AttributeUnderlyingType::utInt16:
createAttributeImpl<Int16>(attr, null_value);
break;
case AttributeUnderlyingType::utInt32:
createAttributeImpl<Int32>(attr, null_value);
break;
case AttributeUnderlyingType::utInt64:
createAttributeImpl<Int64>(attr, null_value);
break;
case AttributeUnderlyingType::utFloat32:
createAttributeImpl<Float32>(attr, null_value);
break;
case AttributeUnderlyingType::utFloat64:
createAttributeImpl<Float64>(attr, null_value);
break;
case AttributeUnderlyingType::utDecimal32:
createAttributeImpl<Decimal32>(attr, null_value);
break;
case AttributeUnderlyingType::utDecimal64:
createAttributeImpl<Decimal64>(attr, null_value);
break;
case AttributeUnderlyingType::utDecimal128:
createAttributeImpl<Decimal128>(attr, null_value);
break;
case AttributeUnderlyingType::utString:
{
attr.null_values = null_value.get<String>();
attr.maps.emplace<ContainerType<StringRef>>();
attr.string_arena = std::make_unique<Arena>();
break;
}
}
return attr;
}
const uint8_t * IPAddressDictionary::getIPv6FromOffset(const IPAddressDictionary::IPv6Container & ipv6_col, size_t i)
{
return reinterpret_cast<const uint8_t *>(&ipv6_col[i * IPV6_BINARY_LENGTH]);
}
template <typename AttributeType, typename OutputType, typename ValueSetter, typename DefaultGetter>
void IPAddressDictionary::getItemsByTwoKeyColumnsImpl(
const Attribute & attribute, const Columns & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const
{
const auto first_column = key_columns.front();
const auto rows = first_column->size();
auto & vec = std::get<ContainerType<AttributeType>>(attribute.maps);
if (const auto * ipv4_col = std::get_if<IPv4Container>(&ip_column))
{
const auto * key_ip_column_ptr = typeid_cast<const ColumnVector<UInt32> *>(&*key_columns.front());
if (key_ip_column_ptr == nullptr)
throw Exception{"Expected a UInt32 IP column", ErrorCodes::TYPE_MISMATCH};
const auto & key_mask_column = assert_cast<const ColumnVector<UInt8> &>(*key_columns.back());
auto comp_v4 = [&](size_t elem, const IPv4Subnet & target)
{
UInt32 addr = (*ipv4_col)[elem];
if (addr == target.addr)
return mask_column[elem] < target.prefix;
return addr < target.addr;
};
for (const auto i : ext::range(0, rows))
{
UInt32 addr = key_ip_column_ptr->getElement(i);
UInt8 mask = key_mask_column.getElement(i);
auto range = ext::range(0, row_idx.size());
auto found_it = std::lower_bound(range.begin(), range.end(), IPv4Subnet{addr, mask}, comp_v4);
if (likely(found_it != range.end() &&
(*ipv4_col)[*found_it] == addr &&
mask_column[*found_it] == mask))
{
set_value(i, static_cast<OutputType>(vec[row_idx[*found_it]]));
}
else
set_value(i, get_default(i));
}
return;
}
const auto * key_ip_column_ptr = typeid_cast<const ColumnFixedString *>(&*key_columns.front());
if (key_ip_column_ptr == nullptr || key_ip_column_ptr->getN() != IPV6_BINARY_LENGTH)
throw Exception{"Expected a FixedString(16) IP column", ErrorCodes::TYPE_MISMATCH};
const auto & key_mask_column = assert_cast<const ColumnVector<UInt8> &>(*key_columns.back());
const auto * ipv6_col = std::get_if<IPv6Container>(&ip_column);
auto comp_v6 = [&](size_t i, const IPv6Subnet & target)
{
auto cmpres = memcmp16(getIPv6FromOffset(*ipv6_col, i), target.addr);
if (cmpres == 0)
return mask_column[i] < target.prefix;
return cmpres < 0;
};
for (const auto i : ext::range(0, rows))
{
auto addr = key_ip_column_ptr->getDataAt(i);
UInt8 mask = key_mask_column.getElement(i);
IPv6Subnet target{reinterpret_cast<const uint8_t *>(addr.data), mask};
auto range = ext::range(0, row_idx.size());
auto found_it = std::lower_bound(range.begin(), range.end(), target, comp_v6);
if (likely(found_it != range.end() &&
memequal16(getIPv6FromOffset(*ipv6_col, *found_it), target.addr) &&
mask_column[*found_it] == mask))
set_value(i, static_cast<OutputType>(vec[row_idx[*found_it]]));
else
set_value(i, get_default(i));
}
}
template <typename AttributeType, typename OutputType, typename ValueSetter, typename DefaultGetter>
void IPAddressDictionary::getItemsImpl(
const Attribute & attribute, const Columns & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const
{
const auto first_column = key_columns.front();
const auto rows = first_column->size();
// special case for getBlockInputStream
if (unlikely(key_columns.size() == 2))
{
getItemsByTwoKeyColumnsImpl<AttributeType, OutputType>(
attribute, key_columns, std::forward<ValueSetter>(set_value), std::forward<DefaultGetter>(get_default));
query_count.fetch_add(rows, std::memory_order_relaxed);
return;
}
auto & vec = std::get<ContainerType<AttributeType>>(attribute.maps);
if (first_column->isNumeric())
{
uint8_t addrv6_buf[IPV6_BINARY_LENGTH];
for (const auto i : ext::range(0, rows))
{
// addrv4 has native endianness
auto addrv4 = UInt32(first_column->get64(i));
auto found = tryLookupIPv4(addrv4, addrv6_buf);
if (found != ipNotFound())
set_value(i, static_cast<OutputType>(vec[*found]));
else
set_value(i, get_default(i));
}
}
else
{
for (const auto i : ext::range(0, rows))
{
auto addr = first_column->getDataAt(i);
if (addr.size != IPV6_BINARY_LENGTH)
throw Exception("Expected key to be FixedString(16)", ErrorCodes::LOGICAL_ERROR);
auto found = tryLookupIPv6(reinterpret_cast<const uint8_t *>(addr.data));
if (found != ipNotFound())
set_value(i, static_cast<OutputType>(vec[*found]));
else
set_value(i, get_default(i));
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
template <typename T>
void IPAddressDictionary::setAttributeValueImpl(Attribute & attribute, const T value)
{
auto & vec = std::get<ContainerType<T>>(attribute.maps);
vec.push_back(value);
}
void IPAddressDictionary::setAttributeValue(Attribute & attribute, const Field & value)
{
switch (attribute.type)
{
case AttributeUnderlyingType::utUInt8:
return setAttributeValueImpl<UInt8>(attribute, value.get<UInt64>());
case AttributeUnderlyingType::utUInt16:
return setAttributeValueImpl<UInt16>(attribute, value.get<UInt64>());
case AttributeUnderlyingType::utUInt32:
return setAttributeValueImpl<UInt32>(attribute, value.get<UInt64>());
case AttributeUnderlyingType::utUInt64:
return setAttributeValueImpl<UInt64>(attribute, value.get<UInt64>());
case AttributeUnderlyingType::utUInt128:
return setAttributeValueImpl<UInt128>(attribute, value.get<UInt128>());
case AttributeUnderlyingType::utInt8:
return setAttributeValueImpl<Int8>(attribute, value.get<Int64>());
case AttributeUnderlyingType::utInt16:
return setAttributeValueImpl<Int16>(attribute, value.get<Int64>());
case AttributeUnderlyingType::utInt32:
return setAttributeValueImpl<Int32>(attribute, value.get<Int64>());
case AttributeUnderlyingType::utInt64:
return setAttributeValueImpl<Int64>(attribute, value.get<Int64>());
case AttributeUnderlyingType::utFloat32:
return setAttributeValueImpl<Float32>(attribute, value.get<Float64>());
case AttributeUnderlyingType::utFloat64:
return setAttributeValueImpl<Float64>(attribute, value.get<Float64>());
case AttributeUnderlyingType::utDecimal32:
return setAttributeValueImpl<Decimal32>(attribute, value.get<Decimal32>());
case AttributeUnderlyingType::utDecimal64:
return setAttributeValueImpl<Decimal64>(attribute, value.get<Decimal64>());
case AttributeUnderlyingType::utDecimal128:
return setAttributeValueImpl<Decimal128>(attribute, value.get<Decimal128>());
case AttributeUnderlyingType::utString:
{
const auto & string = value.get<String>();
const auto * string_in_arena = attribute.string_arena->insert(string.data(), string.size());
return setAttributeValueImpl<StringRef>(attribute, StringRef{string_in_arena, string.size()});
}
}
}
const IPAddressDictionary::Attribute & IPAddressDictionary::getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{full_name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS};
return attributes[it->second];
}
template <typename T>
void IPAddressDictionary::has(const Attribute &, const Columns & key_columns, PaddedPODArray<UInt8> & out) const
{
const auto first_column = key_columns.front();
const auto rows = first_column->size();
if (first_column->isNumeric())
{
uint8_t addrv6_buf[IPV6_BINARY_LENGTH];
for (const auto i : ext::range(0, rows))
{
auto addrv4 = UInt32(first_column->get64(i));
auto found = tryLookupIPv4(addrv4, addrv6_buf);
out[i] = (found != ipNotFound());
}
}
else
{
for (const auto i : ext::range(0, rows))
{
auto addr = first_column->getDataAt(i);
if (unlikely(addr.size != IPV6_BINARY_LENGTH))
throw Exception("Expected key to be FixedString(16)", ErrorCodes::LOGICAL_ERROR);
auto found = tryLookupIPv6(reinterpret_cast<const uint8_t *>(addr.data));
out[i] = (found != ipNotFound());
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
Columns IPAddressDictionary::getKeyColumns() const
{
const auto * ipv4_col = std::get_if<IPv4Container>(&ip_column);
if (ipv4_col)
{
auto key_ip_column = ColumnVector<UInt32>::create();
auto key_mask_column = ColumnVector<UInt8>::create();
for (size_t row : ext::range(0, row_idx.size()))
{
key_ip_column->insertValue((*ipv4_col)[row]);
key_mask_column->insertValue(mask_column[row]);
}
return {std::move(key_ip_column), std::move(key_mask_column)};
}
const auto * ipv6_col = std::get_if<IPv6Container>(&ip_column);
auto key_ip_column = ColumnFixedString::create(IPV6_BINARY_LENGTH);
auto key_mask_column = ColumnVector<UInt8>::create();
for (size_t row : ext::range(0, row_idx.size()))
{
const char * data = reinterpret_cast<const char *>(getIPv6FromOffset(*ipv6_col, row));
key_ip_column->insertData(data, IPV6_BINARY_LENGTH);
key_mask_column->insertValue(mask_column[row]);
}
return {std::move(key_ip_column), std::move(key_mask_column)};
}
template <typename KeyColumnType, bool IsIPv4>
static auto keyViewGetter()
{
return [](const Columns & columns, const std::vector<DictionaryAttribute> & dict_attributes)
{
auto column = ColumnString::create();
const auto & key_ip_column = assert_cast<const KeyColumnType &>(*columns.front());
const auto & key_mask_column = assert_cast<const ColumnVector<UInt8> &>(*columns.back());
char buffer[48];
for (size_t row : ext::range(0, key_ip_column.size()))
{
UInt8 mask = key_mask_column.getElement(row);
char * ptr = buffer;
if constexpr (IsIPv4)
formatIPv4(reinterpret_cast<const unsigned char *>(&key_ip_column.getElement(row)), ptr);
else
formatIPv6(reinterpret_cast<const unsigned char *>(key_ip_column.getDataAt(row).data), ptr);
*(ptr - 1) = '/';
ptr = itoa(mask, ptr);
column->insertData(buffer, ptr - buffer);
}
return ColumnsWithTypeAndName{
ColumnWithTypeAndName(std::move(column), std::make_shared<DataTypeString>(), dict_attributes.front().name)};
};
}
BlockInputStreamPtr IPAddressDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const
{
using BlockInputStreamType = DictionaryBlockInputStream<IPAddressDictionary, UInt64>;
const bool is_ipv4 = std::get_if<IPv4Container>(&ip_column) != nullptr;
auto get_keys = [is_ipv4](const Columns & columns, const std::vector<DictionaryAttribute> & dict_attributes)
{
const auto & attr = dict_attributes.front();
std::shared_ptr<const IDataType> key_typ;
if (is_ipv4)
key_typ = std::make_shared<DataTypeUInt32>();
else
key_typ = std::make_shared<DataTypeFixedString>(IPV6_BINARY_LENGTH);
return ColumnsWithTypeAndName({
ColumnWithTypeAndName(columns.front(), key_typ, attr.name),
ColumnWithTypeAndName(columns.back(), std::make_shared<DataTypeUInt8>(), attr.name + ".mask")
});
};
if (is_ipv4)
{
auto get_view = keyViewGetter<ColumnVector<UInt32>, true>();
return std::make_shared<BlockInputStreamType>(
shared_from_this(), max_block_size, getKeyColumns(), column_names, std::move(get_keys), std::move(get_view));
}
auto get_view = keyViewGetter<ColumnFixedString, false>();
return std::make_shared<BlockInputStreamType>(
shared_from_this(), max_block_size, getKeyColumns(), column_names, std::move(get_keys), std::move(get_view));
}
IPAddressDictionary::RowIdxConstIter IPAddressDictionary::ipNotFound() const
{
return row_idx.end();
}
IPAddressDictionary::RowIdxConstIter IPAddressDictionary::tryLookupIPv4(UInt32 addr, uint8_t * buf) const
{
if (std::get_if<IPv6Container>(&ip_column))
{
mapIPv4ToIPv6(addr, buf);
return lookupIP<IPv6Container>(buf);
}
return lookupIP<IPv4Container>(addr);
}
IPAddressDictionary::RowIdxConstIter IPAddressDictionary::tryLookupIPv6(const uint8_t * addr) const
{
if (std::get_if<IPv4Container>(&ip_column))
{
bool is_mapped = false;
UInt32 addrv4 = mappedIPv4ToBinary(addr, is_mapped);
if (!is_mapped)
return ipNotFound();
return lookupIP<IPv4Container>(addrv4);
}
return lookupIP<IPv6Container>(addr);
}
template <typename IPContainerType, typename IPValueType>
IPAddressDictionary::RowIdxConstIter IPAddressDictionary::lookupIP(IPValueType target) const
{
if (row_idx.empty())
return ipNotFound();
const auto * ipv4or6_col = std::get_if<IPContainerType>(&ip_column);
if (ipv4or6_col == nullptr)
return ipNotFound();
auto comp = [&](auto value, auto idx) -> bool
{
if constexpr (std::is_same_v<IPContainerType, IPv4Container>)
return value < (*ipv4or6_col)[idx];
else
return memcmp16(value, getIPv6FromOffset(*ipv4or6_col, idx)) < 0;
};
auto range = ext::range(0, row_idx.size());
auto found_it = std::upper_bound(range.begin(), range.end(), target, comp);
if (found_it == range.begin())
return ipNotFound();
--found_it;
if constexpr (std::is_same_v<IPContainerType, IPv4Container>)
{
for (auto idx = *found_it;; idx = parent_subnet[idx])
{
if (matchIPv4Subnet(target, (*ipv4or6_col)[idx], mask_column[idx]))
return row_idx.begin() + idx;
if (idx == parent_subnet[idx])
return ipNotFound();
}
}
else
{
for (auto idx = *found_it;; idx = parent_subnet[idx])
{
if (matchIPv6Subnet(target, getIPv6FromOffset(*ipv4or6_col, idx), mask_column[idx]))
return row_idx.begin() + idx;
if (idx == parent_subnet[idx])
return ipNotFound();
}
}
return ipNotFound();
}
void registerDictionaryTrie(DictionaryFactory & factory)
{
auto create_layout = [=](const std::string &,
const DictionaryStructure & dict_struct,
const Poco::Util::AbstractConfiguration & config,
const std::string & config_prefix,
DictionarySourcePtr source_ptr) -> DictionaryPtr
{
if (!dict_struct.key)
throw Exception{"'key' is required for dictionary of layout 'ip_trie'", ErrorCodes::BAD_ARGUMENTS};
const auto dict_id = StorageID::fromDictionaryConfig(config, config_prefix);
const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"};
const bool require_nonempty = config.getBool(config_prefix + ".require_nonempty", false);
// This is specialised trie for storing IPv4 and IPv6 prefixes.
return std::make_unique<IPAddressDictionary>(dict_id, dict_struct, std::move(source_ptr), dict_lifetime, require_nonempty);
};
factory.registerLayout("ip_trie", create_layout, true);
}
}