ClickHouse/src/Columns/ColumnVector.cpp

542 lines
16 KiB
C++

#include "ColumnVector.h"
#include <pdqsort.h>
#include <Columns/ColumnsCommon.h>
#include <Columns/ColumnCompressed.h>
#include <Columns/MaskOperations.h>
#include <Processors/Transforms/ColumnGathererTransform.h>
#include <IO/WriteHelpers.h>
#include <Common/Arena.h>
#include <Common/Exception.h>
#include <Common/HashTable/Hash.h>
#include <Common/NaNUtils.h>
#include <Common/RadixSort.h>
#include <Common/SipHash.h>
#include <Common/WeakHash.h>
#include <Common/assert_cast.h>
#include <base/sort.h>
#include <base/unaligned.h>
#include <base/bit_cast.h>
#include <base/scope_guard.h>
#include <cmath>
#include <cstring>
#if defined(__SSE2__)
# include <emmintrin.h>
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
extern const int LOGICAL_ERROR;
extern const int NOT_IMPLEMENTED;
}
template <typename T>
StringRef ColumnVector<T>::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const
{
auto * pos = arena.allocContinue(sizeof(T), begin);
unalignedStore<T>(pos, data[n]);
return StringRef(pos, sizeof(T));
}
template <typename T>
const char * ColumnVector<T>::deserializeAndInsertFromArena(const char * pos)
{
data.emplace_back(unalignedLoad<T>(pos));
return pos + sizeof(T);
}
template <typename T>
const char * ColumnVector<T>::skipSerializedInArena(const char * pos) const
{
return pos + sizeof(T);
}
template <typename T>
void ColumnVector<T>::updateHashWithValue(size_t n, SipHash & hash) const
{
hash.update(data[n]);
}
template <typename T>
void ColumnVector<T>::updateWeakHash32(WeakHash32 & hash) const
{
auto s = data.size();
if (hash.getData().size() != s)
throw Exception("Size of WeakHash32 does not match size of column: column size is " + std::to_string(s) +
", hash size is " + std::to_string(hash.getData().size()), ErrorCodes::LOGICAL_ERROR);
const T * begin = data.data();
const T * end = begin + s;
UInt32 * hash_data = hash.getData().data();
while (begin < end)
{
*hash_data = intHashCRC32(*begin, *hash_data);
++begin;
++hash_data;
}
}
template <typename T>
void ColumnVector<T>::updateHashFast(SipHash & hash) const
{
hash.update(reinterpret_cast<const char *>(data.data()), size() * sizeof(data[0]));
}
template <typename T>
struct ColumnVector<T>::less
{
const Self & parent;
int nan_direction_hint;
less(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::less(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::greater
{
const Self & parent;
int nan_direction_hint;
greater(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
template <typename T>
struct ColumnVector<T>::equals
{
const Self & parent;
int nan_direction_hint;
equals(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {}
bool operator()(size_t lhs, size_t rhs) const { return CompareHelper<T>::equals(parent.data[lhs], parent.data[rhs], nan_direction_hint); }
};
namespace
{
template <typename T>
struct ValueWithIndex
{
T value;
UInt32 index;
};
template <typename T>
struct RadixSortTraits : RadixSortNumTraits<T>
{
using Element = ValueWithIndex<T>;
using Result = size_t;
static T & extractKey(Element & elem) { return elem.value; }
static size_t extractResult(Element & elem) { return elem.index; }
};
}
template <typename T>
void ColumnVector<T>::getPermutation(bool reverse, size_t limit, int nan_direction_hint, IColumn::Permutation & res) const
{
size_t s = data.size();
res.resize(s);
if (s == 0)
return;
if (limit >= s)
limit = 0;
if (limit)
{
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (reverse)
partial_sort(res.begin(), res.begin() + limit, res.end(), greater(*this, nan_direction_hint));
else
partial_sort(res.begin(), res.begin() + limit, res.end(), less(*this, nan_direction_hint));
}
else
{
/// A case for radix sort
if constexpr (is_arithmetic_v<T> && !is_big_int_v<T>)
{
/// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters.
if (s >= 256 && s <= std::numeric_limits<UInt32>::max())
{
PaddedPODArray<ValueWithIndex<T>> pairs(s);
for (UInt32 i = 0; i < UInt32(s); ++i)
pairs[i] = {data[i], i};
RadixSort<RadixSortTraits<T>>::executeLSD(pairs.data(), s, reverse, res.data());
/// Radix sort treats all NaNs to be greater than all numbers.
/// If the user needs the opposite, we must move them accordingly.
if (std::is_floating_point_v<T> && nan_direction_hint < 0)
{
size_t nans_to_move = 0;
for (size_t i = 0; i < s; ++i)
{
if (isNaN(data[res[reverse ? i : s - 1 - i]]))
++nans_to_move;
else
break;
}
if (nans_to_move)
{
std::rotate(std::begin(res), std::begin(res) + (reverse ? nans_to_move : s - nans_to_move), std::end(res));
}
}
return;
}
}
/// Default sorting algorithm.
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (reverse)
pdqsort(res.begin(), res.end(), greater(*this, nan_direction_hint));
else
pdqsort(res.begin(), res.end(), less(*this, nan_direction_hint));
}
}
template <typename T>
void ColumnVector<T>::updatePermutation(bool reverse, size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_range) const
{
auto sort = [](auto begin, auto end, auto pred) { pdqsort(begin, end, pred); };
auto partial_sort = [](auto begin, auto mid, auto end, auto pred) { ::partial_sort(begin, mid, end, pred); };
if (reverse)
this->updatePermutationImpl(
limit, res, equal_range,
greater(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
else
this->updatePermutationImpl(
limit, res, equal_range,
less(*this, nan_direction_hint),
equals(*this, nan_direction_hint),
sort, partial_sort);
}
template <typename T>
MutableColumnPtr ColumnVector<T>::cloneResized(size_t size) const
{
auto res = this->create();
if (size > 0)
{
auto & new_col = static_cast<Self &>(*res);
new_col.data.resize(size);
size_t count = std::min(this->size(), size);
memcpy(new_col.data.data(), data.data(), count * sizeof(data[0]));
if (size > count)
memset(static_cast<void *>(&new_col.data[count]), 0, (size - count) * sizeof(ValueType));
}
return res;
}
template <typename T>
UInt64 ColumnVector<T>::get64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return bit_cast<UInt64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as UInt64", TypeName<T>);
}
template <typename T>
inline Float64 ColumnVector<T>::getFloat64(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float64>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float64", TypeName<T>);
}
template <typename T>
Float32 ColumnVector<T>::getFloat32(size_t n [[maybe_unused]]) const
{
if constexpr (is_arithmetic_v<T>)
return static_cast<Float32>(data[n]);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Cannot get the value of {} as Float32", TypeName<T>);
}
template <typename T>
void ColumnVector<T>::insertRangeFrom(const IColumn & src, size_t start, size_t length)
{
const ColumnVector & src_vec = assert_cast<const ColumnVector &>(src);
if (start + length > src_vec.data.size())
throw Exception("Parameters start = "
+ toString(start) + ", length = "
+ toString(length) + " are out of bound in ColumnVector<T>::insertRangeFrom method"
" (data.size() = " + toString(src_vec.data.size()) + ").",
ErrorCodes::PARAMETER_OUT_OF_BOUND);
size_t old_size = data.size();
data.resize(old_size + length);
memcpy(data.data() + old_size, &src_vec.data[start], length * sizeof(data[0]));
}
template <typename T>
ColumnPtr ColumnVector<T>::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const
{
size_t size = data.size();
if (size != filt.size())
throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
auto res = this->create();
Container & res_data = res->getData();
if (result_size_hint)
res_data.reserve(result_size_hint > 0 ? result_size_hint : size);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
const T * data_pos = data.data();
#ifdef __SSE2__
/** A slightly more optimized version.
* Based on the assumption that often pieces of consecutive values
* completely pass or do not pass the filter.
* Therefore, we will optimistically check the parts of `SIMD_BYTES` values.
*/
static constexpr size_t SIMD_BYTES = 16;
const __m128i zero16 = _mm_setzero_si128();
const UInt8 * filt_end_sse = filt_pos + size / SIMD_BYTES * SIMD_BYTES;
while (filt_pos < filt_end_sse)
{
UInt16 mask = _mm_movemask_epi8(_mm_cmpeq_epi8(_mm_loadu_si128(reinterpret_cast<const __m128i *>(filt_pos)), zero16));
mask = ~mask;
if (0xFFFF == mask)
{
res_data.insert(data_pos, data_pos + SIMD_BYTES);
}
else
{
while (mask)
{
size_t index = __builtin_ctz(mask);
res_data.push_back(data_pos[index]);
mask = mask & (mask - 1);
}
}
filt_pos += SIMD_BYTES;
data_pos += SIMD_BYTES;
}
#endif
while (filt_pos < filt_end)
{
if (*filt_pos)
res_data.push_back(*data_pos);
++filt_pos;
++data_pos;
}
return res;
}
template <typename T>
void ColumnVector<T>::expand(const IColumn::Filter & mask, bool inverted)
{
expandDataByMask<T>(data, mask, inverted);
}
template <typename T>
void ColumnVector<T>::applyZeroMap(const IColumn::Filter & filt, bool inverted)
{
size_t size = data.size();
if (size != filt.size())
throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
const UInt8 * filt_pos = filt.data();
const UInt8 * filt_end = filt_pos + size;
T * data_pos = data.data();
if (inverted)
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (!*filt_pos)
*data_pos = 0;
}
else
{
for (; filt_pos < filt_end; ++filt_pos, ++data_pos)
if (*filt_pos)
*data_pos = 0;
}
}
template <typename T>
ColumnPtr ColumnVector<T>::permute(const IColumn::Permutation & perm, size_t limit) const
{
return permuteImpl(*this, perm, limit);
}
template <typename T>
ColumnPtr ColumnVector<T>::index(const IColumn & indexes, size_t limit) const
{
return selectIndexImpl(*this, indexes, limit);
}
template <typename T>
ColumnPtr ColumnVector<T>::replicate(const IColumn::Offsets & offsets) const
{
const size_t size = data.size();
if (size != offsets.size())
throw Exception("Size of offsets doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
if (0 == size)
return this->create();
auto res = this->create(offsets.back());
auto it = res->getData().begin(); // NOLINT
for (size_t i = 0; i < size; ++i)
{
const auto span_end = res->getData().begin() + offsets[i]; // NOLINT
for (; it != span_end; ++it)
*it = data[i];
}
return res;
}
template <typename T>
void ColumnVector<T>::gather(ColumnGathererStream & gatherer)
{
gatherer.gather(*this);
}
template <typename T>
void ColumnVector<T>::getExtremes(Field & min, Field & max) const
{
size_t size = data.size();
if (size == 0)
{
min = T(0);
max = T(0);
return;
}
bool has_value = false;
/** Skip all NaNs in extremes calculation.
* If all values are NaNs, then return NaN.
* NOTE: There exist many different NaNs.
* Different NaN could be returned: not bit-exact value as one of NaNs from column.
*/
T cur_min = NaNOrZero<T>();
T cur_max = NaNOrZero<T>();
for (const T & x : data)
{
if (isNaN(x))
continue;
if (!has_value)
{
cur_min = x;
cur_max = x;
has_value = true;
continue;
}
if (x < cur_min)
cur_min = x;
else if (x > cur_max)
cur_max = x;
}
min = NearestFieldType<T>(cur_min);
max = NearestFieldType<T>(cur_max);
}
#pragma GCC diagnostic ignored "-Wold-style-cast"
template <typename T>
ColumnPtr ColumnVector<T>::compress() const
{
size_t source_size = data.size() * sizeof(T);
/// Don't compress small blocks.
if (source_size < 4096) /// A wild guess.
return ColumnCompressed::wrap(this->getPtr());
auto compressed = ColumnCompressed::compressBuffer(data.data(), source_size, false);
if (!compressed)
return ColumnCompressed::wrap(this->getPtr());
return ColumnCompressed::create(data.size(), compressed->size(),
[compressed = std::move(compressed), column_size = data.size()]
{
auto res = ColumnVector<T>::create(column_size);
ColumnCompressed::decompressBuffer(
compressed->data(), res->getData().data(), compressed->size(), column_size * sizeof(T));
return res;
});
}
template <typename T>
ColumnPtr ColumnVector<T>::createWithOffsets(const IColumn::Offsets & offsets, const Field & default_field, size_t total_rows, size_t shift) const
{
if (offsets.size() + shift != size())
throw Exception(ErrorCodes::LOGICAL_ERROR,
"Incompatible sizes of offsets ({}), shift ({}) and size of column {}", offsets.size(), shift, size());
auto res = this->create();
auto & res_data = res->getData();
T default_value = safeGet<T>(default_field);
res_data.resize_fill(total_rows, default_value);
for (size_t i = 0; i < offsets.size(); ++i)
res_data[offsets[i]] = data[i + shift];
return res;
}
/// Explicit template instantiations - to avoid code bloat in headers.
template class ColumnVector<UInt8>;
template class ColumnVector<UInt16>;
template class ColumnVector<UInt32>;
template class ColumnVector<UInt64>;
template class ColumnVector<UInt128>;
template class ColumnVector<UInt256>;
template class ColumnVector<Int8>;
template class ColumnVector<Int16>;
template class ColumnVector<Int32>;
template class ColumnVector<Int64>;
template class ColumnVector<Int128>;
template class ColumnVector<Int256>;
template class ColumnVector<Float32>;
template class ColumnVector<Float64>;
template class ColumnVector<UUID>;
}