mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-23 08:02:02 +00:00
392 lines
15 KiB
C++
392 lines
15 KiB
C++
#include "CatBoostLibraryHandler.h"
|
|
|
|
#include <Columns/ColumnTuple.h>
|
|
#include <Common/FieldVisitorConvertToNumber.h>
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int BAD_ARGUMENTS;
|
|
extern const int CANNOT_APPLY_CATBOOST_MODEL;
|
|
extern const int CANNOT_LOAD_CATBOOST_MODEL;
|
|
extern const int LOGICAL_ERROR;
|
|
}
|
|
|
|
CatBoostLibraryHandler::APIHolder::APIHolder(SharedLibrary & lib)
|
|
{
|
|
ModelCalcerCreate = lib.get<CatBoostLibraryAPI::ModelCalcerCreateFunc>(CatBoostLibraryAPI::ModelCalcerCreateName);
|
|
ModelCalcerDelete = lib.get<CatBoostLibraryAPI::ModelCalcerDeleteFunc>(CatBoostLibraryAPI::ModelCalcerDeleteName);
|
|
GetErrorString = lib.get<CatBoostLibraryAPI::GetErrorStringFunc>(CatBoostLibraryAPI::GetErrorStringName);
|
|
LoadFullModelFromFile = lib.get<CatBoostLibraryAPI::LoadFullModelFromFileFunc>(CatBoostLibraryAPI::LoadFullModelFromFileName);
|
|
CalcModelPredictionFlat = lib.get<CatBoostLibraryAPI::CalcModelPredictionFlatFunc>(CatBoostLibraryAPI::CalcModelPredictionFlatName);
|
|
CalcModelPrediction = lib.get<CatBoostLibraryAPI::CalcModelPredictionFunc>(CatBoostLibraryAPI::CalcModelPredictionName);
|
|
CalcModelPredictionWithHashedCatFeatures = lib.get<CatBoostLibraryAPI::CalcModelPredictionWithHashedCatFeaturesFunc>(CatBoostLibraryAPI::CalcModelPredictionWithHashedCatFeaturesName);
|
|
GetStringCatFeatureHash = lib.get<CatBoostLibraryAPI::GetStringCatFeatureHashFunc>(CatBoostLibraryAPI::GetStringCatFeatureHashName);
|
|
GetIntegerCatFeatureHash = lib.get<CatBoostLibraryAPI::GetIntegerCatFeatureHashFunc>(CatBoostLibraryAPI::GetIntegerCatFeatureHashName);
|
|
GetFloatFeaturesCount = lib.get<CatBoostLibraryAPI::GetFloatFeaturesCountFunc>(CatBoostLibraryAPI::GetFloatFeaturesCountName);
|
|
GetCatFeaturesCount = lib.get<CatBoostLibraryAPI::GetCatFeaturesCountFunc>(CatBoostLibraryAPI::GetCatFeaturesCountName);
|
|
GetTreeCount = lib.tryGet<CatBoostLibraryAPI::GetTreeCountFunc>(CatBoostLibraryAPI::GetTreeCountName);
|
|
GetDimensionsCount = lib.tryGet<CatBoostLibraryAPI::GetDimensionsCountFunc>(CatBoostLibraryAPI::GetDimensionsCountName);
|
|
}
|
|
|
|
CatBoostLibraryHandler::CatBoostLibraryHandler(
|
|
const std::string & library_path,
|
|
const std::string & model_path)
|
|
: loading_start_time(std::chrono::system_clock::now())
|
|
, library(std::make_shared<SharedLibrary>(library_path))
|
|
, api(*library)
|
|
{
|
|
model_calcer_handle = api.ModelCalcerCreate();
|
|
|
|
if (!api.LoadFullModelFromFile(model_calcer_handle, model_path.c_str()))
|
|
{
|
|
throw Exception(ErrorCodes::CANNOT_LOAD_CATBOOST_MODEL,
|
|
"Cannot load CatBoost model: {}", api.GetErrorString());
|
|
}
|
|
|
|
float_features_count = api.GetFloatFeaturesCount(model_calcer_handle);
|
|
cat_features_count = api.GetCatFeaturesCount(model_calcer_handle);
|
|
|
|
tree_count = 1;
|
|
if (api.GetDimensionsCount)
|
|
tree_count = api.GetDimensionsCount(model_calcer_handle);
|
|
|
|
loading_duration = std::chrono::duration_cast<std::chrono::milliseconds>(std::chrono::system_clock::now() - loading_start_time);
|
|
}
|
|
|
|
CatBoostLibraryHandler::~CatBoostLibraryHandler()
|
|
{
|
|
api.ModelCalcerDelete(model_calcer_handle);
|
|
}
|
|
|
|
std::chrono::system_clock::time_point CatBoostLibraryHandler::getLoadingStartTime() const
|
|
{
|
|
return loading_start_time;
|
|
}
|
|
|
|
std::chrono::milliseconds CatBoostLibraryHandler::getLoadingDuration() const
|
|
{
|
|
return loading_duration;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
|
|
/// Buffer should be allocated with features_count * column->size() elements.
|
|
/// Place column elements in positions buffer[0], buffer[features_count], ... , buffer[size * features_count]
|
|
template <typename T>
|
|
void placeColumnAsNumber(const IColumn * column, T * buffer, size_t features_count)
|
|
{
|
|
size_t size = column->size();
|
|
FieldVisitorConvertToNumber<T> visitor;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
/// TODO: Replace with column visitor.
|
|
Field field;
|
|
column->get(i, field);
|
|
*buffer = applyVisitor(visitor, field);
|
|
buffer += features_count;
|
|
}
|
|
}
|
|
|
|
/// Buffer should be allocated with features_count * column->size() elements.
|
|
/// Place string pointers in positions buffer[0], buffer[features_count], ... , buffer[size * features_count]
|
|
void placeStringColumn(const ColumnString & column, const char ** buffer, size_t features_count)
|
|
{
|
|
size_t size = column.size();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
*buffer = const_cast<char *>(column.getDataAt(i).data);
|
|
buffer += features_count;
|
|
}
|
|
}
|
|
|
|
/// Buffer should be allocated with features_count * column->size() elements.
|
|
/// Place string pointers in positions buffer[0], buffer[features_count], ... , buffer[size * features_count]
|
|
/// Returns PODArray which holds data (because ColumnFixedString doesn't store terminating zero).
|
|
PODArray<char> placeFixedStringColumn(const ColumnFixedString & column, const char ** buffer, size_t features_count)
|
|
{
|
|
size_t size = column.size();
|
|
size_t str_size = column.getN();
|
|
PODArray<char> data(size * (str_size + 1));
|
|
char * data_ptr = data.data();
|
|
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
auto ref = column.getDataAt(i);
|
|
memcpy(data_ptr, ref.data, ref.size);
|
|
data_ptr[ref.size] = 0;
|
|
*buffer = data_ptr;
|
|
data_ptr += ref.size + 1;
|
|
buffer += features_count;
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/// Place columns into buffer, returns column which holds placed data. Buffer should contains column->size() values.
|
|
template <typename T>
|
|
ColumnPtr placeNumericColumns(const ColumnRawPtrs & columns, size_t offset, size_t size, const T** buffer)
|
|
{
|
|
if (size == 0)
|
|
return nullptr;
|
|
|
|
size_t column_size = columns[offset]->size();
|
|
auto data_column = ColumnVector<T>::create(size * column_size);
|
|
T * data = data_column->getData().data();
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
const auto * column = columns[offset + i];
|
|
if (column->isNumeric())
|
|
placeColumnAsNumber(column, data + i, size);
|
|
}
|
|
|
|
for (size_t i = 0; i < column_size; ++i)
|
|
{
|
|
*buffer = data;
|
|
++buffer;
|
|
data += size;
|
|
}
|
|
|
|
return data_column;
|
|
}
|
|
|
|
/// Place columns into buffer, returns data which was used for fixed string columns.
|
|
/// Buffer should contains column->size() values, each value contains size strings.
|
|
std::vector<PODArray<char>> placeStringColumns(const ColumnRawPtrs & columns, size_t offset, size_t size, const char ** buffer)
|
|
{
|
|
if (size == 0)
|
|
return {};
|
|
|
|
std::vector<PODArray<char>> data;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
const auto * column = columns[offset + i];
|
|
if (const auto * column_string = typeid_cast<const ColumnString *>(column))
|
|
placeStringColumn(*column_string, buffer + i, size);
|
|
else if (const auto * column_fixed_string = typeid_cast<const ColumnFixedString *>(column))
|
|
data.push_back(placeFixedStringColumn(*column_fixed_string, buffer + i, size));
|
|
else
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot place string column.");
|
|
}
|
|
|
|
return data;
|
|
}
|
|
|
|
/// buffer[column_size * cat_features_count] -> char * => cat_features[column_size][cat_features_count] -> char *
|
|
void fillCatFeaturesBuffer(
|
|
const char *** cat_features, const char ** buffer,
|
|
size_t column_size, size_t cat_features_count)
|
|
{
|
|
for (size_t i = 0; i < column_size; ++i)
|
|
{
|
|
*cat_features = buffer;
|
|
++cat_features;
|
|
buffer += cat_features_count;
|
|
}
|
|
}
|
|
|
|
/// Calc hash for string cat feature at ps positions.
|
|
template <typename Column>
|
|
void calcStringHashes(const Column * column, size_t ps, const int ** buffer, const CatBoostLibraryHandler::APIHolder & api)
|
|
{
|
|
size_t column_size = column->size();
|
|
for (size_t j = 0; j < column_size; ++j)
|
|
{
|
|
auto ref = column->getDataAt(j);
|
|
const_cast<int *>(*buffer)[ps] = api.GetStringCatFeatureHash(ref.data, ref.size);
|
|
++buffer;
|
|
}
|
|
}
|
|
|
|
/// Calc hash for int cat feature at ps position. Buffer at positions ps should contains unhashed values.
|
|
void calcIntHashes(size_t column_size, size_t ps, const int ** buffer, const CatBoostLibraryHandler::APIHolder & api)
|
|
{
|
|
for (size_t j = 0; j < column_size; ++j)
|
|
{
|
|
const_cast<int *>(*buffer)[ps] = api.GetIntegerCatFeatureHash((*buffer)[ps]);
|
|
++buffer;
|
|
}
|
|
}
|
|
|
|
/// buffer contains column->size() rows and size columns.
|
|
/// For int cat features calc hash inplace.
|
|
/// For string cat features calc hash from column rows.
|
|
void calcHashes(const ColumnRawPtrs & columns, size_t offset, size_t size, const int ** buffer, const CatBoostLibraryHandler::APIHolder & api)
|
|
{
|
|
if (size == 0)
|
|
return;
|
|
size_t column_size = columns[offset]->size();
|
|
|
|
std::vector<PODArray<char>> data;
|
|
for (size_t i = 0; i < size; ++i)
|
|
{
|
|
const auto * column = columns[offset + i];
|
|
if (const auto * column_string = typeid_cast<const ColumnString *>(column))
|
|
calcStringHashes(column_string, i, buffer, api);
|
|
else if (const auto * column_fixed_string = typeid_cast<const ColumnFixedString *>(column))
|
|
calcStringHashes(column_fixed_string, i, buffer, api);
|
|
else
|
|
calcIntHashes(column_size, i, buffer, api);
|
|
}
|
|
}
|
|
|
|
}
|
|
|
|
/// Convert values to row-oriented format and call evaluation function from CatBoost wrapper api.
|
|
/// * CalcModelPredictionFlat if no cat features
|
|
/// * CalcModelPrediction if all cat features are strings
|
|
/// * CalcModelPredictionWithHashedCatFeatures if has int cat features.
|
|
ColumnFloat64::MutablePtr CatBoostLibraryHandler::evalImpl(
|
|
const ColumnRawPtrs & columns,
|
|
bool cat_features_are_strings) const
|
|
{
|
|
size_t column_size = columns.front()->size();
|
|
|
|
auto result = ColumnFloat64::create(column_size * tree_count);
|
|
auto * result_buf = result->getData().data();
|
|
|
|
if (!column_size)
|
|
return result;
|
|
|
|
/// Prepare float features.
|
|
PODArray<const float *> float_features(column_size);
|
|
auto * float_features_buf = float_features.data();
|
|
/// Store all float data into single column. float_features is a list of pointers to it.
|
|
auto float_features_col = placeNumericColumns<float>(columns, 0, float_features_count, float_features_buf);
|
|
|
|
if (cat_features_count == 0)
|
|
{
|
|
if (!api.CalcModelPredictionFlat(model_calcer_handle, column_size,
|
|
float_features_buf, float_features_count,
|
|
result_buf, column_size * tree_count))
|
|
{
|
|
|
|
throw Exception(ErrorCodes::CANNOT_APPLY_CATBOOST_MODEL,
|
|
"Error occurred while applying CatBoost model: {}", api.GetErrorString());
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Prepare cat features.
|
|
if (cat_features_are_strings)
|
|
{
|
|
/// cat_features_holder stores pointers to ColumnString data or fixed_strings_data.
|
|
PODArray<const char *> cat_features_holder(cat_features_count * column_size);
|
|
PODArray<const char **> cat_features(column_size);
|
|
auto * cat_features_buf = cat_features.data();
|
|
|
|
fillCatFeaturesBuffer(cat_features_buf, cat_features_holder.data(), column_size, cat_features_count);
|
|
/// Fixed strings are stored without termination zero, so have to copy data into fixed_strings_data.
|
|
auto fixed_strings_data = placeStringColumns(columns, float_features_count,
|
|
cat_features_count, cat_features_holder.data());
|
|
|
|
if (!api.CalcModelPrediction(model_calcer_handle, column_size,
|
|
float_features_buf, float_features_count,
|
|
cat_features_buf, cat_features_count,
|
|
result_buf, column_size * tree_count))
|
|
{
|
|
throw Exception(ErrorCodes::CANNOT_APPLY_CATBOOST_MODEL,
|
|
"Error occurred while applying CatBoost model: {}", api.GetErrorString());
|
|
}
|
|
}
|
|
else
|
|
{
|
|
PODArray<const int *> cat_features(column_size);
|
|
auto * cat_features_buf = cat_features.data();
|
|
auto cat_features_col = placeNumericColumns<int>(columns, float_features_count,
|
|
cat_features_count, cat_features_buf);
|
|
calcHashes(columns, float_features_count, cat_features_count, cat_features_buf, api);
|
|
if (!api.CalcModelPredictionWithHashedCatFeatures(
|
|
model_calcer_handle, column_size,
|
|
float_features_buf, float_features_count,
|
|
cat_features_buf, cat_features_count,
|
|
result_buf, column_size * tree_count))
|
|
{
|
|
throw Exception(ErrorCodes::CANNOT_APPLY_CATBOOST_MODEL,
|
|
"Error occurred while applying CatBoost model: {}", api.GetErrorString());
|
|
}
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
size_t CatBoostLibraryHandler::getTreeCount() const
|
|
{
|
|
std::lock_guard lock(mutex);
|
|
return tree_count;
|
|
}
|
|
|
|
ColumnPtr CatBoostLibraryHandler::evaluate(const ColumnRawPtrs & columns) const
|
|
{
|
|
std::lock_guard lock(mutex);
|
|
|
|
if (columns.empty())
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Got empty columns list for CatBoost model.");
|
|
|
|
if (columns.size() != float_features_count + cat_features_count)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS,
|
|
"Number of columns is different with number of features: columns size {} float features size {} + cat features size {}",
|
|
columns.size(),
|
|
float_features_count,
|
|
cat_features_count);
|
|
|
|
for (size_t i = 0; i < float_features_count; ++i)
|
|
{
|
|
if (!columns[i]->isNumeric())
|
|
{
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Column {} should be numeric to make float feature.", i);
|
|
}
|
|
}
|
|
|
|
bool cat_features_are_strings = true;
|
|
for (size_t i = float_features_count; i < float_features_count + cat_features_count; ++i)
|
|
{
|
|
const auto * column = columns[i];
|
|
if (column->isNumeric())
|
|
{
|
|
cat_features_are_strings = false;
|
|
}
|
|
else if (!(typeid_cast<const ColumnString *>(column)
|
|
|| typeid_cast<const ColumnFixedString *>(column)))
|
|
{
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Column {} should be numeric or string.", i);
|
|
}
|
|
}
|
|
|
|
auto result = evalImpl(columns, cat_features_are_strings);
|
|
|
|
if (tree_count == 1)
|
|
return result;
|
|
|
|
size_t column_size = columns.front()->size();
|
|
auto * result_buf = result->getData().data();
|
|
|
|
/// Multiple trees case. Copy data to several columns.
|
|
MutableColumns mutable_columns(tree_count);
|
|
std::vector<Float64 *> column_ptrs(tree_count);
|
|
for (size_t i = 0; i < tree_count; ++i)
|
|
{
|
|
auto col = ColumnFloat64::create(column_size);
|
|
column_ptrs[i] = col->getData().data();
|
|
mutable_columns[i] = std::move(col);
|
|
}
|
|
|
|
Float64 * data = result_buf;
|
|
for (size_t row = 0; row < column_size; ++row)
|
|
{
|
|
for (size_t i = 0; i < tree_count; ++i)
|
|
{
|
|
*column_ptrs[i] = *data;
|
|
++column_ptrs[i];
|
|
++data;
|
|
}
|
|
}
|
|
|
|
return ColumnTuple::create(std::move(mutable_columns));
|
|
}
|
|
|
|
}
|