mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-18 13:42:02 +00:00
355 lines
14 KiB
C++
355 lines
14 KiB
C++
// -*- Mode: C++; c-basic-offset: 2; indent-tabs-mode: nil -*-
|
|
// Copyright (c) 2005, Google Inc.
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without
|
|
// modification, are permitted provided that the following conditions are
|
|
// met:
|
|
//
|
|
// * Redistributions of source code must retain the above copyright
|
|
// notice, this list of conditions and the following disclaimer.
|
|
// * Redistributions in binary form must reproduce the above
|
|
// copyright notice, this list of conditions and the following disclaimer
|
|
// in the documentation and/or other materials provided with the
|
|
// distribution.
|
|
// * Neither the name of Google Inc. nor the names of its
|
|
// contributors may be used to endorse or promote products derived from
|
|
// this software without specific prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
// ---
|
|
// Author: Sanjay Ghemawat
|
|
//
|
|
// Produce stack trace
|
|
|
|
#ifndef BASE_STACKTRACE_X86_INL_H_
|
|
#define BASE_STACKTRACE_X86_INL_H_
|
|
// Note: this file is included into stacktrace.cc more than once.
|
|
// Anything that should only be defined once should be here:
|
|
|
|
#include "config.h"
|
|
#include <stdlib.h> // for NULL
|
|
#include <assert.h>
|
|
#if defined(HAVE_SYS_UCONTEXT_H)
|
|
#include <sys/ucontext.h>
|
|
#elif defined(HAVE_UCONTEXT_H)
|
|
#include <ucontext.h> // for ucontext_t
|
|
#elif defined(HAVE_CYGWIN_SIGNAL_H)
|
|
// cygwin/signal.h has a buglet where it uses pthread_attr_t without
|
|
// #including <pthread.h> itself. So we have to do it.
|
|
# ifdef HAVE_PTHREAD
|
|
# include <pthread.h>
|
|
# endif
|
|
#include <cygwin/signal.h>
|
|
typedef ucontext ucontext_t;
|
|
#endif
|
|
#ifdef HAVE_STDINT_H
|
|
#include <stdint.h> // for uintptr_t
|
|
#endif
|
|
#ifdef HAVE_UNISTD_H
|
|
#include <unistd.h>
|
|
#endif
|
|
#ifdef HAVE_MMAP
|
|
#include <sys/mman.h> // for msync
|
|
#include "base/vdso_support.h"
|
|
#endif
|
|
|
|
#include "gperftools/stacktrace.h"
|
|
|
|
#if defined(__linux__) && defined(__i386__) && defined(__ELF__) && defined(HAVE_MMAP)
|
|
// Count "push %reg" instructions in VDSO __kernel_vsyscall(),
|
|
// preceding "syscall" or "sysenter".
|
|
// If __kernel_vsyscall uses frame pointer, answer 0.
|
|
//
|
|
// kMaxBytes tells how many instruction bytes of __kernel_vsyscall
|
|
// to analyze before giving up. Up to kMaxBytes+1 bytes of
|
|
// instructions could be accessed.
|
|
//
|
|
// Here are known __kernel_vsyscall instruction sequences:
|
|
//
|
|
// SYSENTER (linux-2.6.26/arch/x86/vdso/vdso32/sysenter.S).
|
|
// Used on Intel.
|
|
// 0xffffe400 <__kernel_vsyscall+0>: push %ecx
|
|
// 0xffffe401 <__kernel_vsyscall+1>: push %edx
|
|
// 0xffffe402 <__kernel_vsyscall+2>: push %ebp
|
|
// 0xffffe403 <__kernel_vsyscall+3>: mov %esp,%ebp
|
|
// 0xffffe405 <__kernel_vsyscall+5>: sysenter
|
|
//
|
|
// SYSCALL (see linux-2.6.26/arch/x86/vdso/vdso32/syscall.S).
|
|
// Used on AMD.
|
|
// 0xffffe400 <__kernel_vsyscall+0>: push %ebp
|
|
// 0xffffe401 <__kernel_vsyscall+1>: mov %ecx,%ebp
|
|
// 0xffffe403 <__kernel_vsyscall+3>: syscall
|
|
//
|
|
// i386 (see linux-2.6.26/arch/x86/vdso/vdso32/int80.S)
|
|
// 0xffffe400 <__kernel_vsyscall+0>: int $0x80
|
|
// 0xffffe401 <__kernel_vsyscall+1>: ret
|
|
//
|
|
static const int kMaxBytes = 10;
|
|
|
|
// We use assert()s instead of DCHECK()s -- this is too low level
|
|
// for DCHECK().
|
|
|
|
static int CountPushInstructions(const unsigned char *const addr) {
|
|
int result = 0;
|
|
for (int i = 0; i < kMaxBytes; ++i) {
|
|
if (addr[i] == 0x89) {
|
|
// "mov reg,reg"
|
|
if (addr[i + 1] == 0xE5) {
|
|
// Found "mov %esp,%ebp".
|
|
return 0;
|
|
}
|
|
++i; // Skip register encoding byte.
|
|
} else if (addr[i] == 0x0F &&
|
|
(addr[i + 1] == 0x34 || addr[i + 1] == 0x05)) {
|
|
// Found "sysenter" or "syscall".
|
|
return result;
|
|
} else if ((addr[i] & 0xF0) == 0x50) {
|
|
// Found "push %reg".
|
|
++result;
|
|
} else if (addr[i] == 0xCD && addr[i + 1] == 0x80) {
|
|
// Found "int $0x80"
|
|
assert(result == 0);
|
|
return 0;
|
|
} else {
|
|
// Unexpected instruction.
|
|
assert(0 == "unexpected instruction in __kernel_vsyscall");
|
|
return 0;
|
|
}
|
|
}
|
|
// Unexpected: didn't find SYSENTER or SYSCALL in
|
|
// [__kernel_vsyscall, __kernel_vsyscall + kMaxBytes) interval.
|
|
assert(0 == "did not find SYSENTER or SYSCALL in __kernel_vsyscall");
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
// Given a pointer to a stack frame, locate and return the calling
|
|
// stackframe, or return NULL if no stackframe can be found. Perform sanity
|
|
// checks (the strictness of which is controlled by the boolean parameter
|
|
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
|
|
template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
|
|
static void **NextStackFrame(void **old_sp, const void *uc) {
|
|
void **new_sp = (void **) *old_sp;
|
|
|
|
#if defined(__linux__) && defined(__i386__) && defined(HAVE_VDSO_SUPPORT)
|
|
if (WITH_CONTEXT && uc != NULL) {
|
|
// How many "push %reg" instructions are there at __kernel_vsyscall?
|
|
// This is constant for a given kernel and processor, so compute
|
|
// it only once.
|
|
static int num_push_instructions = -1; // Sentinel: not computed yet.
|
|
// Initialize with sentinel value: __kernel_rt_sigreturn can not possibly
|
|
// be there.
|
|
static const unsigned char *kernel_rt_sigreturn_address = NULL;
|
|
static const unsigned char *kernel_vsyscall_address = NULL;
|
|
if (num_push_instructions == -1) {
|
|
base::VDSOSupport vdso;
|
|
if (vdso.IsPresent()) {
|
|
base::VDSOSupport::SymbolInfo rt_sigreturn_symbol_info;
|
|
base::VDSOSupport::SymbolInfo vsyscall_symbol_info;
|
|
if (!vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.5",
|
|
STT_FUNC, &rt_sigreturn_symbol_info) ||
|
|
!vdso.LookupSymbol("__kernel_vsyscall", "LINUX_2.5",
|
|
STT_FUNC, &vsyscall_symbol_info) ||
|
|
rt_sigreturn_symbol_info.address == NULL ||
|
|
vsyscall_symbol_info.address == NULL) {
|
|
// Unexpected: 32-bit VDSO is present, yet one of the expected
|
|
// symbols is missing or NULL.
|
|
assert(0 == "VDSO is present, but doesn't have expected symbols");
|
|
num_push_instructions = 0;
|
|
} else {
|
|
kernel_rt_sigreturn_address =
|
|
reinterpret_cast<const unsigned char *>(
|
|
rt_sigreturn_symbol_info.address);
|
|
kernel_vsyscall_address =
|
|
reinterpret_cast<const unsigned char *>(
|
|
vsyscall_symbol_info.address);
|
|
num_push_instructions =
|
|
CountPushInstructions(kernel_vsyscall_address);
|
|
}
|
|
} else {
|
|
num_push_instructions = 0;
|
|
}
|
|
}
|
|
if (num_push_instructions != 0 && kernel_rt_sigreturn_address != NULL &&
|
|
old_sp[1] == kernel_rt_sigreturn_address) {
|
|
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
|
|
// This kernel does not use frame pointer in its VDSO code,
|
|
// and so %ebp is not suitable for unwinding.
|
|
void **const reg_ebp =
|
|
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_EBP]);
|
|
const unsigned char *const reg_eip =
|
|
reinterpret_cast<unsigned char *>(ucv->uc_mcontext.gregs[REG_EIP]);
|
|
if (new_sp == reg_ebp &&
|
|
kernel_vsyscall_address <= reg_eip &&
|
|
reg_eip - kernel_vsyscall_address < kMaxBytes) {
|
|
// We "stepped up" to __kernel_vsyscall, but %ebp is not usable.
|
|
// Restore from 'ucv' instead.
|
|
void **const reg_esp =
|
|
reinterpret_cast<void **>(ucv->uc_mcontext.gregs[REG_ESP]);
|
|
// Check that alleged %esp is not NULL and is reasonably aligned.
|
|
if (reg_esp &&
|
|
((uintptr_t)reg_esp & (sizeof(reg_esp) - 1)) == 0) {
|
|
// Check that alleged %esp is actually readable. This is to prevent
|
|
// "double fault" in case we hit the first fault due to e.g. stack
|
|
// corruption.
|
|
//
|
|
// page_size is linker-initalized to avoid async-unsafe locking
|
|
// that GCC would otherwise insert (__cxa_guard_acquire etc).
|
|
static int page_size;
|
|
if (page_size == 0) {
|
|
// First time through.
|
|
page_size = getpagesize();
|
|
}
|
|
void *const reg_esp_aligned =
|
|
reinterpret_cast<void *>(
|
|
(uintptr_t)(reg_esp + num_push_instructions - 1) &
|
|
~(page_size - 1));
|
|
if (msync(reg_esp_aligned, page_size, MS_ASYNC) == 0) {
|
|
// Alleged %esp is readable, use it for further unwinding.
|
|
new_sp = reinterpret_cast<void **>(
|
|
reg_esp[num_push_instructions - 1]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// Check that the transition from frame pointer old_sp to frame
|
|
// pointer new_sp isn't clearly bogus
|
|
if (STRICT_UNWINDING) {
|
|
// With the stack growing downwards, older stack frame must be
|
|
// at a greater address that the current one.
|
|
if (new_sp <= old_sp) return NULL;
|
|
// Assume stack frames larger than 100,000 bytes are bogus.
|
|
if ((uintptr_t)new_sp - (uintptr_t)old_sp > 100000) return NULL;
|
|
} else {
|
|
// In the non-strict mode, allow discontiguous stack frames.
|
|
// (alternate-signal-stacks for example).
|
|
if (new_sp == old_sp) return NULL;
|
|
if (new_sp > old_sp) {
|
|
// And allow frames upto about 1MB.
|
|
const uintptr_t delta = (uintptr_t)new_sp - (uintptr_t)old_sp;
|
|
const uintptr_t acceptable_delta = 1000000;
|
|
if (delta > acceptable_delta) {
|
|
return NULL;
|
|
}
|
|
}
|
|
}
|
|
if ((uintptr_t)new_sp & (sizeof(void *) - 1)) return NULL;
|
|
#ifdef __i386__
|
|
// On 64-bit machines, the stack pointer can be very close to
|
|
// 0xffffffff, so we explicitly check for a pointer into the
|
|
// last two pages in the address space
|
|
if ((uintptr_t)new_sp >= 0xffffe000) return NULL;
|
|
#endif
|
|
#ifdef HAVE_MMAP
|
|
if (!STRICT_UNWINDING) {
|
|
// Lax sanity checks cause a crash on AMD-based machines with
|
|
// VDSO-enabled kernels.
|
|
// Make an extra sanity check to insure new_sp is readable.
|
|
// Note: NextStackFrame<false>() is only called while the program
|
|
// is already on its last leg, so it's ok to be slow here.
|
|
static int page_size = getpagesize();
|
|
void *new_sp_aligned = (void *)((uintptr_t)new_sp & ~(page_size - 1));
|
|
if (msync(new_sp_aligned, page_size, MS_ASYNC) == -1)
|
|
return NULL;
|
|
}
|
|
#endif
|
|
return new_sp;
|
|
}
|
|
|
|
#endif // BASE_STACKTRACE_X86_INL_H_
|
|
|
|
// Note: this part of the file is included several times.
|
|
// Do not put globals below.
|
|
|
|
// The following 4 functions are generated from the code below:
|
|
// GetStack{Trace,Frames}()
|
|
// GetStack{Trace,Frames}WithContext()
|
|
//
|
|
// These functions take the following args:
|
|
// void** result: the stack-trace, as an array
|
|
// int* sizes: the size of each stack frame, as an array
|
|
// (GetStackFrames* only)
|
|
// int max_depth: the size of the result (and sizes) array(s)
|
|
// int skip_count: how many stack pointers to skip before storing in result
|
|
// void* ucp: a ucontext_t* (GetStack{Trace,Frames}WithContext only)
|
|
|
|
static int GET_STACK_TRACE_OR_FRAMES {
|
|
void **sp;
|
|
#if (__GNUC__ > 4) || (__GNUC__ == 4 && __GNUC_MINOR__ >= 2) || __llvm__
|
|
// __builtin_frame_address(0) can return the wrong address on gcc-4.1.0-k8.
|
|
// It's always correct on llvm, and the techniques below aren't (in
|
|
// particular, llvm-gcc will make a copy of pcs, so it's not in sp[2]),
|
|
// so we also prefer __builtin_frame_address when running under llvm.
|
|
sp = reinterpret_cast<void**>(__builtin_frame_address(0));
|
|
#elif defined(__i386__)
|
|
// Stack frame format:
|
|
// sp[0] pointer to previous frame
|
|
// sp[1] caller address
|
|
// sp[2] first argument
|
|
// ...
|
|
// NOTE: This will break under llvm, since result is a copy and not in sp[2]
|
|
sp = (void **)&result - 2;
|
|
#elif defined(__x86_64__)
|
|
unsigned long rbp;
|
|
// Move the value of the register %rbp into the local variable rbp.
|
|
// We need 'volatile' to prevent this instruction from getting moved
|
|
// around during optimization to before function prologue is done.
|
|
// An alternative way to achieve this
|
|
// would be (before this __asm__ instruction) to call Noop() defined as
|
|
// static void Noop() __attribute__ ((noinline)); // prevent inlining
|
|
// static void Noop() { asm(""); } // prevent optimizing-away
|
|
__asm__ volatile ("mov %%rbp, %0" : "=r" (rbp));
|
|
// Arguments are passed in registers on x86-64, so we can't just
|
|
// offset from &result
|
|
sp = (void **) rbp;
|
|
#else
|
|
# error Using stacktrace_x86-inl.h on a non x86 architecture!
|
|
#endif
|
|
|
|
skip_count++; // skip parent's frame due to indirection in stacktrace.cc
|
|
|
|
int n = 0;
|
|
while (sp && n < max_depth) {
|
|
if (*(sp+1) == reinterpret_cast<void *>(0)) {
|
|
// In 64-bit code, we often see a frame that
|
|
// points to itself and has a return address of 0.
|
|
break;
|
|
}
|
|
#if !IS_WITH_CONTEXT
|
|
const void *const ucp = NULL;
|
|
#endif
|
|
void **next_sp = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(sp, ucp);
|
|
if (skip_count > 0) {
|
|
skip_count--;
|
|
} else {
|
|
result[n] = *(sp+1);
|
|
#if IS_STACK_FRAMES
|
|
if (next_sp > sp) {
|
|
sizes[n] = (uintptr_t)next_sp - (uintptr_t)sp;
|
|
} else {
|
|
// A frame-size of 0 is used to indicate unknown frame size.
|
|
sizes[n] = 0;
|
|
}
|
|
#endif
|
|
n++;
|
|
}
|
|
sp = next_sp;
|
|
}
|
|
return n;
|
|
}
|