ClickHouse/src/Functions/FunctionDateOrDateTimeAddInterval.h
Alexander Tokmakov 70d1adfe4b
Better formatting for exception messages (#45449)
* save format string for NetException

* format exceptions

* format exceptions 2

* format exceptions 3

* format exceptions 4

* format exceptions 5

* format exceptions 6

* fix

* format exceptions 7

* format exceptions 8

* Update MergeTreeIndexGin.cpp

* Update AggregateFunctionMap.cpp

* Update AggregateFunctionMap.cpp

* fix
2023-01-24 00:13:58 +03:00

748 lines
31 KiB
C++

#pragma once
#include <type_traits>
#include <Core/AccurateComparison.h>
#include <Common/DateLUTImpl.h>
#include <DataTypes/DataTypeDate.h>
#include <DataTypes/DataTypeDate32.h>
#include <DataTypes/DataTypeDateTime.h>
#include <DataTypes/DataTypeDateTime64.h>
#include <Columns/ColumnsNumber.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Functions/castTypeToEither.h>
#include <Functions/extractTimeZoneFromFunctionArguments.h>
#include <Functions/TransformDateTime64.h>
#include <IO/WriteHelpers.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int DECIMAL_OVERFLOW;
extern const int ILLEGAL_COLUMN;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
}
/// Type of first argument of 'execute' function overload defines what INPUT DataType it is used for.
/// Return type defines what is the OUTPUT (return) type of the CH function.
/// Corresponding types:
/// - UInt16 => DataTypeDate
/// - UInt32 => DataTypeDateTime
/// - DateTime64 => DataTypeDateTime64
/// Please note that INPUT and OUTPUT types may differ, e.g.:
/// - 'AddSecondsImpl::execute(UInt32, ...) -> UInt32' is available to the ClickHouse users as 'addSeconds(DateTime, ...) -> DateTime'
/// - 'AddSecondsImpl::execute(UInt16, ...) -> UInt32' is available to the ClickHouse users as 'addSeconds(Date, ...) -> DateTime'
struct AddNanosecondsImpl
{
static constexpr auto name = "addNanoseconds";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl &, UInt16 scale = DataTypeDateTime64::default_scale)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(9 - scale);
auto division = std::div(t.fractional * multiplier + delta, static_cast<Int64>(1000000000));
return {t.whole * multiplier + division.quot, t.fractional * multiplier + delta};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(9 - scale);
return t * multiplier + delta;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(9);
return static_cast<UInt32>(t * multiplier + delta);
}
static inline NO_SANITIZE_UNDEFINED DateTime64 execute(UInt16, Int64, const DateLUTImpl &, UInt16 = 0)
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "addNanoSeconds() cannot be used with Date");
}
static inline NO_SANITIZE_UNDEFINED DateTime64 execute(Int32, Int64, const DateLUTImpl &, UInt16 = 0)
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "addNanoSeconds() cannot be used with Date32");
}
};
struct AddMicrosecondsImpl
{
static constexpr auto name = "addMicroseconds";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(std::abs(6 - scale));
if (scale <= 6)
{
auto division = std::div((t.fractional + delta), static_cast<Int64>(10e6));
return {t.whole * multiplier + division.quot, division.rem};
}
else
{
auto division = std::div((t.fractional + delta * multiplier), static_cast<Int64>(10e6 * multiplier));
return {t.whole + division.quot, division.rem};
}
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(std::abs(6 - scale));
return scale <= 6 ? t * multiplier + delta : t + delta * multiplier;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(6);
return static_cast<UInt32>(t * multiplier + delta);
}
static inline NO_SANITIZE_UNDEFINED DateTime64 execute(UInt16, Int64, const DateLUTImpl &, UInt16 = 0)
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "addMicroSeconds() cannot be used with Date");
}
static inline NO_SANITIZE_UNDEFINED DateTime64 execute(Int32, Int64, const DateLUTImpl &, UInt16 = 0)
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "addMicroSeconds() cannot be used with Date32");
}
};
struct AddMillisecondsImpl
{
static constexpr auto name = "addMilliseconds";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl &, UInt16 scale = DataTypeDateTime64::default_scale)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(std::abs(3 - scale));
if (scale <= 3)
{
auto division = std::div((t.fractional + delta), static_cast<Int64>(1000));
return {t.whole * multiplier + division.quot, division.rem};
}
else
{
auto division = std::div((t.fractional + delta * multiplier), static_cast<Int64>(1000 * multiplier));
return {t.whole + division.quot,division.rem};
}
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(std::abs(3 - scale));
return scale <= 3 ? t * multiplier + delta : t + delta * multiplier;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
Int64 multiplier = DecimalUtils::scaleMultiplier<DateTime64>(3);
return static_cast<UInt32>(t * multiplier + delta);
}
static inline NO_SANITIZE_UNDEFINED DateTime64 execute(UInt16, Int64, const DateLUTImpl &, UInt16 = 0)
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "addMilliSeconds() cannot be used with Date");
}
static inline NO_SANITIZE_UNDEFINED DateTime64 execute(Int32, Int64, const DateLUTImpl &, UInt16 = 0)
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "addMilliSeconds() cannot be used with Date32");
}
};
struct AddSecondsImpl
{
static constexpr auto name = "addSeconds";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return {t.whole + delta, t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
return t + delta * DecimalUtils::scaleMultiplier<DateTime64>(scale);
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return static_cast<UInt32>(t + delta);
}
static inline NO_SANITIZE_UNDEFINED Int64 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
// use default datetime64 scale
return (time_zone.fromDayNum(ExtendedDayNum(d)) + delta) * 1000;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.fromDayNum(DayNum(d)) + delta);
}
};
struct AddMinutesImpl
{
static constexpr auto name = "addMinutes";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return {t.whole + delta * 60, t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
return t + 60 * delta * DecimalUtils::scaleMultiplier<DateTime64>(scale);
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return static_cast<UInt32>(t + delta * 60);
}
static inline NO_SANITIZE_UNDEFINED Int64 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
// use default datetime64 scale
return (time_zone.fromDayNum(ExtendedDayNum(d)) + delta * 60) * 1000;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.fromDayNum(DayNum(d)) + delta * 60);
}
};
struct AddHoursImpl
{
static constexpr auto name = "addHours";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return {t.whole + delta * 3600, t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0)
{
return t + 3600 * delta * DecimalUtils::scaleMultiplier<DateTime64>(scale);
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return static_cast<UInt32>(t + delta * 3600);
}
static inline NO_SANITIZE_UNDEFINED Int64 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
// use default datetime64 scale
return (time_zone.fromDayNum(ExtendedDayNum(d)) + delta * 3600) * 1000;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.fromDayNum(DayNum(d)) + delta * 3600);
}
};
struct AddDaysImpl
{
static constexpr auto name = "addDays";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return {time_zone.addDays(t.whole, delta), t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0)
{
auto multiplier = DecimalUtils::scaleMultiplier<DateTime64>(scale);
auto d = std::div(t, multiplier);
return time_zone.addDays(d.quot, delta) * multiplier + d.rem;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.addDays(t, delta));
}
static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return d + delta;
}
static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return static_cast<Int32>(d + delta);
}
};
struct AddWeeksImpl
{
static constexpr auto name = "addWeeks";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return {time_zone.addWeeks(t.whole, delta), t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0)
{
auto multiplier = DecimalUtils::scaleMultiplier<DateTime64>(scale);
auto d = std::div(t, multiplier);
return time_zone.addDays(d.quot, delta * 7) * multiplier + d.rem;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.addWeeks(t, delta));
}
static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return static_cast<UInt16>(d + delta * 7);
}
static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl &, UInt16 = 0)
{
return static_cast<Int32>(d + delta * 7);
}
};
struct AddMonthsImpl
{
static constexpr auto name = "addMonths";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return {time_zone.addMonths(t.whole, delta), t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0)
{
auto multiplier = DecimalUtils::scaleMultiplier<DateTime64>(scale);
auto d = std::div(t, multiplier);
return time_zone.addMonths(d.quot, delta) * multiplier + d.rem;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.addMonths(t, delta));
}
static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return time_zone.addMonths(DayNum(d), delta);
}
static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return time_zone.addMonths(ExtendedDayNum(d), delta);
}
};
struct AddQuartersImpl
{
static constexpr auto name = "addQuarters";
static inline DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return {time_zone.addQuarters(t.whole, delta), t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0)
{
auto multiplier = DecimalUtils::scaleMultiplier<DateTime64>(scale);
auto d = std::div(t, multiplier);
return time_zone.addQuarters(d.quot, delta) * multiplier + d.rem;
}
static inline UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.addQuarters(t, delta));
}
static inline UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return time_zone.addQuarters(DayNum(d), delta);
}
static inline Int32 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return time_zone.addQuarters(ExtendedDayNum(d), delta);
}
};
struct AddYearsImpl
{
static constexpr auto name = "addYears";
static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents<DateTime64>
execute(DecimalUtils::DecimalComponents<DateTime64> t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return {time_zone.addYears(t.whole, delta), t.fractional};
}
static inline NO_SANITIZE_UNDEFINED DateTime64
execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0)
{
auto multiplier = DecimalUtils::scaleMultiplier<DateTime64>(scale);
auto d = std::div(t, multiplier);
return time_zone.addYears(d.quot, delta) * multiplier + d.rem;
}
static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return static_cast<UInt32>(time_zone.addYears(t, delta));
}
static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return time_zone.addYears(DayNum(d), delta);
}
static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0)
{
return time_zone.addYears(ExtendedDayNum(d), delta);
}
};
template <typename Transform>
struct SubtractIntervalImpl : public Transform
{
using Transform::Transform;
template <typename T>
inline NO_SANITIZE_UNDEFINED auto execute(T t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale) const
{
/// Signed integer overflow is Ok.
return Transform::execute(t, -delta, time_zone, scale);
}
};
struct SubtractNanosecondsImpl : SubtractIntervalImpl<AddNanosecondsImpl> { static constexpr auto name = "subtractNanoseconds"; };
struct SubtractMicrosecondsImpl : SubtractIntervalImpl<AddMicrosecondsImpl> { static constexpr auto name = "subtractMicroseconds"; };
struct SubtractMillisecondsImpl : SubtractIntervalImpl<AddMillisecondsImpl> { static constexpr auto name = "subtractMilliseconds"; };
struct SubtractSecondsImpl : SubtractIntervalImpl<AddSecondsImpl> { static constexpr auto name = "subtractSeconds"; };
struct SubtractMinutesImpl : SubtractIntervalImpl<AddMinutesImpl> { static constexpr auto name = "subtractMinutes"; };
struct SubtractHoursImpl : SubtractIntervalImpl<AddHoursImpl> { static constexpr auto name = "subtractHours"; };
struct SubtractDaysImpl : SubtractIntervalImpl<AddDaysImpl> { static constexpr auto name = "subtractDays"; };
struct SubtractWeeksImpl : SubtractIntervalImpl<AddWeeksImpl> { static constexpr auto name = "subtractWeeks"; };
struct SubtractMonthsImpl : SubtractIntervalImpl<AddMonthsImpl> { static constexpr auto name = "subtractMonths"; };
struct SubtractQuartersImpl : SubtractIntervalImpl<AddQuartersImpl> { static constexpr auto name = "subtractQuarters"; };
struct SubtractYearsImpl : SubtractIntervalImpl<AddYearsImpl> { static constexpr auto name = "subtractYears"; };
template <typename Transform>
struct Adder
{
const Transform transform;
explicit Adder(Transform transform_)
: transform(std::move(transform_))
{}
template <typename FromVectorType, typename ToVectorType>
void NO_INLINE vectorConstant(const FromVectorType & vec_from, ToVectorType & vec_to, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale) const
{
size_t size = vec_from.size();
vec_to.resize(size);
for (size_t i = 0; i < size; ++i)
vec_to[i] = transform.execute(vec_from[i], checkOverflow(delta), time_zone, scale);
}
template <typename FromVectorType, typename ToVectorType>
void vectorVector(const FromVectorType & vec_from, ToVectorType & vec_to, const IColumn & delta, const DateLUTImpl & time_zone, UInt16 scale) const
{
size_t size = vec_from.size();
vec_to.resize(size);
castTypeToEither<
ColumnUInt8, ColumnUInt16, ColumnUInt32, ColumnUInt64,
ColumnInt8, ColumnInt16, ColumnInt32, ColumnInt64,
ColumnFloat32, ColumnFloat64>(
&delta, [&](const auto & column){ vectorVector(vec_from, vec_to, column, time_zone, scale, size); return true; });
}
template <typename FromType, typename ToVectorType>
void constantVector(const FromType & from, ToVectorType & vec_to, const IColumn & delta, const DateLUTImpl & time_zone, UInt16 scale) const
{
size_t size = delta.size();
vec_to.resize(size);
castTypeToEither<
ColumnUInt8, ColumnUInt16, ColumnUInt32, ColumnUInt64,
ColumnInt8, ColumnInt16, ColumnInt32, ColumnInt64,
ColumnFloat32, ColumnFloat64>(
&delta, [&](const auto & column){ constantVector(from, vec_to, column, time_zone, scale, size); return true; });
}
private:
template <typename Value>
static Int64 checkOverflow(Value val)
{
Int64 result;
if (accurate::convertNumeric<Value, Int64, false>(val, result))
return result;
throw DB::Exception(ErrorCodes::DECIMAL_OVERFLOW, "Numeric overflow");
}
template <typename FromVectorType, typename ToVectorType, typename DeltaColumnType>
NO_INLINE NO_SANITIZE_UNDEFINED void vectorVector(
const FromVectorType & vec_from, ToVectorType & vec_to, const DeltaColumnType & delta, const DateLUTImpl & time_zone, UInt16 scale, size_t size) const
{
for (size_t i = 0; i < size; ++i)
vec_to[i] = transform.execute(vec_from[i], checkOverflow(delta.getData()[i]), time_zone, scale);
}
template <typename FromType, typename ToVectorType, typename DeltaColumnType>
NO_INLINE NO_SANITIZE_UNDEFINED void constantVector(
const FromType & from, ToVectorType & vec_to, const DeltaColumnType & delta, const DateLUTImpl & time_zone, UInt16 scale, size_t size) const
{
for (size_t i = 0; i < size; ++i)
vec_to[i] = transform.execute(from, checkOverflow(delta.getData()[i]), time_zone, scale);
}
};
template <typename FromDataType, typename ToDataType, typename Transform>
struct DateTimeAddIntervalImpl
{
static ColumnPtr execute(Transform transform, const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, UInt16 scale = 0)
{
using FromValueType = typename FromDataType::FieldType;
using FromColumnType = typename FromDataType::ColumnType;
using ToColumnType = typename ToDataType::ColumnType;
auto op = Adder<Transform>{std::move(transform)};
const DateLUTImpl & time_zone = extractTimeZoneFromFunctionArguments(arguments, 2, 0);
const ColumnPtr source_col = arguments[0].column;
auto result_col = result_type->createColumn();
auto col_to = assert_cast<ToColumnType *>(result_col.get());
const IColumn & delta_column = *arguments[1].column;
if (const auto * sources = checkAndGetColumn<FromColumnType>(source_col.get()))
{
if (const auto * delta_const_column = typeid_cast<const ColumnConst *>(&delta_column))
op.vectorConstant(sources->getData(), col_to->getData(), delta_const_column->getInt(0), time_zone, scale);
else
op.vectorVector(sources->getData(), col_to->getData(), delta_column, time_zone, scale);
}
else if (const auto * sources_const = checkAndGetColumnConst<FromColumnType>(source_col.get()))
{
op.constantVector(
sources_const->template getValue<FromValueType>(),
col_to->getData(), delta_column, time_zone, scale);
}
else
{
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}",
arguments[0].column->getName(), Transform::name);
}
return result_col;
}
};
namespace date_and_time_type_details
{
// Compile-time mapping of value (DataType::FieldType) types to corresponding DataType
template <typename FieldType> struct ResultDataTypeMap {};
template <> struct ResultDataTypeMap<UInt16> { using ResultDataType = DataTypeDate; };
template <> struct ResultDataTypeMap<Int16> { using ResultDataType = DataTypeDate; };
template <> struct ResultDataTypeMap<UInt32> { using ResultDataType = DataTypeDateTime; };
template <> struct ResultDataTypeMap<Int32> { using ResultDataType = DataTypeDate32; };
template <> struct ResultDataTypeMap<DateTime64> { using ResultDataType = DataTypeDateTime64; };
template <> struct ResultDataTypeMap<Int64> { using ResultDataType = DataTypeDateTime64; };
}
template <typename Transform>
class FunctionDateOrDateTimeAddInterval : public IFunction
{
public:
static constexpr auto name = Transform::name;
static FunctionPtr create(ContextPtr) { return std::make_shared<FunctionDateOrDateTimeAddInterval>(); }
String getName() const override
{
return name;
}
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override
{
if (arguments.size() != 2 && arguments.size() != 3)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Number of arguments for function {} doesn't match: passed {}, should be 2 or 3",
getName(), arguments.size());
if (!isNativeNumber(arguments[1].type))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Second argument for function {} (delta) must be a number",
getName());
if (arguments.size() == 2)
{
if (!isDate(arguments[0].type) && !isDate32(arguments[0].type) && !isDateTime(arguments[0].type) && !isDateTime64(arguments[0].type))
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of first argument of function {}. "
"Should be a date or a date with time", arguments[0].type->getName(), getName());
}
else
{
if (!WhichDataType(arguments[0].type).isDateTime()
|| !WhichDataType(arguments[2].type).isString())
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function {} supports 2 or 3 arguments. "
"The 1st argument must be of type Date or DateTime. "
"The 2nd argument must be a number. "
"The 3rd argument (optional) must be a constant string with timezone name. "
"The timezone argument is allowed only when the 1st argument has the type DateTime",
getName());
}
}
switch (arguments[0].type->getTypeId())
{
case TypeIndex::Date:
return resolveReturnType<DataTypeDate>(arguments);
case TypeIndex::Date32:
return resolveReturnType<DataTypeDate32>(arguments);
case TypeIndex::DateTime:
return resolveReturnType<DataTypeDateTime>(arguments);
case TypeIndex::DateTime64:
return resolveReturnType<DataTypeDateTime64>(arguments);
default:
{
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Invalid type of 1st argument of function {}: "
"{}, expected: Date, DateTime or DateTime64.", getName(), arguments[0].type->getName());
}
}
}
/// Helper templates to deduce return type based on argument type, since some overloads may promote or denote types,
/// e.g. addSeconds(Date, 1) => DateTime
template <typename FieldType>
using TransformExecuteReturnType = decltype(std::declval<Transform>().execute(FieldType(), 0, std::declval<DateLUTImpl>(), 0));
// Deduces RETURN DataType from INPUT DataType, based on return type of Transform{}.execute(INPUT_TYPE, UInt64, DateLUTImpl).
// e.g. for Transform-type that has execute()-overload with 'UInt16' input and 'UInt32' return,
// argument type is expected to be 'Date', and result type is deduced to be 'DateTime'.
template <typename FromDataType>
using TransformResultDataType = typename date_and_time_type_details::ResultDataTypeMap<TransformExecuteReturnType<typename FromDataType::FieldType>>::ResultDataType;
template <typename FromDataType>
DataTypePtr resolveReturnType(const ColumnsWithTypeAndName & arguments) const
{
using ResultDataType = TransformResultDataType<FromDataType>;
if constexpr (std::is_same_v<ResultDataType, DataTypeDate>)
{
return std::make_shared<DataTypeDate>();
}
else if constexpr (std::is_same_v<ResultDataType, DataTypeDate32>)
{
return std::make_shared<DataTypeDate32>();
}
else if constexpr (std::is_same_v<ResultDataType, DataTypeDateTime>)
{
return std::make_shared<DataTypeDateTime>(extractTimeZoneNameFromFunctionArguments(arguments, 2, 0));
}
else if constexpr (std::is_same_v<ResultDataType, DataTypeDateTime64>)
{
static constexpr auto target_scale = std::invoke(
[]() -> std::optional<UInt32>
{
if constexpr (std::is_base_of_v<AddNanosecondsImpl, Transform>)
return 9;
else if constexpr (std::is_base_of_v<AddMicrosecondsImpl, Transform>)
return 6;
else if constexpr (std::is_base_of_v<AddMillisecondsImpl, Transform>)
return 3;
return {};
});
auto timezone = extractTimeZoneNameFromFunctionArguments(arguments, 2, 0);
if (const auto* datetime64_type = typeid_cast<const DataTypeDateTime64 *>(arguments[0].type.get()))
{
const auto from_scale = datetime64_type->getScale();
return std::make_shared<DataTypeDateTime64>(std::max(from_scale, target_scale.value_or(from_scale)), std::move(timezone));
}
return std::make_shared<DataTypeDateTime64>(target_scale.value_or(DataTypeDateTime64::default_scale), std::move(timezone));
}
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected result type in datetime add interval function");
}
bool useDefaultImplementationForConstants() const override { return true; }
ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {2}; }
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t /*input_rows_count*/) const override
{
const IDataType * from_type = arguments[0].type.get();
WhichDataType which(from_type);
if (which.isDate())
{
return DateTimeAddIntervalImpl<DataTypeDate, TransformResultDataType<DataTypeDate>, Transform>::execute(
Transform{}, arguments, result_type);
}
else if (which.isDate32())
{
return DateTimeAddIntervalImpl<DataTypeDate32, TransformResultDataType<DataTypeDate32>, Transform>::execute(
Transform{}, arguments, result_type);
}
else if (which.isDateTime())
{
return DateTimeAddIntervalImpl<DataTypeDateTime, TransformResultDataType<DataTypeDateTime>, Transform>::execute(
Transform{}, arguments, result_type);
}
else if (const auto * datetime64_type = assert_cast<const DataTypeDateTime64 *>(from_type))
{
auto from_scale = datetime64_type->getScale();
return DateTimeAddIntervalImpl<DataTypeDateTime64, TransformResultDataType<DataTypeDateTime64>, Transform>::execute(
Transform{}, arguments, result_type, from_scale);
}
else
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Illegal type {} of first argument of function {}",
arguments[0].type->getName(), getName());
}
};
}