ClickHouse/tests/integration/test_storage_delta/test.py
2024-10-03 16:09:31 +00:00

894 lines
28 KiB
Python

import glob
import json
import logging
import os
import random
import string
import time
import uuid
from datetime import datetime
import delta
import pyarrow as pa
import pyarrow.parquet as pq
import pyspark
import pytest
from delta import *
from deltalake.writer import write_deltalake
from minio.deleteobjects import DeleteObject
from pyspark.sql.functions import (
current_timestamp,
monotonically_increasing_id,
row_number,
)
from pyspark.sql.types import (
ArrayType,
BooleanType,
DateType,
IntegerType,
StringType,
StructField,
StructType,
TimestampType,
)
from pyspark.sql.window import Window
import helpers.client
from helpers.cluster import ClickHouseCluster
from helpers.s3_tools import (
get_file_contents,
list_s3_objects,
prepare_s3_bucket,
upload_directory,
)
from helpers.test_tools import TSV
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__))
def get_spark():
builder = (
pyspark.sql.SparkSession.builder.appName("spark_test")
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension")
.config(
"spark.sql.catalog.spark_catalog",
"org.apache.spark.sql.delta.catalog.DeltaCatalog",
)
.master("local")
)
return builder.master("local").getOrCreate()
def randomize_table_name(table_name, random_suffix_length=10):
letters = string.ascii_letters + string.digits
return f"{table_name}{''.join(random.choice(letters) for _ in range(random_suffix_length))}"
@pytest.fixture(scope="module")
def started_cluster():
try:
cluster = ClickHouseCluster(__file__, with_spark=True)
cluster.add_instance(
"node1",
main_configs=[
"configs/config.d/named_collections.xml",
"configs/config.d/filesystem_caches.xml",
],
user_configs=["configs/users.d/users.xml"],
with_minio=True,
stay_alive=True,
)
logging.info("Starting cluster...")
cluster.start()
prepare_s3_bucket(cluster)
cluster.spark_session = get_spark()
yield cluster
finally:
cluster.shutdown()
def write_delta_from_file(spark, path, result_path, mode="overwrite"):
spark.read.load(path).write.mode(mode).option("compression", "none").format(
"delta"
).option("delta.columnMapping.mode", "name").save(result_path)
def write_delta_from_df(spark, df, result_path, mode="overwrite", partition_by=None):
if partition_by is None:
df.write.mode(mode).option("compression", "none").format("delta").option(
"delta.columnMapping.mode", "name"
).save(result_path)
else:
df.write.mode(mode).option("compression", "none").format("delta").option(
"delta.columnMapping.mode", "name"
).partitionBy("a").save(result_path)
def generate_data(spark, start, end):
a = spark.range(start, end, 1).toDF("a")
b = spark.range(start + 1, end + 1, 1).toDF("b")
b = b.withColumn("b", b["b"].cast(StringType()))
a = a.withColumn(
"row_index", row_number().over(Window.orderBy(monotonically_increasing_id()))
)
b = b.withColumn(
"row_index", row_number().over(Window.orderBy(monotonically_increasing_id()))
)
df = a.join(b, on=["row_index"]).drop("row_index")
return df
def get_delta_metadata(delta_metadata_file):
jsons = [json.loads(x) for x in delta_metadata_file.splitlines()]
combined_json = {}
for d in jsons:
combined_json.update(d)
return combined_json
def create_delta_table(node, table_name, bucket="root"):
node.query(
f"""
DROP TABLE IF EXISTS {table_name};
CREATE TABLE {table_name}
ENGINE=DeltaLake(s3, filename = '{table_name}/', url = 'http://minio1:9001/{bucket}/')"""
)
def create_initial_data_file(
cluster, node, query, table_name, compression_method="none"
):
node.query(
f"""
INSERT INTO TABLE FUNCTION
file('{table_name}.parquet')
SETTINGS
output_format_parquet_compression_method='{compression_method}',
s3_truncate_on_insert=1 {query}
FORMAT Parquet"""
)
user_files_path = os.path.join(
SCRIPT_DIR, f"{cluster.instances_dir_name}/node1/database/user_files"
)
result_path = f"{user_files_path}/{table_name}.parquet"
return result_path
def test_single_log_file(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_single_log_file")
inserted_data = "SELECT number as a, toString(number + 1) as b FROM numbers(100)"
parquet_data_path = create_initial_data_file(
started_cluster, instance, inserted_data, TABLE_NAME
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 2 # 1 metadata files + 1 data file
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
assert instance.query(f"SELECT * FROM {TABLE_NAME}") == instance.query(
inserted_data
)
def test_partition_by(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_partition_by")
write_delta_from_df(
spark,
generate_data(spark, 0, 10),
f"/{TABLE_NAME}",
mode="overwrite",
partition_by="a",
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 11 # 10 partitions and 1 metadata file
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 10
def test_checkpoint(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_checkpoint")
write_delta_from_df(
spark,
generate_data(spark, 0, 1),
f"/{TABLE_NAME}",
mode="overwrite",
)
for i in range(1, 25):
write_delta_from_df(
spark,
generate_data(spark, i, i + 1),
f"/{TABLE_NAME}",
mode="append",
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
# 25 data files
# 25 metadata files
# 1 last_metadata file
# 2 checkpoints
assert len(files) == 25 * 2 + 3
ok = False
for file in files:
if file.endswith("last_checkpoint"):
ok = True
assert ok
create_delta_table(instance, TABLE_NAME)
assert (
int(
instance.query(
f"SELECT count() FROM {TABLE_NAME} SETTINGS input_format_parquet_allow_missing_columns=1"
)
)
== 25
)
table = DeltaTable.forPath(spark, f"/{TABLE_NAME}")
table.delete("a < 10")
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 15
for i in range(0, 5):
write_delta_from_df(
spark,
generate_data(spark, i, i + 1),
f"/{TABLE_NAME}",
mode="append",
)
# + 1 metadata files (for delete)
# + 5 data files
# + 5 metadata files
# + 1 checkpoint file
# + 1 ?
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 53 + 1 + 5 * 2 + 1 + 1
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 20
assert (
instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY 1").strip()
== instance.query(
"SELECT * FROM ("
"SELECT number, toString(number + 1) FROM numbers(5) "
"UNION ALL SELECT number, toString(number + 1) FROM numbers(10, 15) "
") ORDER BY 1"
).strip()
)
def test_multiple_log_files(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_multiple_log_files")
write_delta_from_df(
spark, generate_data(spark, 0, 100), f"/{TABLE_NAME}", mode="overwrite"
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 2 # 1 metadata files + 1 data file
s3_objects = list(
minio_client.list_objects(bucket, f"{TABLE_NAME}/_delta_log/", recursive=True)
)
assert len(s3_objects) == 1
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
write_delta_from_df(
spark, generate_data(spark, 100, 200), f"/{TABLE_NAME}", mode="append"
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) == 4 # 2 metadata files + 2 data files
s3_objects = list(
minio_client.list_objects(bucket, f"{TABLE_NAME}/_delta_log/", recursive=True)
)
assert len(s3_objects) == 2
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 200
assert instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY 1") == instance.query(
"SELECT number, toString(number + 1) FROM numbers(200)"
)
def test_metadata(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_metadata")
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
data = get_file_contents(
minio_client,
bucket,
f"/{TABLE_NAME}/_delta_log/00000000000000000000.json",
)
delta_metadata = get_delta_metadata(data)
stats = json.loads(delta_metadata["add"]["stats"])
assert stats["numRecords"] == 100
assert next(iter(stats["minValues"].values())) == 0
assert next(iter(stats["maxValues"].values())) == 99
create_delta_table(instance, TABLE_NAME)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
def test_types(started_cluster):
TABLE_NAME = randomize_table_name("test_types")
spark = started_cluster.spark_session
result_file = randomize_table_name(f"{TABLE_NAME}_result_2")
delta_table = (
DeltaTable.create(spark)
.tableName(TABLE_NAME)
.location(f"/{result_file}")
.addColumn("a", "INT")
.addColumn("b", "STRING")
.addColumn("c", "DATE")
.addColumn("d", "ARRAY<STRING>")
.addColumn("e", "BOOLEAN")
.execute()
)
data = [
(
123,
"string",
datetime.strptime("2000-01-01", "%Y-%m-%d"),
["str1", "str2"],
True,
)
]
schema = StructType(
[
StructField("a", IntegerType()),
StructField("b", StringType()),
StructField("c", DateType()),
StructField("d", ArrayType(StringType())),
StructField("e", BooleanType()),
]
)
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.write.mode("append").format("delta").saveAsTable(TABLE_NAME)
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
upload_directory(minio_client, bucket, f"/{result_file}", "")
instance = started_cluster.instances["node1"]
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME} ENGINE=DeltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"""
)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 1
assert (
instance.query(f"SELECT * FROM {TABLE_NAME}").strip()
== "123\tstring\t2000-01-01\t['str1','str2']\ttrue"
)
table_function = f"deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"
assert (
instance.query(f"SELECT * FROM {table_function}").strip()
== "123\tstring\t2000-01-01\t['str1','str2']\ttrue"
)
assert instance.query(f"DESCRIBE {table_function} FORMAT TSV") == TSV(
[
["a", "Nullable(Int32)"],
["b", "Nullable(String)"],
["c", "Nullable(Date32)"],
["d", "Array(Nullable(String))"],
["e", "Nullable(Bool)"],
]
)
def test_restart_broken(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = "broken"
TABLE_NAME = randomize_table_name("test_restart_broken")
if not minio_client.bucket_exists(bucket):
minio_client.make_bucket(bucket)
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
create_delta_table(instance, TABLE_NAME, bucket=bucket)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
s3_objects = list_s3_objects(minio_client, bucket, prefix="")
assert (
len(
list(
minio_client.remove_objects(
bucket,
[DeleteObject(obj) for obj in s3_objects],
)
)
)
== 0
)
minio_client.remove_bucket(bucket)
instance.restart_clickhouse()
assert "NoSuchBucket" in instance.query_and_get_error(
f"SELECT count() FROM {TABLE_NAME}"
)
s3_disk_no_key_errors_metric_value = int(
instance.query(
"""
SELECT value
FROM system.metrics
WHERE metric = 'DiskS3NoSuchKeyErrors'
"""
).strip()
)
assert s3_disk_no_key_errors_metric_value == 0
minio_client.make_bucket(bucket)
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
def test_restart_broken_table_function(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = "broken2"
TABLE_NAME = randomize_table_name("test_restart_broken_table_function")
if not minio_client.bucket_exists(bucket):
minio_client.make_bucket(bucket)
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME}
AS deltaLake(s3, filename = '{TABLE_NAME}/', url = 'http://minio1:9001/{bucket}/')"""
)
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
s3_objects = list_s3_objects(minio_client, bucket, prefix="")
assert (
len(
list(
minio_client.remove_objects(
bucket,
[DeleteObject(obj) for obj in s3_objects],
)
)
)
== 0
)
minio_client.remove_bucket(bucket)
instance.restart_clickhouse()
assert "NoSuchBucket" in instance.query_and_get_error(
f"SELECT count() FROM {TABLE_NAME}"
)
minio_client.make_bucket(bucket)
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert int(instance.query(f"SELECT count() FROM {TABLE_NAME}")) == 100
def test_partition_columns(started_cluster):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
TABLE_NAME = randomize_table_name("test_partition_columns")
result_file = f"{TABLE_NAME}"
partition_columns = ["b", "c", "d", "e"]
delta_table = (
DeltaTable.create(spark)
.tableName(TABLE_NAME)
.location(f"/{result_file}")
.addColumn("a", "INT")
.addColumn("b", "STRING")
.addColumn("c", "DATE")
.addColumn("d", "INT")
.addColumn("e", "BOOLEAN")
.partitionedBy(partition_columns)
.execute()
)
num_rows = 9
schema = StructType(
[
StructField("a", IntegerType()),
StructField("b", StringType()),
StructField("c", DateType()),
StructField("d", IntegerType()),
StructField("e", BooleanType()),
]
)
for i in range(1, num_rows + 1):
data = [
(
i,
"test" + str(i),
datetime.strptime(f"2000-01-0{i}", "%Y-%m-%d"),
i,
False if i % 2 == 0 else True,
)
]
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.write.mode("append").format("delta").partitionBy(partition_columns).save(
f"/{TABLE_NAME}"
)
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
assert len(files) > 0
print(f"Uploaded files: {files}")
result = instance.query(
f"describe table deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"
).strip()
assert (
result
== "a\tNullable(Int32)\t\t\t\t\t\nb\tNullable(String)\t\t\t\t\t\nc\tNullable(Date32)\t\t\t\t\t\nd\tNullable(Int32)\t\t\t\t\t\ne\tNullable(Bool)"
)
result = int(
instance.query(
f"""SELECT count()
FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')
"""
)
)
assert result == num_rows
result = int(
instance.query(
f"""SELECT count()
FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')
WHERE c == toDateTime('2000/01/05')
"""
)
)
assert result == 1
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME} (a Nullable(Int32), b Nullable(String), c Nullable(Date32), d Nullable(Int32), e Nullable(Bool))
ENGINE=DeltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"""
)
assert (
"""1 test1 2000-01-01 1 true
2 test2 2000-01-02 2 false
3 test3 2000-01-03 3 true
4 test4 2000-01-04 4 false
5 test5 2000-01-05 5 true
6 test6 2000-01-06 6 false
7 test7 2000-01-07 7 true
8 test8 2000-01-08 8 false
9 test9 2000-01-09 9 true"""
== instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY b").strip()
)
assert (
int(
instance.query(
f"SELECT count() FROM {TABLE_NAME} WHERE c == toDateTime('2000/01/05')"
)
)
== 1
)
# Subset of columns should work.
instance.query(
f"""
DROP TABLE IF EXISTS {TABLE_NAME};
CREATE TABLE {TABLE_NAME} (b Nullable(String), c Nullable(Date32), d Nullable(Int32))
ENGINE=DeltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')"""
)
assert (
"""test1 2000-01-01 1
test2 2000-01-02 2
test3 2000-01-03 3
test4 2000-01-04 4
test5 2000-01-05 5
test6 2000-01-06 6
test7 2000-01-07 7
test8 2000-01-08 8
test9 2000-01-09 9"""
== instance.query(f"SELECT * FROM {TABLE_NAME} ORDER BY b").strip()
)
for i in range(num_rows + 1, 2 * num_rows + 1):
data = [
(
i,
"test" + str(i),
datetime.strptime(f"2000-01-{i}", "%Y-%m-%d"),
i,
False if i % 2 == 0 else True,
)
]
df = spark.createDataFrame(data=data, schema=schema)
df.printSchema()
df.write.mode("append").format("delta").partitionBy(partition_columns).save(
f"/{TABLE_NAME}"
)
files = upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
ok = False
for file in files:
if file.endswith("last_checkpoint"):
ok = True
assert ok
result = int(
instance.query(
f"""SELECT count()
FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123')
"""
)
)
assert result == num_rows * 2
assert (
"""1 test1 2000-01-01 1 true
2 test2 2000-01-02 2 false
3 test3 2000-01-03 3 true
4 test4 2000-01-04 4 false
5 test5 2000-01-05 5 true
6 test6 2000-01-06 6 false
7 test7 2000-01-07 7 true
8 test8 2000-01-08 8 false
9 test9 2000-01-09 9 true
10 test10 2000-01-10 10 false
11 test11 2000-01-11 11 true
12 test12 2000-01-12 12 false
13 test13 2000-01-13 13 true
14 test14 2000-01-14 14 false
15 test15 2000-01-15 15 true
16 test16 2000-01-16 16 false
17 test17 2000-01-17 17 true
18 test18 2000-01-18 18 false"""
== instance.query(
f"""
SELECT * FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/{bucket}/{result_file}/', 'minio', 'minio123') ORDER BY c
"""
).strip()
)
assert (
int(
instance.query(
f"SELECT count() FROM {TABLE_NAME} WHERE c == toDateTime('2000/01/15')"
)
)
== 1
)
def test_complex_types(started_cluster):
node = started_cluster.instances["node1"]
minio_client = started_cluster.minio_client
bucket = started_cluster.minio_bucket
schema = pa.schema(
[
("id", pa.int32()),
("name", pa.string()),
(
"address",
pa.struct(
[
("street", pa.string()),
("city", pa.string()),
("state", pa.string()),
]
),
),
("interests", pa.list_(pa.string())),
(
"metadata",
pa.map_(
pa.string(), pa.string()
), # Map with string keys and string values
),
]
)
# Create sample data
data = [
pa.array([1, 2, 3], type=pa.int32()),
pa.array(["John Doe", "Jane Smith", "Jake Johnson"], type=pa.string()),
pa.array(
[
{"street": "123 Elm St", "city": "Springfield", "state": "IL"},
{"street": "456 Maple St", "city": "Shelbyville", "state": "IL"},
{"street": "789 Oak St", "city": "Ogdenville", "state": "IL"},
],
type=schema.field("address").type,
),
pa.array(
[
pa.array(["dancing", "coding", "hiking"]),
pa.array(["dancing", "coding", "hiking"]),
pa.array(["dancing", "coding", "hiking"]),
],
type=schema.field("interests").type,
),
pa.array(
[
{"key1": "value1", "key2": "value2"},
{"key1": "value3", "key2": "value4"},
{"key1": "value5", "key2": "value6"},
],
type=schema.field("metadata").type,
),
]
endpoint_url = f"http://{started_cluster.minio_ip}:{started_cluster.minio_port}"
aws_access_key_id = "minio"
aws_secret_access_key = "minio123"
table_name = randomize_table_name("test_complex_types")
storage_options = {
"AWS_ENDPOINT_URL": endpoint_url,
"AWS_ACCESS_KEY_ID": aws_access_key_id,
"AWS_SECRET_ACCESS_KEY": aws_secret_access_key,
"AWS_ALLOW_HTTP": "true",
"AWS_S3_ALLOW_UNSAFE_RENAME": "true",
}
path = f"s3://root/{table_name}"
table = pa.Table.from_arrays(data, schema=schema)
write_deltalake(path, table, storage_options=storage_options)
assert "1\n2\n3\n" in node.query(
f"SELECT id FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/root/{table_name}' , 'minio', 'minio123')"
)
assert (
"('123 Elm St','Springfield','IL')\n('456 Maple St','Shelbyville','IL')\n('789 Oak St','Ogdenville','IL')"
in node.query(
f"SELECT address FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/root/{table_name}' , 'minio', 'minio123')"
)
)
assert (
"{'key1':'value1','key2':'value2'}\n{'key1':'value3','key2':'value4'}\n{'key1':'value5','key2':'value6'}"
in node.query(
f"SELECT metadata FROM deltaLake('http://{started_cluster.minio_ip}:{started_cluster.minio_port}/root/{table_name}' , 'minio', 'minio123')"
)
)
@pytest.mark.parametrize("storage_type", ["s3"])
def test_filesystem_cache(started_cluster, storage_type):
instance = started_cluster.instances["node1"]
spark = started_cluster.spark_session
minio_client = started_cluster.minio_client
TABLE_NAME = randomize_table_name("test_filesystem_cache")
bucket = started_cluster.minio_bucket
if not minio_client.bucket_exists(bucket):
minio_client.make_bucket(bucket)
parquet_data_path = create_initial_data_file(
started_cluster,
instance,
"SELECT number, toString(number) FROM numbers(100)",
TABLE_NAME,
)
write_delta_from_file(spark, parquet_data_path, f"/{TABLE_NAME}")
upload_directory(minio_client, bucket, f"/{TABLE_NAME}", "")
create_delta_table(instance, TABLE_NAME, bucket=bucket)
query_id = f"{TABLE_NAME}-{uuid.uuid4()}"
instance.query(
f"SELECT * FROM {TABLE_NAME} SETTINGS filesystem_cache_name = 'cache1'",
query_id=query_id,
)
instance.query("SYSTEM FLUSH LOGS")
count = int(
instance.query(
f"SELECT ProfileEvents['CachedReadBufferCacheWriteBytes'] FROM system.query_log WHERE query_id = '{query_id}' AND type = 'QueryFinish'"
)
)
assert 0 < int(
instance.query(
f"SELECT ProfileEvents['S3GetObject'] FROM system.query_log WHERE query_id = '{query_id}' AND type = 'QueryFinish'"
)
)
query_id = f"{TABLE_NAME}-{uuid.uuid4()}"
instance.query(
f"SELECT * FROM {TABLE_NAME} SETTINGS filesystem_cache_name = 'cache1'",
query_id=query_id,
)
instance.query("SYSTEM FLUSH LOGS")
assert count == int(
instance.query(
f"SELECT ProfileEvents['CachedReadBufferReadFromCacheBytes'] FROM system.query_log WHERE query_id = '{query_id}' AND type = 'QueryFinish'"
)
)
assert 0 == int(
instance.query(
f"SELECT ProfileEvents['S3GetObject'] FROM system.query_log WHERE query_id = '{query_id}' AND type = 'QueryFinish'"
)
)