ClickHouse/src/Common/Stopwatch.h
2020-04-03 18:14:31 +03:00

202 lines
6.4 KiB
C++

#pragma once
#include <common/time.h>
#include <common/types.h>
#include <atomic>
inline UInt64 clock_gettime_ns(clockid_t clock_type = CLOCK_MONOTONIC)
{
struct timespec ts;
clock_gettime(clock_type, &ts);
return UInt64(ts.tv_sec * 1000000000LL + ts.tv_nsec);
}
/** Differs from Poco::Stopwatch only by using 'clock_gettime' instead of 'gettimeofday',
* returns nanoseconds instead of microseconds, and also by other minor differencies.
*/
class Stopwatch
{
public:
/** CLOCK_MONOTONIC works relatively efficient (~15 million calls/sec) and doesn't lead to syscall.
* Pass CLOCK_MONOTONIC_COARSE, if you need better performance with acceptable cost of several milliseconds of inaccuracy.
*/
Stopwatch(clockid_t clock_type_ = CLOCK_MONOTONIC) : clock_type(clock_type_) { start(); }
void start() { start_ns = nanoseconds(); is_running = true; }
void stop() { stop_ns = nanoseconds(); is_running = false; }
void reset() { start_ns = 0; stop_ns = 0; is_running = false; }
void restart() { start(); }
UInt64 elapsed() const { return elapsedNanoseconds(); }
UInt64 elapsedNanoseconds() const { return is_running ? nanoseconds() - start_ns : stop_ns - start_ns; }
UInt64 elapsedMicroseconds() const { return elapsedNanoseconds() / 1000U; }
UInt64 elapsedMilliseconds() const { return elapsedNanoseconds() / 1000000UL; }
double elapsedSeconds() const { return static_cast<double>(elapsedNanoseconds()) / 1000000000ULL; }
private:
UInt64 start_ns = 0;
UInt64 stop_ns = 0;
clockid_t clock_type;
bool is_running = false;
UInt64 nanoseconds() const { return clock_gettime_ns(clock_type); }
};
class AtomicStopwatch
{
public:
AtomicStopwatch(clockid_t clock_type_ = CLOCK_MONOTONIC) : clock_type(clock_type_) { restart(); }
void restart() { start_ns = nanoseconds(); }
UInt64 elapsed() const { return nanoseconds() - start_ns; }
UInt64 elapsedMilliseconds() const { return elapsed() / 1000000UL; }
double elapsedSeconds() const { return static_cast<double>(elapsed()) / 1000000000ULL; }
/** If specified amount of time has passed, then restarts timer and returns true.
* Otherwise returns false.
* This is done atomically.
*/
bool compareAndRestart(double seconds)
{
UInt64 threshold = static_cast<UInt64>(seconds * 1000000000.0);
UInt64 current_ns = nanoseconds();
UInt64 current_start_ns = start_ns;
while (true)
{
if (current_ns < current_start_ns + threshold)
return false;
if (start_ns.compare_exchange_weak(current_start_ns, current_ns))
return true;
}
}
struct Lock
{
AtomicStopwatch * parent = nullptr;
Lock() {}
operator bool() const { return parent != nullptr; }
Lock(AtomicStopwatch * parent_) : parent(parent_) {}
Lock(Lock &&) = default;
~Lock()
{
if (parent)
parent->restart();
}
};
/** If specified amount of time has passed and timer is not locked right now, then returns Lock object,
* which locks timer and, on destruction, restarts timer and releases the lock.
* Otherwise returns object, that is implicitly casting to false.
* This is done atomically.
*
* Usage:
* if (auto lock = timer.compareAndRestartDeferred(1))
* /// do some work, that must be done in one thread and not more frequently than each second.
*/
Lock compareAndRestartDeferred(double seconds)
{
UInt64 threshold = UInt64(seconds * 1000000000.0);
UInt64 current_ns = nanoseconds();
UInt64 current_start_ns = start_ns;
while (true)
{
if ((current_start_ns & 0x8000000000000000ULL))
return {};
if (current_ns < current_start_ns + threshold)
return {};
if (start_ns.compare_exchange_weak(current_start_ns, current_ns | 0x8000000000000000ULL))
return Lock(this);
}
}
private:
std::atomic<UInt64> start_ns;
std::atomic<bool> lock {false};
clockid_t clock_type;
/// Most significant bit is a lock. When it is set, compareAndRestartDeferred method will return false.
UInt64 nanoseconds() const { return clock_gettime_ns(clock_type) & 0x7FFFFFFFFFFFFFFFULL; }
};
/// Like ordinary StopWatch, but uses getrusage() system call
struct StopwatchRUsage
{
StopwatchRUsage() = default;
void start() { start_ts = Timestamp::current(); is_running = true; }
void stop() { stop_ts = Timestamp::current(); is_running = false; }
void reset() { start_ts = Timestamp(); stop_ts = Timestamp(); is_running = false; }
void restart() { start(); }
UInt64 elapsed(bool count_user = true, bool count_sys = true) const
{
return elapsedNanoseconds(count_user, count_sys);
}
UInt64 elapsedNanoseconds(bool count_user = true, bool count_sys = true) const
{
return (is_running ? Timestamp::current() : stop_ts).nanoseconds(count_user, count_sys) - start_ts.nanoseconds(count_user, count_sys);
}
UInt64 elapsedMicroseconds(bool count_user = true, bool count_sys = true) const
{
return elapsedNanoseconds(count_user, count_sys) / 1000UL;
}
UInt64 elapsedMilliseconds(bool count_user = true, bool count_sys = true) const
{
return elapsedNanoseconds(count_user, count_sys) / 1000000UL;
}
double elapsedSeconds(bool count_user = true, bool count_sys = true) const
{
return static_cast<double>(elapsedNanoseconds(count_user, count_sys)) / 1000000000.0;
}
private:
struct Timestamp
{
UInt64 user_ns = 0;
UInt64 sys_ns = 0;
static Timestamp current();
UInt64 nanoseconds(bool count_user = true, bool count_sys = true) const
{
return (count_user ? user_ns : 0) + (count_sys ? sys_ns : 0);
}
};
Timestamp start_ts;
Timestamp stop_ts;
bool is_running = false;
};
template <typename TStopwatch>
class StopwatchGuard : public TStopwatch
{
public:
explicit StopwatchGuard(UInt64 & elapsed_ns_) : elapsed_ns(elapsed_ns_) {}
~StopwatchGuard() { elapsed_ns += TStopwatch::elapsedNanoseconds(); }
private:
UInt64 & elapsed_ns;
};