mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-03 21:12:28 +00:00
1729 lines
65 KiB
C
1729 lines
65 KiB
C
/* ******************************************************************
|
|
Huff0 : Huffman coder, part of New Generation Entropy library
|
|
Copyright (C) 2013-2015, Yann Collet.
|
|
|
|
BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
|
|
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are
|
|
met:
|
|
|
|
* Redistributions of source code must retain the above copyright
|
|
notice, this list of conditions and the following disclaimer.
|
|
* Redistributions in binary form must reproduce the above
|
|
copyright notice, this list of conditions and the following disclaimer
|
|
in the documentation and/or other materials provided with the
|
|
distribution.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
|
|
You can contact the author at :
|
|
- FSE+Huff0 source repository : https://github.com/Cyan4973/FiniteStateEntropy
|
|
- Public forum : https://groups.google.com/forum/#!forum/lz4c
|
|
****************************************************************** */
|
|
|
|
/* **************************************************************
|
|
* Compiler specifics
|
|
****************************************************************/
|
|
#if defined (__cplusplus) || (defined (__STDC_VERSION__) && (__STDC_VERSION__ >= 199901L) /* C99 */)
|
|
/* inline is defined */
|
|
#elif defined(_MSC_VER)
|
|
# define inline __inline
|
|
#else
|
|
# define inline /* disable inline */
|
|
#endif
|
|
|
|
|
|
#ifdef _MSC_VER /* Visual Studio */
|
|
# define FORCE_INLINE static __forceinline
|
|
# pragma warning(disable : 4127) /* disable: C4127: conditional expression is constant */
|
|
#else
|
|
# ifdef __GNUC__
|
|
# define FORCE_INLINE static inline __attribute__((always_inline))
|
|
# else
|
|
# define FORCE_INLINE static inline
|
|
# endif
|
|
#endif
|
|
|
|
|
|
/* **************************************************************
|
|
* Includes
|
|
****************************************************************/
|
|
#include <stdlib.h> /* malloc, free, qsort */
|
|
#include <string.h> /* memcpy, memset */
|
|
#include <stdio.h> /* printf (debug) */
|
|
#include "huff0_static.h"
|
|
#include "bitstream.h"
|
|
#include "fse.h" /* header compression */
|
|
|
|
|
|
/* **************************************************************
|
|
* Constants
|
|
****************************************************************/
|
|
#define HUF_ABSOLUTEMAX_TABLELOG 16 /* absolute limit of HUF_MAX_TABLELOG. Beyond that value, code does not work */
|
|
#define HUF_MAX_TABLELOG 12 /* max configured tableLog (for static allocation); can be modified up to HUF_ABSOLUTEMAX_TABLELOG */
|
|
#define HUF_DEFAULT_TABLELOG HUF_MAX_TABLELOG /* tableLog by default, when not specified */
|
|
#define HUF_MAX_SYMBOL_VALUE 255
|
|
#if (HUF_MAX_TABLELOG > HUF_ABSOLUTEMAX_TABLELOG)
|
|
# error "HUF_MAX_TABLELOG is too large !"
|
|
#endif
|
|
|
|
|
|
/* **************************************************************
|
|
* Error Management
|
|
****************************************************************/
|
|
unsigned HUF_isError(size_t code) { return ERR_isError(code); }
|
|
const char* HUF_getErrorName(size_t code) { return ERR_getErrorName(code); }
|
|
#define HUF_STATIC_ASSERT(c) { enum { HUF_static_assert = 1/(int)(!!(c)) }; } /* use only *after* variable declarations */
|
|
|
|
|
|
/* *******************************************************
|
|
* Huff0 : Huffman block compression
|
|
*********************************************************/
|
|
struct HUF_CElt_s {
|
|
U16 val;
|
|
BYTE nbBits;
|
|
}; /* typedef'd to HUF_CElt within huff0_static.h */
|
|
|
|
typedef struct nodeElt_s {
|
|
U32 count;
|
|
U16 parent;
|
|
BYTE byte;
|
|
BYTE nbBits;
|
|
} nodeElt;
|
|
|
|
/*! HUF_writeCTable() :
|
|
@dst : destination buffer
|
|
@CTable : huffman tree to save, using huff0 representation
|
|
@return : size of saved CTable */
|
|
size_t HUF_writeCTable (void* dst, size_t maxDstSize,
|
|
const HUF_CElt* CTable, U32 maxSymbolValue, U32 huffLog)
|
|
{
|
|
BYTE bitsToWeight[HUF_MAX_TABLELOG + 1];
|
|
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 n;
|
|
BYTE* op = (BYTE*)dst;
|
|
size_t size;
|
|
|
|
/* check conditions */
|
|
if (maxSymbolValue > HUF_MAX_SYMBOL_VALUE + 1)
|
|
return ERROR(GENERIC);
|
|
|
|
/* convert to weight */
|
|
bitsToWeight[0] = 0;
|
|
for (n=1; n<=huffLog; n++)
|
|
bitsToWeight[n] = (BYTE)(huffLog + 1 - n);
|
|
for (n=0; n<maxSymbolValue; n++)
|
|
huffWeight[n] = bitsToWeight[CTable[n].nbBits];
|
|
|
|
size = FSE_compress(op+1, maxDstSize-1, huffWeight, maxSymbolValue); /* don't need last symbol stat : implied */
|
|
if (HUF_isError(size)) return size;
|
|
if (size >= 128) return ERROR(GENERIC); /* should never happen, since maxSymbolValue <= 255 */
|
|
if ((size <= 1) || (size >= maxSymbolValue/2)) {
|
|
if (size==1) { /* RLE */
|
|
/* only possible case : serie of 1 (because there are at least 2) */
|
|
/* can only be 2^n or (2^n-1), otherwise not an huffman tree */
|
|
BYTE code;
|
|
switch(maxSymbolValue)
|
|
{
|
|
case 1: code = 0; break;
|
|
case 2: code = 1; break;
|
|
case 3: code = 2; break;
|
|
case 4: code = 3; break;
|
|
case 7: code = 4; break;
|
|
case 8: code = 5; break;
|
|
case 15: code = 6; break;
|
|
case 16: code = 7; break;
|
|
case 31: code = 8; break;
|
|
case 32: code = 9; break;
|
|
case 63: code = 10; break;
|
|
case 64: code = 11; break;
|
|
case 127: code = 12; break;
|
|
case 128: code = 13; break;
|
|
default : return ERROR(corruption_detected);
|
|
}
|
|
op[0] = (BYTE)(255-13 + code);
|
|
return 1;
|
|
}
|
|
/* Not compressible */
|
|
if (maxSymbolValue > (241-128)) return ERROR(GENERIC); /* not implemented (not possible with current format) */
|
|
if (((maxSymbolValue+1)/2) + 1 > maxDstSize) return ERROR(dstSize_tooSmall); /* not enough space within dst buffer */
|
|
op[0] = (BYTE)(128 /*special case*/ + 0 /* Not Compressible */ + (maxSymbolValue-1));
|
|
huffWeight[maxSymbolValue] = 0; /* to be sure it doesn't cause issue in final combination */
|
|
for (n=0; n<maxSymbolValue; n+=2)
|
|
op[(n/2)+1] = (BYTE)((huffWeight[n] << 4) + huffWeight[n+1]);
|
|
return ((maxSymbolValue+1)/2) + 1;
|
|
}
|
|
|
|
/* normal header case */
|
|
op[0] = (BYTE)size;
|
|
return size+1;
|
|
}
|
|
|
|
|
|
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|
U32* nbSymbolsPtr, U32* tableLogPtr,
|
|
const void* src, size_t srcSize);
|
|
|
|
|
|
size_t HUF_readCTable (HUF_CElt* CTable, U32 maxSymbolValue, const void* src, size_t srcSize)
|
|
{
|
|
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
|
|
U32 tableLog = 0;
|
|
size_t iSize;
|
|
U32 nbSymbols = 0;
|
|
U32 n;
|
|
U32 nextRankStart;
|
|
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
/* get symbol weights */
|
|
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE+1, rankVal, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > HUF_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
if (nbSymbols > maxSymbolValue+1) return ERROR(maxSymbolValue_tooSmall);
|
|
|
|
/* Prepare base value per rank */
|
|
nextRankStart = 0;
|
|
for (n=1; n<=tableLog; n++) {
|
|
U32 current = nextRankStart;
|
|
nextRankStart += (rankVal[n] << (n-1));
|
|
rankVal[n] = current;
|
|
}
|
|
|
|
/* fill nbBits */
|
|
for (n=0; n<nbSymbols; n++) {
|
|
const U32 w = huffWeight[n];
|
|
CTable[n].nbBits = (BYTE)(tableLog + 1 - w);
|
|
}
|
|
|
|
/* fill val */
|
|
{
|
|
U16 nbPerRank[HUF_MAX_TABLELOG+1] = {0};
|
|
U16 valPerRank[HUF_MAX_TABLELOG+1] = {0};
|
|
for (n=0; n<nbSymbols; n++)
|
|
nbPerRank[CTable[n].nbBits]++;
|
|
{
|
|
/* determine stating value per rank */
|
|
U16 min = 0;
|
|
for (n=HUF_MAX_TABLELOG; n>0; n--) {
|
|
valPerRank[n] = min; /* get starting value within each rank */
|
|
min += nbPerRank[n];
|
|
min >>= 1;
|
|
} }
|
|
for (n=0; n<=maxSymbolValue; n++)
|
|
CTable[n].val = valPerRank[CTable[n].nbBits]++; /* assign value within rank, symbol order */
|
|
}
|
|
|
|
return iSize;
|
|
}
|
|
|
|
|
|
static U32 HUF_setMaxHeight(nodeElt* huffNode, U32 lastNonNull, U32 maxNbBits)
|
|
{
|
|
int totalCost = 0;
|
|
const U32 largestBits = huffNode[lastNonNull].nbBits;
|
|
|
|
/* early exit : all is fine */
|
|
if (largestBits <= maxNbBits) return largestBits;
|
|
|
|
/* there are several too large elements (at least >= 2) */
|
|
{
|
|
const U32 baseCost = 1 << (largestBits - maxNbBits);
|
|
U32 n = lastNonNull;
|
|
|
|
while (huffNode[n].nbBits > maxNbBits) {
|
|
totalCost += baseCost - (1 << (largestBits - huffNode[n].nbBits));
|
|
huffNode[n].nbBits = (BYTE)maxNbBits;
|
|
n --;
|
|
} /* n stops at huffNode[n].nbBits <= maxNbBits */
|
|
while (huffNode[n].nbBits == maxNbBits) n--; /* n end at index of smallest symbol using (maxNbBits-1) */
|
|
|
|
/* renorm totalCost */
|
|
totalCost >>= (largestBits - maxNbBits); /* note : totalCost is necessarily a multiple of baseCost */
|
|
|
|
/* repay normalized cost */
|
|
{
|
|
const U32 noSymbol = 0xF0F0F0F0;
|
|
U32 rankLast[HUF_MAX_TABLELOG+1];
|
|
U32 currentNbBits = maxNbBits;
|
|
int pos;
|
|
|
|
/* Get pos of last (smallest) symbol per rank */
|
|
memset(rankLast, 0xF0, sizeof(rankLast));
|
|
for (pos=n ; pos >= 0; pos--) {
|
|
if (huffNode[pos].nbBits >= currentNbBits) continue;
|
|
currentNbBits = huffNode[pos].nbBits; /* < maxNbBits */
|
|
rankLast[maxNbBits-currentNbBits] = pos;
|
|
}
|
|
|
|
while (totalCost > 0) {
|
|
U32 nBitsToDecrease = BIT_highbit32(totalCost) + 1;
|
|
for ( ; nBitsToDecrease > 1; nBitsToDecrease--) {
|
|
U32 highPos = rankLast[nBitsToDecrease];
|
|
U32 lowPos = rankLast[nBitsToDecrease-1];
|
|
if (highPos == noSymbol) continue;
|
|
if (lowPos == noSymbol) break;
|
|
{
|
|
U32 highTotal = huffNode[highPos].count;
|
|
U32 lowTotal = 2 * huffNode[lowPos].count;
|
|
if (highTotal <= lowTotal) break;
|
|
} }
|
|
/* only triggered when no more rank 1 symbol left => find closest one (note : there is necessarily at least one !) */
|
|
while ((nBitsToDecrease<=HUF_MAX_TABLELOG) && (rankLast[nBitsToDecrease] == noSymbol)) /* HUF_MAX_TABLELOG test just to please gcc 5+; but it should not be necessary */
|
|
nBitsToDecrease ++;
|
|
totalCost -= 1 << (nBitsToDecrease-1);
|
|
if (rankLast[nBitsToDecrease-1] == noSymbol)
|
|
rankLast[nBitsToDecrease-1] = rankLast[nBitsToDecrease]; /* this rank is no longer empty */
|
|
huffNode[rankLast[nBitsToDecrease]].nbBits ++;
|
|
if (rankLast[nBitsToDecrease] == 0) /* special case, reached largest symbol */
|
|
rankLast[nBitsToDecrease] = noSymbol;
|
|
else {
|
|
rankLast[nBitsToDecrease]--;
|
|
if (huffNode[rankLast[nBitsToDecrease]].nbBits != maxNbBits-nBitsToDecrease)
|
|
rankLast[nBitsToDecrease] = noSymbol; /* this rank is now empty */
|
|
} }
|
|
|
|
while (totalCost < 0) { /* Sometimes, cost correction overshoot */
|
|
if (rankLast[1] == noSymbol) { /* special case : no rank 1 symbol (using maxNbBits-1); let's create one from largest rank 0 (using maxNbBits) */
|
|
while (huffNode[n].nbBits == maxNbBits) n--;
|
|
huffNode[n+1].nbBits--;
|
|
rankLast[1] = n+1;
|
|
totalCost++;
|
|
continue;
|
|
}
|
|
huffNode[ rankLast[1] + 1 ].nbBits--;
|
|
rankLast[1]++;
|
|
totalCost ++;
|
|
} } }
|
|
|
|
return maxNbBits;
|
|
}
|
|
|
|
|
|
typedef struct {
|
|
U32 base;
|
|
U32 current;
|
|
} rankPos;
|
|
|
|
static void HUF_sort(nodeElt* huffNode, const U32* count, U32 maxSymbolValue)
|
|
{
|
|
rankPos rank[32];
|
|
U32 n;
|
|
|
|
memset(rank, 0, sizeof(rank));
|
|
for (n=0; n<=maxSymbolValue; n++) {
|
|
U32 r = BIT_highbit32(count[n] + 1);
|
|
rank[r].base ++;
|
|
}
|
|
for (n=30; n>0; n--) rank[n-1].base += rank[n].base;
|
|
for (n=0; n<32; n++) rank[n].current = rank[n].base;
|
|
for (n=0; n<=maxSymbolValue; n++) {
|
|
U32 c = count[n];
|
|
U32 r = BIT_highbit32(c+1) + 1;
|
|
U32 pos = rank[r].current++;
|
|
while ((pos > rank[r].base) && (c > huffNode[pos-1].count)) huffNode[pos]=huffNode[pos-1], pos--;
|
|
huffNode[pos].count = c;
|
|
huffNode[pos].byte = (BYTE)n;
|
|
}
|
|
}
|
|
|
|
|
|
#define STARTNODE (HUF_MAX_SYMBOL_VALUE+1)
|
|
size_t HUF_buildCTable (HUF_CElt* tree, const U32* count, U32 maxSymbolValue, U32 maxNbBits)
|
|
{
|
|
nodeElt huffNode0[2*HUF_MAX_SYMBOL_VALUE+1 +1];
|
|
nodeElt* huffNode = huffNode0 + 1;
|
|
U32 n, nonNullRank;
|
|
int lowS, lowN;
|
|
U16 nodeNb = STARTNODE;
|
|
U32 nodeRoot;
|
|
|
|
/* safety checks */
|
|
if (maxNbBits == 0) maxNbBits = HUF_DEFAULT_TABLELOG;
|
|
if (maxSymbolValue > HUF_MAX_SYMBOL_VALUE) return ERROR(GENERIC);
|
|
memset(huffNode0, 0, sizeof(huffNode0));
|
|
|
|
/* sort, decreasing order */
|
|
HUF_sort(huffNode, count, maxSymbolValue);
|
|
|
|
/* init for parents */
|
|
nonNullRank = maxSymbolValue;
|
|
while(huffNode[nonNullRank].count == 0) nonNullRank--;
|
|
lowS = nonNullRank; nodeRoot = nodeNb + lowS - 1; lowN = nodeNb;
|
|
huffNode[nodeNb].count = huffNode[lowS].count + huffNode[lowS-1].count;
|
|
huffNode[lowS].parent = huffNode[lowS-1].parent = nodeNb;
|
|
nodeNb++; lowS-=2;
|
|
for (n=nodeNb; n<=nodeRoot; n++) huffNode[n].count = (U32)(1U<<30);
|
|
huffNode0[0].count = (U32)(1U<<31);
|
|
|
|
/* create parents */
|
|
while (nodeNb <= nodeRoot) {
|
|
U32 n1 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
|
|
U32 n2 = (huffNode[lowS].count < huffNode[lowN].count) ? lowS-- : lowN++;
|
|
huffNode[nodeNb].count = huffNode[n1].count + huffNode[n2].count;
|
|
huffNode[n1].parent = huffNode[n2].parent = nodeNb;
|
|
nodeNb++;
|
|
}
|
|
|
|
/* distribute weights (unlimited tree height) */
|
|
huffNode[nodeRoot].nbBits = 0;
|
|
for (n=nodeRoot-1; n>=STARTNODE; n--)
|
|
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
|
for (n=0; n<=nonNullRank; n++)
|
|
huffNode[n].nbBits = huffNode[ huffNode[n].parent ].nbBits + 1;
|
|
|
|
/* enforce maxTableLog */
|
|
maxNbBits = HUF_setMaxHeight(huffNode, nonNullRank, maxNbBits);
|
|
|
|
/* fill result into tree (val, nbBits) */
|
|
{
|
|
U16 nbPerRank[HUF_MAX_TABLELOG+1] = {0};
|
|
U16 valPerRank[HUF_MAX_TABLELOG+1] = {0};
|
|
if (maxNbBits > HUF_MAX_TABLELOG) return ERROR(GENERIC); /* check fit into table */
|
|
for (n=0; n<=nonNullRank; n++)
|
|
nbPerRank[huffNode[n].nbBits]++;
|
|
{
|
|
/* determine stating value per rank */
|
|
U16 min = 0;
|
|
for (n=maxNbBits; n>0; n--) {
|
|
valPerRank[n] = min; /* get starting value within each rank */
|
|
min += nbPerRank[n];
|
|
min >>= 1;
|
|
}
|
|
}
|
|
for (n=0; n<=maxSymbolValue; n++)
|
|
tree[huffNode[n].byte].nbBits = huffNode[n].nbBits; /* push nbBits per symbol, symbol order */
|
|
for (n=0; n<=maxSymbolValue; n++)
|
|
tree[n].val = valPerRank[tree[n].nbBits]++; /* assign value within rank, symbol order */
|
|
}
|
|
|
|
return maxNbBits;
|
|
}
|
|
|
|
static void HUF_encodeSymbol(BIT_CStream_t* bitCPtr, U32 symbol, const HUF_CElt* CTable)
|
|
{
|
|
BIT_addBitsFast(bitCPtr, CTable[symbol].val, CTable[symbol].nbBits);
|
|
}
|
|
|
|
size_t HUF_compressBound(size_t size) { return HUF_COMPRESSBOUND(size); }
|
|
|
|
#define HUF_FLUSHBITS(s) (fast ? BIT_flushBitsFast(s) : BIT_flushBits(s))
|
|
|
|
#define HUF_FLUSHBITS_1(stream) \
|
|
if (sizeof((stream)->bitContainer)*8 < HUF_MAX_TABLELOG*2+7) HUF_FLUSHBITS(stream)
|
|
|
|
#define HUF_FLUSHBITS_2(stream) \
|
|
if (sizeof((stream)->bitContainer)*8 < HUF_MAX_TABLELOG*4+7) HUF_FLUSHBITS(stream)
|
|
|
|
size_t HUF_compress1X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
|
{
|
|
const BYTE* ip = (const BYTE*) src;
|
|
BYTE* const ostart = (BYTE*)dst;
|
|
BYTE* op = ostart;
|
|
BYTE* const oend = ostart + dstSize;
|
|
size_t n;
|
|
const unsigned fast = (dstSize >= HUF_BLOCKBOUND(srcSize));
|
|
size_t errorCode;
|
|
BIT_CStream_t bitC;
|
|
|
|
/* init */
|
|
if (dstSize < 8) return 0; /* not enough space to compress */
|
|
errorCode = BIT_initCStream(&bitC, op, oend-op);
|
|
if (HUF_isError(errorCode)) return 0;
|
|
|
|
n = srcSize & ~3; /* join to mod 4 */
|
|
switch (srcSize & 3)
|
|
{
|
|
case 3 : HUF_encodeSymbol(&bitC, ip[n+ 2], CTable);
|
|
HUF_FLUSHBITS_2(&bitC);
|
|
case 2 : HUF_encodeSymbol(&bitC, ip[n+ 1], CTable);
|
|
HUF_FLUSHBITS_1(&bitC);
|
|
case 1 : HUF_encodeSymbol(&bitC, ip[n+ 0], CTable);
|
|
HUF_FLUSHBITS(&bitC);
|
|
case 0 :
|
|
default: ;
|
|
}
|
|
|
|
for (; n>0; n-=4) { /* note : n&3==0 at this stage */
|
|
HUF_encodeSymbol(&bitC, ip[n- 1], CTable);
|
|
HUF_FLUSHBITS_1(&bitC);
|
|
HUF_encodeSymbol(&bitC, ip[n- 2], CTable);
|
|
HUF_FLUSHBITS_2(&bitC);
|
|
HUF_encodeSymbol(&bitC, ip[n- 3], CTable);
|
|
HUF_FLUSHBITS_1(&bitC);
|
|
HUF_encodeSymbol(&bitC, ip[n- 4], CTable);
|
|
HUF_FLUSHBITS(&bitC);
|
|
}
|
|
|
|
return BIT_closeCStream(&bitC);
|
|
}
|
|
|
|
|
|
size_t HUF_compress4X_usingCTable(void* dst, size_t dstSize, const void* src, size_t srcSize, const HUF_CElt* CTable)
|
|
{
|
|
size_t segmentSize = (srcSize+3)/4; /* first 3 segments */
|
|
size_t errorCode;
|
|
const BYTE* ip = (const BYTE*) src;
|
|
const BYTE* const iend = ip + srcSize;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* op = ostart;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
if (dstSize < 6 + 1 + 1 + 1 + 8) return 0; /* minimum space to compress successfully */
|
|
if (srcSize < 12) return 0; /* no saving possible : too small input */
|
|
op += 6; /* jumpTable */
|
|
|
|
errorCode = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode==0) return 0;
|
|
MEM_writeLE16(ostart, (U16)errorCode);
|
|
|
|
ip += segmentSize;
|
|
op += errorCode;
|
|
errorCode = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode==0) return 0;
|
|
MEM_writeLE16(ostart+2, (U16)errorCode);
|
|
|
|
ip += segmentSize;
|
|
op += errorCode;
|
|
errorCode = HUF_compress1X_usingCTable(op, oend-op, ip, segmentSize, CTable);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode==0) return 0;
|
|
MEM_writeLE16(ostart+4, (U16)errorCode);
|
|
|
|
ip += segmentSize;
|
|
op += errorCode;
|
|
errorCode = HUF_compress1X_usingCTable(op, oend-op, ip, iend-ip, CTable);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode==0) return 0;
|
|
|
|
op += errorCode;
|
|
return op-ostart;
|
|
}
|
|
|
|
|
|
static size_t HUF_compress_internal (
|
|
void* dst, size_t dstSize,
|
|
const void* src, size_t srcSize,
|
|
unsigned maxSymbolValue, unsigned huffLog,
|
|
unsigned singleStream)
|
|
{
|
|
BYTE* const ostart = (BYTE*)dst;
|
|
BYTE* op = ostart;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
U32 count[HUF_MAX_SYMBOL_VALUE+1];
|
|
HUF_CElt CTable[HUF_MAX_SYMBOL_VALUE+1];
|
|
size_t errorCode;
|
|
|
|
/* checks & inits */
|
|
if (srcSize < 1) return 0; /* Uncompressed - note : 1 means rle, so first byte must be correct */
|
|
if (dstSize < 1) return 0; /* not compressible within dst budget */
|
|
if (srcSize > 128 * 1024) return ERROR(srcSize_wrong); /* current block size limit */
|
|
if (huffLog > HUF_MAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
if (!maxSymbolValue) maxSymbolValue = HUF_MAX_SYMBOL_VALUE;
|
|
if (!huffLog) huffLog = HUF_DEFAULT_TABLELOG;
|
|
|
|
/* Scan input and build symbol stats */
|
|
errorCode = FSE_count (count, &maxSymbolValue, (const BYTE*)src, srcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode == srcSize) { *ostart = ((const BYTE*)src)[0]; return 1; }
|
|
if (errorCode <= (srcSize >> 7)+1) return 0; /* Heuristic : not compressible enough */
|
|
|
|
/* Build Huffman Tree */
|
|
errorCode = HUF_buildCTable (CTable, count, maxSymbolValue, huffLog);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
huffLog = (U32)errorCode;
|
|
|
|
/* Write table description header */
|
|
errorCode = HUF_writeCTable (op, dstSize, CTable, maxSymbolValue, huffLog);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode + 12 >= srcSize) return 0; /* not useful to try compression */
|
|
op += errorCode;
|
|
|
|
/* Compress */
|
|
if (singleStream)
|
|
errorCode = HUF_compress1X_usingCTable(op, oend - op, src, srcSize, CTable); /* single segment */
|
|
else
|
|
errorCode = HUF_compress4X_usingCTable(op, oend - op, src, srcSize, CTable);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode==0) return 0;
|
|
op += errorCode;
|
|
|
|
/* check compressibility */
|
|
if ((size_t)(op-ostart) >= srcSize-1)
|
|
return 0;
|
|
|
|
return op-ostart;
|
|
}
|
|
|
|
|
|
size_t HUF_compress1X (void* dst, size_t dstSize,
|
|
const void* src, size_t srcSize,
|
|
unsigned maxSymbolValue, unsigned huffLog)
|
|
{
|
|
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 1);
|
|
}
|
|
|
|
size_t HUF_compress2 (void* dst, size_t dstSize,
|
|
const void* src, size_t srcSize,
|
|
unsigned maxSymbolValue, unsigned huffLog)
|
|
{
|
|
return HUF_compress_internal(dst, dstSize, src, srcSize, maxSymbolValue, huffLog, 0);
|
|
}
|
|
|
|
|
|
size_t HUF_compress (void* dst, size_t maxDstSize, const void* src, size_t srcSize)
|
|
{
|
|
return HUF_compress2(dst, maxDstSize, src, (U32)srcSize, 255, HUF_DEFAULT_TABLELOG);
|
|
}
|
|
|
|
|
|
/* *******************************************************
|
|
* Huff0 : Huffman block decompression
|
|
*********************************************************/
|
|
typedef struct { BYTE byte; BYTE nbBits; } HUF_DEltX2; /* single-symbol decoding */
|
|
|
|
typedef struct { U16 sequence; BYTE nbBits; BYTE length; } HUF_DEltX4; /* double-symbols decoding */
|
|
|
|
typedef struct { BYTE symbol; BYTE weight; } sortedSymbol_t;
|
|
|
|
/*! HUF_readStats
|
|
Read compact Huffman tree, saved by HUF_writeCTable
|
|
@huffWeight : destination buffer
|
|
@return : size read from `src`
|
|
*/
|
|
static size_t HUF_readStats(BYTE* huffWeight, size_t hwSize, U32* rankStats,
|
|
U32* nbSymbolsPtr, U32* tableLogPtr,
|
|
const void* src, size_t srcSize)
|
|
{
|
|
U32 weightTotal;
|
|
U32 tableLog;
|
|
const BYTE* ip = (const BYTE*) src;
|
|
size_t iSize = ip[0];
|
|
size_t oSize;
|
|
U32 n;
|
|
|
|
//memset(huffWeight, 0, hwSize); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
if (iSize >= 128) { /* special header */
|
|
if (iSize >= (242)) { /* RLE */
|
|
static int l[14] = { 1, 2, 3, 4, 7, 8, 15, 16, 31, 32, 63, 64, 127, 128 };
|
|
oSize = l[iSize-242];
|
|
memset(huffWeight, 1, hwSize);
|
|
iSize = 0;
|
|
}
|
|
else { /* Incompressible */
|
|
oSize = iSize - 127;
|
|
iSize = ((oSize+1)/2);
|
|
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
|
if (oSize >= hwSize) return ERROR(corruption_detected);
|
|
ip += 1;
|
|
for (n=0; n<oSize; n+=2) {
|
|
huffWeight[n] = ip[n/2] >> 4;
|
|
huffWeight[n+1] = ip[n/2] & 15;
|
|
} } }
|
|
else { /* header compressed with FSE (normal case) */
|
|
if (iSize+1 > srcSize) return ERROR(srcSize_wrong);
|
|
oSize = FSE_decompress(huffWeight, hwSize-1, ip+1, iSize); /* max (hwSize-1) values decoded, as last one is implied */
|
|
if (FSE_isError(oSize)) return oSize;
|
|
}
|
|
|
|
/* collect weight stats */
|
|
memset(rankStats, 0, (HUF_ABSOLUTEMAX_TABLELOG + 1) * sizeof(U32));
|
|
weightTotal = 0;
|
|
for (n=0; n<oSize; n++) {
|
|
if (huffWeight[n] >= HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
|
|
rankStats[huffWeight[n]]++;
|
|
weightTotal += (1 << huffWeight[n]) >> 1;
|
|
}
|
|
|
|
/* get last non-null symbol weight (implied, total must be 2^n) */
|
|
tableLog = BIT_highbit32(weightTotal) + 1;
|
|
if (tableLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(corruption_detected);
|
|
{ /* determine last weight */
|
|
U32 total = 1 << tableLog;
|
|
U32 rest = total - weightTotal;
|
|
U32 verif = 1 << BIT_highbit32(rest);
|
|
U32 lastWeight = BIT_highbit32(rest) + 1;
|
|
if (verif != rest) return ERROR(corruption_detected); /* last value must be a clean power of 2 */
|
|
huffWeight[oSize] = (BYTE)lastWeight;
|
|
rankStats[lastWeight]++;
|
|
}
|
|
|
|
/* check tree construction validity */
|
|
if ((rankStats[1] < 2) || (rankStats[1] & 1)) return ERROR(corruption_detected); /* by construction : at least 2 elts of rank 1, must be even */
|
|
|
|
/* results */
|
|
*nbSymbolsPtr = (U32)(oSize+1);
|
|
*tableLogPtr = tableLog;
|
|
return iSize+1;
|
|
}
|
|
|
|
|
|
/*-***************************/
|
|
/* single-symbol decoding */
|
|
/*-***************************/
|
|
|
|
size_t HUF_readDTableX2 (U16* DTable, const void* src, size_t srcSize)
|
|
{
|
|
BYTE huffWeight[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1]; /* large enough for values from 0 to 16 */
|
|
U32 tableLog = 0;
|
|
size_t iSize;
|
|
U32 nbSymbols = 0;
|
|
U32 n;
|
|
U32 nextRankStart;
|
|
void* const dtPtr = DTable + 1;
|
|
HUF_DEltX2* const dt = (HUF_DEltX2*)dtPtr;
|
|
|
|
HUF_STATIC_ASSERT(sizeof(HUF_DEltX2) == sizeof(U16)); /* if compilation fails here, assertion is false */
|
|
//memset(huffWeight, 0, sizeof(huffWeight)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
iSize = HUF_readStats(huffWeight, HUF_MAX_SYMBOL_VALUE + 1, rankVal, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > DTable[0]) return ERROR(tableLog_tooLarge); /* DTable is too small */
|
|
DTable[0] = (U16)tableLog; /* maybe should separate sizeof allocated DTable, from used size of DTable, in case of re-use */
|
|
|
|
/* Prepare ranks */
|
|
nextRankStart = 0;
|
|
for (n=1; n<=tableLog; n++) {
|
|
U32 current = nextRankStart;
|
|
nextRankStart += (rankVal[n] << (n-1));
|
|
rankVal[n] = current;
|
|
}
|
|
|
|
/* fill DTable */
|
|
for (n=0; n<nbSymbols; n++) {
|
|
const U32 w = huffWeight[n];
|
|
const U32 length = (1 << w) >> 1;
|
|
U32 i;
|
|
HUF_DEltX2 D;
|
|
D.byte = (BYTE)n; D.nbBits = (BYTE)(tableLog + 1 - w);
|
|
for (i = rankVal[w]; i < rankVal[w] + length; i++)
|
|
dt[i] = D;
|
|
rankVal[w] += length;
|
|
}
|
|
|
|
return iSize;
|
|
}
|
|
|
|
static BYTE HUF_decodeSymbolX2(BIT_DStream_t* Dstream, const HUF_DEltX2* dt, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(Dstream, dtLog); /* note : dtLog >= 1 */
|
|
const BYTE c = dt[val].byte;
|
|
BIT_skipBits(Dstream, dt[val].nbBits);
|
|
return c;
|
|
}
|
|
|
|
#define HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr) \
|
|
*ptr++ = HUF_decodeSymbolX2(DStreamPtr, dt, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX2_1(ptr, DStreamPtr) \
|
|
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
|
|
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
|
|
|
#define HUF_DECODE_SYMBOLX2_2(ptr, DStreamPtr) \
|
|
if (MEM_64bits()) \
|
|
HUF_DECODE_SYMBOLX2_0(ptr, DStreamPtr)
|
|
|
|
static inline size_t HUF_decodeStreamX2(BYTE* p, BIT_DStream_t* const bitDPtr, BYTE* const pEnd, const HUF_DEltX2* const dt, const U32 dtLog)
|
|
{
|
|
BYTE* const pStart = p;
|
|
|
|
/* up to 4 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4)) {
|
|
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX2_1(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX2_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
}
|
|
|
|
/* closer to the end */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd))
|
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
|
|
/* no more data to retrieve from bitstream, hence no need to reload */
|
|
while (p < pEnd)
|
|
HUF_DECODE_SYMBOLX2_0(p, bitDPtr);
|
|
|
|
return pEnd-pStart;
|
|
}
|
|
|
|
size_t HUF_decompress1X2_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U16* DTable)
|
|
{
|
|
BYTE* op = (BYTE*)dst;
|
|
BYTE* const oend = op + dstSize;
|
|
size_t errorCode;
|
|
const U32 dtLog = DTable[0];
|
|
const void* dtPtr = DTable;
|
|
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr)+1;
|
|
BIT_DStream_t bitD;
|
|
errorCode = BIT_initDStream(&bitD, cSrc, cSrcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
HUF_decodeStreamX2(op, &bitD, oend, dt, dtLog);
|
|
|
|
/* check */
|
|
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
|
|
|
return dstSize;
|
|
}
|
|
|
|
size_t HUF_decompress1X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
size_t errorCode;
|
|
|
|
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += errorCode;
|
|
cSrcSize -= errorCode;
|
|
|
|
return HUF_decompress1X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
size_t HUF_decompress4X2_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U16* DTable)
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
const void* const dtPtr = DTable;
|
|
const HUF_DEltX2* const dt = ((const HUF_DEltX2*)dtPtr) +1;
|
|
const U32 dtLog = DTable[0];
|
|
size_t errorCode;
|
|
|
|
/* Check */
|
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD1;
|
|
BIT_DStream_t bitD2;
|
|
BIT_DStream_t bitD3;
|
|
BIT_DStream_t bitD4;
|
|
const size_t length1 = MEM_readLE16(istart);
|
|
const size_t length2 = MEM_readLE16(istart+2);
|
|
const size_t length3 = MEM_readLE16(istart+4);
|
|
size_t length4;
|
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
const BYTE* const istart2 = istart1 + length1;
|
|
const BYTE* const istart3 = istart2 + length2;
|
|
const BYTE* const istart4 = istart3 + length3;
|
|
const size_t segmentSize = (dstSize+3) / 4;
|
|
BYTE* const opStart2 = ostart + segmentSize;
|
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
|
BYTE* op1 = ostart;
|
|
BYTE* op2 = opStart2;
|
|
BYTE* op3 = opStart3;
|
|
BYTE* op4 = opStart4;
|
|
U32 endSignal;
|
|
|
|
length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
|
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX2_1(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_1(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_1(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_1(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX2_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX2_0(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX2_0(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX2_0(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX2_0(op4, &bitD4);
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
}
|
|
|
|
/* check corruption */
|
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
|
/* note : op4 supposed already verified within main loop */
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX2(op1, &bitD1, opStart2, dt, dtLog);
|
|
HUF_decodeStreamX2(op2, &bitD2, opStart3, dt, dtLog);
|
|
HUF_decodeStreamX2(op3, &bitD3, opStart4, dt, dtLog);
|
|
HUF_decodeStreamX2(op4, &bitD4, oend, dt, dtLog);
|
|
|
|
/* check */
|
|
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
if (!endSignal) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
|
|
|
|
size_t HUF_decompress4X2 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX2(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
size_t errorCode;
|
|
|
|
errorCode = HUF_readDTableX2 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
if (errorCode >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += errorCode;
|
|
cSrcSize -= errorCode;
|
|
|
|
return HUF_decompress4X2_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
/* *************************/
|
|
/* double-symbols decoding */
|
|
/* *************************/
|
|
|
|
static void HUF_fillDTableX4Level2(HUF_DEltX4* DTable, U32 sizeLog, const U32 consumed,
|
|
const U32* rankValOrigin, const int minWeight,
|
|
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize,
|
|
U32 nbBitsBaseline, U16 baseSeq)
|
|
{
|
|
HUF_DEltX4 DElt;
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
U32 s;
|
|
|
|
/* get pre-calculated rankVal */
|
|
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
|
|
|
/* fill skipped values */
|
|
if (minWeight>1) {
|
|
U32 i, skipSize = rankVal[minWeight];
|
|
MEM_writeLE16(&(DElt.sequence), baseSeq);
|
|
DElt.nbBits = (BYTE)(consumed);
|
|
DElt.length = 1;
|
|
for (i = 0; i < skipSize; i++)
|
|
DTable[i] = DElt;
|
|
}
|
|
|
|
/* fill DTable */
|
|
for (s=0; s<sortedListSize; s++) { /* note : sortedSymbols already skipped */
|
|
const U32 symbol = sortedSymbols[s].symbol;
|
|
const U32 weight = sortedSymbols[s].weight;
|
|
const U32 nbBits = nbBitsBaseline - weight;
|
|
const U32 length = 1 << (sizeLog-nbBits);
|
|
const U32 start = rankVal[weight];
|
|
U32 i = start;
|
|
const U32 end = start + length;
|
|
|
|
MEM_writeLE16(&(DElt.sequence), (U16)(baseSeq + (symbol << 8)));
|
|
DElt.nbBits = (BYTE)(nbBits + consumed);
|
|
DElt.length = 2;
|
|
do { DTable[i++] = DElt; } while (i<end); /* since length >= 1 */
|
|
|
|
rankVal[weight] += length;
|
|
}
|
|
}
|
|
|
|
typedef U32 rankVal_t[HUF_ABSOLUTEMAX_TABLELOG][HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
|
|
static void HUF_fillDTableX4(HUF_DEltX4* DTable, const U32 targetLog,
|
|
const sortedSymbol_t* sortedList, const U32 sortedListSize,
|
|
const U32* rankStart, rankVal_t rankValOrigin, const U32 maxWeight,
|
|
const U32 nbBitsBaseline)
|
|
{
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
const int scaleLog = nbBitsBaseline - targetLog; /* note : targetLog >= srcLog, hence scaleLog <= 1 */
|
|
const U32 minBits = nbBitsBaseline - maxWeight;
|
|
U32 s;
|
|
|
|
memcpy(rankVal, rankValOrigin, sizeof(rankVal));
|
|
|
|
/* fill DTable */
|
|
for (s=0; s<sortedListSize; s++) {
|
|
const U16 symbol = sortedList[s].symbol;
|
|
const U32 weight = sortedList[s].weight;
|
|
const U32 nbBits = nbBitsBaseline - weight;
|
|
const U32 start = rankVal[weight];
|
|
const U32 length = 1 << (targetLog-nbBits);
|
|
|
|
if (targetLog-nbBits >= minBits) { /* enough room for a second symbol */
|
|
U32 sortedRank;
|
|
int minWeight = nbBits + scaleLog;
|
|
if (minWeight < 1) minWeight = 1;
|
|
sortedRank = rankStart[minWeight];
|
|
HUF_fillDTableX4Level2(DTable+start, targetLog-nbBits, nbBits,
|
|
rankValOrigin[nbBits], minWeight,
|
|
sortedList+sortedRank, sortedListSize-sortedRank,
|
|
nbBitsBaseline, symbol);
|
|
} else {
|
|
U32 i;
|
|
const U32 end = start + length;
|
|
HUF_DEltX4 DElt;
|
|
|
|
MEM_writeLE16(&(DElt.sequence), symbol);
|
|
DElt.nbBits = (BYTE)(nbBits);
|
|
DElt.length = 1;
|
|
for (i = start; i < end; i++)
|
|
DTable[i] = DElt;
|
|
}
|
|
rankVal[weight] += length;
|
|
}
|
|
}
|
|
|
|
size_t HUF_readDTableX4 (U32* DTable, const void* src, size_t srcSize)
|
|
{
|
|
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
|
|
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
|
|
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
|
|
U32* const rankStart = rankStart0+1;
|
|
rankVal_t rankVal;
|
|
U32 tableLog, maxW, sizeOfSort, nbSymbols;
|
|
const U32 memLog = DTable[0];
|
|
size_t iSize;
|
|
void* dtPtr = DTable;
|
|
HUF_DEltX4* const dt = ((HUF_DEltX4*)dtPtr) + 1;
|
|
|
|
HUF_STATIC_ASSERT(sizeof(HUF_DEltX4) == sizeof(U32)); /* if compilation fails here, assertion is false */
|
|
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable can't fit code depth */
|
|
|
|
/* find maxWeight */
|
|
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
|
|
|
/* Get start index of each weight */
|
|
{
|
|
U32 w, nextRankStart = 0;
|
|
for (w=1; w<=maxW; w++) {
|
|
U32 current = nextRankStart;
|
|
nextRankStart += rankStats[w];
|
|
rankStart[w] = current;
|
|
}
|
|
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
|
sizeOfSort = nextRankStart;
|
|
}
|
|
|
|
/* sort symbols by weight */
|
|
{
|
|
U32 s;
|
|
for (s=0; s<nbSymbols; s++) {
|
|
U32 w = weightList[s];
|
|
U32 r = rankStart[w]++;
|
|
sortedSymbol[r].symbol = (BYTE)s;
|
|
sortedSymbol[r].weight = (BYTE)w;
|
|
}
|
|
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
|
}
|
|
|
|
/* Build rankVal */
|
|
{
|
|
const U32 minBits = tableLog+1 - maxW;
|
|
U32 nextRankVal = 0;
|
|
U32 w, consumed;
|
|
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
|
|
U32* rankVal0 = rankVal[0];
|
|
for (w=1; w<=maxW; w++) {
|
|
U32 current = nextRankVal;
|
|
nextRankVal += rankStats[w] << (w+rescale);
|
|
rankVal0[w] = current;
|
|
}
|
|
for (consumed = minBits; consumed <= memLog - minBits; consumed++) {
|
|
U32* rankValPtr = rankVal[consumed];
|
|
for (w = 1; w <= maxW; w++) {
|
|
rankValPtr[w] = rankVal0[w] >> consumed;
|
|
} } }
|
|
|
|
HUF_fillDTableX4(dt, memLog,
|
|
sortedSymbol, sizeOfSort,
|
|
rankStart0, rankVal, maxW,
|
|
tableLog+1);
|
|
|
|
return iSize;
|
|
}
|
|
|
|
|
|
static U32 HUF_decodeSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
memcpy(op, dt+val, 2);
|
|
BIT_skipBits(DStream, dt[val].nbBits);
|
|
return dt[val].length;
|
|
}
|
|
|
|
static U32 HUF_decodeLastSymbolX4(void* op, BIT_DStream_t* DStream, const HUF_DEltX4* dt, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
memcpy(op, dt+val, 1);
|
|
if (dt[val].length==1) BIT_skipBits(DStream, dt[val].nbBits);
|
|
else {
|
|
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
|
|
BIT_skipBits(DStream, dt[val].nbBits);
|
|
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
|
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
|
} }
|
|
return 1;
|
|
}
|
|
|
|
|
|
#define HUF_DECODE_SYMBOLX4_0(ptr, DStreamPtr) \
|
|
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX4_1(ptr, DStreamPtr) \
|
|
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
|
|
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX4_2(ptr, DStreamPtr) \
|
|
if (MEM_64bits()) \
|
|
ptr += HUF_decodeSymbolX4(ptr, DStreamPtr, dt, dtLog)
|
|
|
|
static inline size_t HUF_decodeStreamX4(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const HUF_DEltX4* const dt, const U32 dtLog)
|
|
{
|
|
BYTE* const pStart = p;
|
|
|
|
/* up to 8 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p < pEnd-7)) {
|
|
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX4_1(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX4_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
|
}
|
|
|
|
/* closer to the end */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-2))
|
|
HUF_DECODE_SYMBOLX4_0(p, bitDPtr);
|
|
|
|
while (p <= pEnd-2)
|
|
HUF_DECODE_SYMBOLX4_0(p, bitDPtr); /* no need to reload : reached the end of DStream */
|
|
|
|
if (p < pEnd)
|
|
p += HUF_decodeLastSymbolX4(p, bitDPtr, dt, dtLog);
|
|
|
|
return p-pStart;
|
|
}
|
|
|
|
|
|
size_t HUF_decompress1X4_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U32* DTable)
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
const U32 dtLog = DTable[0];
|
|
const void* const dtPtr = DTable;
|
|
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD;
|
|
errorCode = BIT_initDStream(&bitD, istart, cSrcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX4(ostart, &bitD, oend, dt, dtLog);
|
|
|
|
/* check */
|
|
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
|
|
size_t HUF_decompress1X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
|
|
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(hSize)) return hSize;
|
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += hSize;
|
|
cSrcSize -= hSize;
|
|
|
|
return HUF_decompress1X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
size_t HUF_decompress4X4_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U32* DTable)
|
|
{
|
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
const void* const dtPtr = DTable;
|
|
const HUF_DEltX4* const dt = ((const HUF_DEltX4*)dtPtr) +1;
|
|
const U32 dtLog = DTable[0];
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD1;
|
|
BIT_DStream_t bitD2;
|
|
BIT_DStream_t bitD3;
|
|
BIT_DStream_t bitD4;
|
|
const size_t length1 = MEM_readLE16(istart);
|
|
const size_t length2 = MEM_readLE16(istart+2);
|
|
const size_t length3 = MEM_readLE16(istart+4);
|
|
size_t length4;
|
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
const BYTE* const istart2 = istart1 + length1;
|
|
const BYTE* const istart3 = istart2 + length2;
|
|
const BYTE* const istart4 = istart3 + length3;
|
|
const size_t segmentSize = (dstSize+3) / 4;
|
|
BYTE* const opStart2 = ostart + segmentSize;
|
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
|
BYTE* op1 = ostart;
|
|
BYTE* op2 = opStart2;
|
|
BYTE* op3 = opStart3;
|
|
BYTE* op4 = opStart4;
|
|
U32 endSignal;
|
|
|
|
length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* 16-32 symbols per loop (4-8 symbols per stream) */
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
for ( ; (endSignal==BIT_DStream_unfinished) && (op4<(oend-7)) ; ) {
|
|
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX4_1(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_1(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_1(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_1(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX4_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX4_0(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX4_0(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX4_0(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX4_0(op4, &bitD4);
|
|
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
}
|
|
|
|
/* check corruption */
|
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
|
/* note : op4 supposed already verified within main loop */
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX4(op1, &bitD1, opStart2, dt, dtLog);
|
|
HUF_decodeStreamX4(op2, &bitD2, opStart3, dt, dtLog);
|
|
HUF_decodeStreamX4(op3, &bitD3, opStart4, dt, dtLog);
|
|
HUF_decodeStreamX4(op4, &bitD4, oend, dt, dtLog);
|
|
|
|
/* check */
|
|
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
if (!endSignal) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
}
|
|
|
|
|
|
size_t HUF_decompress4X4 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX4(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
|
|
size_t hSize = HUF_readDTableX4 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(hSize)) return hSize;
|
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += hSize;
|
|
cSrcSize -= hSize;
|
|
|
|
return HUF_decompress4X4_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
/* ********************************/
|
|
/* quad-symbol decoding */
|
|
/* ********************************/
|
|
typedef struct { BYTE nbBits; BYTE nbBytes; } HUF_DDescX6;
|
|
typedef union { BYTE byte[4]; U32 sequence; } HUF_DSeqX6;
|
|
|
|
/* recursive, up to level 3; may benefit from <template>-like strategy to nest each level inline */
|
|
static void HUF_fillDTableX6LevelN(HUF_DDescX6* DDescription, HUF_DSeqX6* DSequence, int sizeLog,
|
|
const rankVal_t rankValOrigin, const U32 consumed, const int minWeight, const U32 maxWeight,
|
|
const sortedSymbol_t* sortedSymbols, const U32 sortedListSize, const U32* rankStart,
|
|
const U32 nbBitsBaseline, HUF_DSeqX6 baseSeq, HUF_DDescX6 DDesc)
|
|
{
|
|
const int scaleLog = nbBitsBaseline - sizeLog; /* note : targetLog >= (nbBitsBaseline-1), hence scaleLog <= 1 */
|
|
const int minBits = nbBitsBaseline - maxWeight;
|
|
const U32 level = DDesc.nbBytes;
|
|
U32 rankVal[HUF_ABSOLUTEMAX_TABLELOG + 1];
|
|
U32 symbolStartPos, s;
|
|
|
|
/* local rankVal, will be modified */
|
|
memcpy(rankVal, rankValOrigin[consumed], sizeof(rankVal));
|
|
|
|
/* fill skipped values */
|
|
if (minWeight>1) {
|
|
U32 i;
|
|
const U32 skipSize = rankVal[minWeight];
|
|
for (i = 0; i < skipSize; i++) {
|
|
DSequence[i] = baseSeq;
|
|
DDescription[i] = DDesc;
|
|
} }
|
|
|
|
/* fill DTable */
|
|
DDesc.nbBytes++;
|
|
symbolStartPos = rankStart[minWeight];
|
|
for (s=symbolStartPos; s<sortedListSize; s++) {
|
|
const BYTE symbol = sortedSymbols[s].symbol;
|
|
const U32 weight = sortedSymbols[s].weight; /* >= 1 (sorted) */
|
|
const int nbBits = nbBitsBaseline - weight; /* >= 1 (by construction) */
|
|
const int totalBits = consumed+nbBits;
|
|
const U32 start = rankVal[weight];
|
|
const U32 length = 1 << (sizeLog-nbBits);
|
|
baseSeq.byte[level] = symbol;
|
|
DDesc.nbBits = (BYTE)totalBits;
|
|
|
|
if ((level<3) && (sizeLog-totalBits >= minBits)) { /* enough room for another symbol */
|
|
int nextMinWeight = totalBits + scaleLog;
|
|
if (nextMinWeight < 1) nextMinWeight = 1;
|
|
HUF_fillDTableX6LevelN(DDescription+start, DSequence+start, sizeLog-nbBits,
|
|
rankValOrigin, totalBits, nextMinWeight, maxWeight,
|
|
sortedSymbols, sortedListSize, rankStart,
|
|
nbBitsBaseline, baseSeq, DDesc); /* recursive (max : level 3) */
|
|
} else {
|
|
U32 i;
|
|
const U32 end = start + length;
|
|
for (i = start; i < end; i++) {
|
|
DDescription[i] = DDesc;
|
|
DSequence[i] = baseSeq;
|
|
} }
|
|
rankVal[weight] += length;
|
|
}
|
|
}
|
|
|
|
|
|
/* note : same preparation as X4 */
|
|
size_t HUF_readDTableX6 (U32* DTable, const void* src, size_t srcSize)
|
|
{
|
|
BYTE weightList[HUF_MAX_SYMBOL_VALUE + 1];
|
|
sortedSymbol_t sortedSymbol[HUF_MAX_SYMBOL_VALUE + 1];
|
|
U32 rankStats[HUF_ABSOLUTEMAX_TABLELOG + 1] = { 0 };
|
|
U32 rankStart0[HUF_ABSOLUTEMAX_TABLELOG + 2] = { 0 };
|
|
U32* const rankStart = rankStart0+1;
|
|
U32 tableLog, maxW, sizeOfSort, nbSymbols;
|
|
rankVal_t rankVal;
|
|
const U32 memLog = DTable[0];
|
|
size_t iSize;
|
|
|
|
if (memLog > HUF_ABSOLUTEMAX_TABLELOG) return ERROR(tableLog_tooLarge);
|
|
//memset(weightList, 0, sizeof(weightList)); /* is not necessary, even though some analyzer complain ... */
|
|
|
|
iSize = HUF_readStats(weightList, HUF_MAX_SYMBOL_VALUE + 1, rankStats, &nbSymbols, &tableLog, src, srcSize);
|
|
if (HUF_isError(iSize)) return iSize;
|
|
|
|
/* check result */
|
|
if (tableLog > memLog) return ERROR(tableLog_tooLarge); /* DTable is too small */
|
|
|
|
/* find maxWeight */
|
|
for (maxW = tableLog; rankStats[maxW]==0; maxW--) {} /* necessarily finds a solution before 0 */
|
|
|
|
/* Get start index of each weight */
|
|
{
|
|
U32 w, nextRankStart = 0;
|
|
for (w=1; w<=maxW; w++) {
|
|
U32 current = nextRankStart;
|
|
nextRankStart += rankStats[w];
|
|
rankStart[w] = current;
|
|
}
|
|
rankStart[0] = nextRankStart; /* put all 0w symbols at the end of sorted list*/
|
|
sizeOfSort = nextRankStart;
|
|
}
|
|
|
|
/* sort symbols by weight */
|
|
{
|
|
U32 s;
|
|
for (s=0; s<nbSymbols; s++) {
|
|
U32 w = weightList[s];
|
|
U32 r = rankStart[w]++;
|
|
sortedSymbol[r].symbol = (BYTE)s;
|
|
sortedSymbol[r].weight = (BYTE)w;
|
|
}
|
|
rankStart[0] = 0; /* forget 0w symbols; this is beginning of weight(1) */
|
|
}
|
|
|
|
/* Build rankVal */
|
|
{
|
|
const U32 minBits = tableLog+1 - maxW;
|
|
U32 nextRankVal = 0;
|
|
U32 w, consumed;
|
|
const int rescale = (memLog-tableLog) - 1; /* tableLog <= memLog */
|
|
U32* rankVal0 = rankVal[0];
|
|
for (w=1; w<=maxW; w++) {
|
|
U32 current = nextRankVal;
|
|
nextRankVal += rankStats[w] << (w+rescale);
|
|
rankVal0[w] = current;
|
|
}
|
|
for (consumed = minBits; consumed <= memLog - minBits; consumed++) {
|
|
U32* rankValPtr = rankVal[consumed];
|
|
for (w = 1; w <= maxW; w++) {
|
|
rankValPtr[w] = rankVal0[w] >> consumed;
|
|
} } }
|
|
|
|
/* fill tables */
|
|
{
|
|
void* ddPtr = DTable+1;
|
|
HUF_DDescX6* DDescription = (HUF_DDescX6*)ddPtr;
|
|
void* dsPtr = DTable + 1 + ((size_t)1<<(memLog-1));
|
|
HUF_DSeqX6* DSequence = (HUF_DSeqX6*)dsPtr;
|
|
HUF_DSeqX6 DSeq;
|
|
HUF_DDescX6 DDesc;
|
|
DSeq.sequence = 0;
|
|
DDesc.nbBits = 0;
|
|
DDesc.nbBytes = 0;
|
|
HUF_fillDTableX6LevelN(DDescription, DSequence, memLog,
|
|
(const U32 (*)[HUF_ABSOLUTEMAX_TABLELOG + 1])rankVal, 0, 1, maxW,
|
|
sortedSymbol, sizeOfSort, rankStart0,
|
|
tableLog+1, DSeq, DDesc);
|
|
}
|
|
|
|
return iSize;
|
|
}
|
|
|
|
|
|
static U32 HUF_decodeSymbolX6(void* op, BIT_DStream_t* DStream, const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
memcpy(op, ds+val, sizeof(HUF_DSeqX6));
|
|
BIT_skipBits(DStream, dd[val].nbBits);
|
|
return dd[val].nbBytes;
|
|
}
|
|
|
|
static U32 HUF_decodeLastSymbolsX6(void* op, const U32 maxL, BIT_DStream_t* DStream,
|
|
const HUF_DDescX6* dd, const HUF_DSeqX6* ds, const U32 dtLog)
|
|
{
|
|
const size_t val = BIT_lookBitsFast(DStream, dtLog); /* note : dtLog >= 1 */
|
|
U32 length = dd[val].nbBytes;
|
|
if (length <= maxL) {
|
|
memcpy(op, ds+val, length);
|
|
BIT_skipBits(DStream, dd[val].nbBits);
|
|
return length;
|
|
}
|
|
memcpy(op, ds+val, maxL);
|
|
if (DStream->bitsConsumed < (sizeof(DStream->bitContainer)*8)) {
|
|
BIT_skipBits(DStream, dd[val].nbBits);
|
|
if (DStream->bitsConsumed > (sizeof(DStream->bitContainer)*8))
|
|
DStream->bitsConsumed = (sizeof(DStream->bitContainer)*8); /* ugly hack; works only because it's the last symbol. Note : can't easily extract nbBits from just this symbol */
|
|
}
|
|
return maxL;
|
|
}
|
|
|
|
|
|
#define HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr) \
|
|
ptr += HUF_decodeSymbolX6(ptr, DStreamPtr, dd, ds, dtLog)
|
|
|
|
#define HUF_DECODE_SYMBOLX6_1(ptr, DStreamPtr) \
|
|
if (MEM_64bits() || (HUF_MAX_TABLELOG<=12)) \
|
|
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
|
|
|
|
#define HUF_DECODE_SYMBOLX6_2(ptr, DStreamPtr) \
|
|
if (MEM_64bits()) \
|
|
HUF_DECODE_SYMBOLX6_0(ptr, DStreamPtr)
|
|
|
|
static inline size_t HUF_decodeStreamX6(BYTE* p, BIT_DStream_t* bitDPtr, BYTE* const pEnd, const U32* DTable, const U32 dtLog)
|
|
{
|
|
const void* const ddPtr = DTable+1;
|
|
const HUF_DDescX6* dd = (const HUF_DDescX6*)ddPtr;
|
|
const void* const dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
|
|
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)dsPtr;
|
|
BYTE* const pStart = p;
|
|
|
|
/* up to 16 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-16)) {
|
|
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX6_1(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX6_2(p, bitDPtr);
|
|
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
|
|
}
|
|
|
|
/* closer to the end, up to 4 symbols at a time */
|
|
while ((BIT_reloadDStream(bitDPtr) == BIT_DStream_unfinished) && (p <= pEnd-4))
|
|
HUF_DECODE_SYMBOLX6_0(p, bitDPtr);
|
|
|
|
while ((BIT_reloadDStream(bitDPtr) <= BIT_DStream_endOfBuffer) && (p < pEnd))
|
|
p += HUF_decodeLastSymbolsX6(p, (U32)(pEnd-p), bitDPtr, dd, ds, dtLog);
|
|
|
|
return p-pStart;
|
|
}
|
|
|
|
|
|
size_t HUF_decompress1X6_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U32* DTable)
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
const U32 dtLog = DTable[0];
|
|
size_t errorCode;
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD;
|
|
errorCode = BIT_initDStream(&bitD, istart, cSrcSize);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX6(ostart, &bitD, oend, DTable, dtLog);
|
|
|
|
/* check */
|
|
if (!BIT_endOfDStream(&bitD)) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
|
|
size_t HUF_decompress1X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
|
|
size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(hSize)) return hSize;
|
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += hSize;
|
|
cSrcSize -= hSize;
|
|
|
|
return HUF_decompress1X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
size_t HUF_decompress4X6_usingDTable(
|
|
void* dst, size_t dstSize,
|
|
const void* cSrc, size_t cSrcSize,
|
|
const U32* DTable)
|
|
{
|
|
const BYTE* const istart = (const BYTE*) cSrc;
|
|
BYTE* const ostart = (BYTE*) dst;
|
|
BYTE* const oend = ostart + dstSize;
|
|
|
|
const U32 dtLog = DTable[0];
|
|
const void* const ddPtr = DTable+1;
|
|
const HUF_DDescX6* dd = (const HUF_DDescX6*)ddPtr;
|
|
const void* const dsPtr = DTable + 1 + ((size_t)1<<(dtLog-1));
|
|
const HUF_DSeqX6* ds = (const HUF_DSeqX6*)dsPtr;
|
|
size_t errorCode;
|
|
|
|
/* Check */
|
|
if (cSrcSize < 10) return ERROR(corruption_detected); /* strict minimum : jump table + 1 byte per stream */
|
|
|
|
/* Init */
|
|
BIT_DStream_t bitD1;
|
|
BIT_DStream_t bitD2;
|
|
BIT_DStream_t bitD3;
|
|
BIT_DStream_t bitD4;
|
|
const size_t length1 = MEM_readLE16(istart);
|
|
const size_t length2 = MEM_readLE16(istart+2);
|
|
const size_t length3 = MEM_readLE16(istart+4);
|
|
size_t length4;
|
|
const BYTE* const istart1 = istart + 6; /* jumpTable */
|
|
const BYTE* const istart2 = istart1 + length1;
|
|
const BYTE* const istart3 = istart2 + length2;
|
|
const BYTE* const istart4 = istart3 + length3;
|
|
const size_t segmentSize = (dstSize+3) / 4;
|
|
BYTE* const opStart2 = ostart + segmentSize;
|
|
BYTE* const opStart3 = opStart2 + segmentSize;
|
|
BYTE* const opStart4 = opStart3 + segmentSize;
|
|
BYTE* op1 = ostart;
|
|
BYTE* op2 = opStart2;
|
|
BYTE* op3 = opStart3;
|
|
BYTE* op4 = opStart4;
|
|
U32 endSignal;
|
|
|
|
length4 = cSrcSize - (length1 + length2 + length3 + 6);
|
|
if (length4 > cSrcSize) return ERROR(corruption_detected); /* overflow */
|
|
errorCode = BIT_initDStream(&bitD1, istart1, length1);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD2, istart2, length2);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD3, istart3, length3);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
errorCode = BIT_initDStream(&bitD4, istart4, length4);
|
|
if (HUF_isError(errorCode)) return errorCode;
|
|
|
|
/* 16-64 symbols per loop (4-16 symbols per stream) */
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
for ( ; (op3 <= opStart4) && (endSignal==BIT_DStream_unfinished) && (op4<=(oend-16)) ; ) {
|
|
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX6_1(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_1(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_1(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_1(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX6_2(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_2(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_2(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_2(op4, &bitD4);
|
|
HUF_DECODE_SYMBOLX6_0(op1, &bitD1);
|
|
HUF_DECODE_SYMBOLX6_0(op2, &bitD2);
|
|
HUF_DECODE_SYMBOLX6_0(op3, &bitD3);
|
|
HUF_DECODE_SYMBOLX6_0(op4, &bitD4);
|
|
|
|
endSignal = BIT_reloadDStream(&bitD1) | BIT_reloadDStream(&bitD2) | BIT_reloadDStream(&bitD3) | BIT_reloadDStream(&bitD4);
|
|
}
|
|
|
|
/* check corruption */
|
|
if (op1 > opStart2) return ERROR(corruption_detected);
|
|
if (op2 > opStart3) return ERROR(corruption_detected);
|
|
if (op3 > opStart4) return ERROR(corruption_detected);
|
|
/* note : op4 supposed already verified within main loop */
|
|
|
|
/* finish bitStreams one by one */
|
|
HUF_decodeStreamX6(op1, &bitD1, opStart2, DTable, dtLog);
|
|
HUF_decodeStreamX6(op2, &bitD2, opStart3, DTable, dtLog);
|
|
HUF_decodeStreamX6(op3, &bitD3, opStart4, DTable, dtLog);
|
|
HUF_decodeStreamX6(op4, &bitD4, oend, DTable, dtLog);
|
|
|
|
/* check */
|
|
endSignal = BIT_endOfDStream(&bitD1) & BIT_endOfDStream(&bitD2) & BIT_endOfDStream(&bitD3) & BIT_endOfDStream(&bitD4);
|
|
if (!endSignal) return ERROR(corruption_detected);
|
|
|
|
/* decoded size */
|
|
return dstSize;
|
|
}
|
|
|
|
|
|
size_t HUF_decompress4X6 (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
HUF_CREATE_STATIC_DTABLEX6(DTable, HUF_MAX_TABLELOG);
|
|
const BYTE* ip = (const BYTE*) cSrc;
|
|
|
|
size_t hSize = HUF_readDTableX6 (DTable, cSrc, cSrcSize);
|
|
if (HUF_isError(hSize)) return hSize;
|
|
if (hSize >= cSrcSize) return ERROR(srcSize_wrong);
|
|
ip += hSize;
|
|
cSrcSize -= hSize;
|
|
|
|
return HUF_decompress4X6_usingDTable (dst, dstSize, ip, cSrcSize, DTable);
|
|
}
|
|
|
|
|
|
/* ********************************/
|
|
/* Generic decompression selector */
|
|
/* ********************************/
|
|
|
|
typedef struct { U32 tableTime; U32 decode256Time; } algo_time_t;
|
|
static const algo_time_t algoTime[16 /* Quantization */][3 /* single, double, quad */] =
|
|
{
|
|
/* single, double, quad */
|
|
{{0,0}, {1,1}, {2,2}}, /* Q==0 : impossible */
|
|
{{0,0}, {1,1}, {2,2}}, /* Q==1 : impossible */
|
|
{{ 38,130}, {1313, 74}, {2151, 38}}, /* Q == 2 : 12-18% */
|
|
{{ 448,128}, {1353, 74}, {2238, 41}}, /* Q == 3 : 18-25% */
|
|
{{ 556,128}, {1353, 74}, {2238, 47}}, /* Q == 4 : 25-32% */
|
|
{{ 714,128}, {1418, 74}, {2436, 53}}, /* Q == 5 : 32-38% */
|
|
{{ 883,128}, {1437, 74}, {2464, 61}}, /* Q == 6 : 38-44% */
|
|
{{ 897,128}, {1515, 75}, {2622, 68}}, /* Q == 7 : 44-50% */
|
|
{{ 926,128}, {1613, 75}, {2730, 75}}, /* Q == 8 : 50-56% */
|
|
{{ 947,128}, {1729, 77}, {3359, 77}}, /* Q == 9 : 56-62% */
|
|
{{1107,128}, {2083, 81}, {4006, 84}}, /* Q ==10 : 62-69% */
|
|
{{1177,128}, {2379, 87}, {4785, 88}}, /* Q ==11 : 69-75% */
|
|
{{1242,128}, {2415, 93}, {5155, 84}}, /* Q ==12 : 75-81% */
|
|
{{1349,128}, {2644,106}, {5260,106}}, /* Q ==13 : 81-87% */
|
|
{{1455,128}, {2422,124}, {4174,124}}, /* Q ==14 : 87-93% */
|
|
{{ 722,128}, {1891,145}, {1936,146}}, /* Q ==15 : 93-99% */
|
|
};
|
|
|
|
typedef size_t (*decompressionAlgo)(void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize);
|
|
|
|
size_t HUF_decompress (void* dst, size_t dstSize, const void* cSrc, size_t cSrcSize)
|
|
{
|
|
static const decompressionAlgo decompress[3] = { HUF_decompress4X2, HUF_decompress4X4, HUF_decompress4X6 };
|
|
/* estimate decompression time */
|
|
U32 Q;
|
|
const U32 D256 = (U32)(dstSize >> 8);
|
|
U32 Dtime[3];
|
|
U32 algoNb = 0;
|
|
int n;
|
|
|
|
/* validation checks */
|
|
if (dstSize == 0) return ERROR(dstSize_tooSmall);
|
|
if (cSrcSize > dstSize) return ERROR(corruption_detected); /* invalid */
|
|
if (cSrcSize == dstSize) { memcpy(dst, cSrc, dstSize); return dstSize; } /* not compressed */
|
|
if (cSrcSize == 1) { memset(dst, *(const BYTE*)cSrc, dstSize); return dstSize; } /* RLE */
|
|
|
|
/* decoder timing evaluation */
|
|
Q = (U32)(cSrcSize * 16 / dstSize); /* Q < 16 since dstSize > cSrcSize */
|
|
for (n=0; n<3; n++)
|
|
Dtime[n] = algoTime[Q][n].tableTime + (algoTime[Q][n].decode256Time * D256);
|
|
|
|
Dtime[1] += Dtime[1] >> 4; Dtime[2] += Dtime[2] >> 3; /* advantage to algorithms using less memory, for cache eviction */
|
|
|
|
if (Dtime[1] < Dtime[0]) algoNb = 1;
|
|
if (Dtime[2] < Dtime[algoNb]) algoNb = 2;
|
|
|
|
return decompress[algoNb](dst, dstSize, cSrc, cSrcSize);
|
|
|
|
//return HUF_decompress4X2(dst, dstSize, cSrc, cSrcSize); /* multi-streams single-symbol decoding */
|
|
//return HUF_decompress4X4(dst, dstSize, cSrc, cSrcSize); /* multi-streams double-symbols decoding */
|
|
//return HUF_decompress4X6(dst, dstSize, cSrc, cSrcSize); /* multi-streams quad-symbols decoding */
|
|
}
|