ClickHouse/dbms/src/Functions/FunctionsLogical.h
2018-11-24 04:48:06 +03:00

542 lines
17 KiB
C++

#pragma once
#include <DataTypes/DataTypesNumber.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnConst.h>
#include <Columns/ColumnNullable.h>
#include <DataTypes/DataTypeNullable.h>
#include <Common/typeid_cast.h>
#include <IO/WriteHelpers.h>
#include <Functions/IFunction.h>
#include <Functions/FunctionHelpers.h>
#include <Common/FieldVisitors.h>
#include <type_traits>
#if USE_EMBEDDED_COMPILER
#include <DataTypes/Native.h>
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
#include <llvm/IR/IRBuilder.h> // Y_IGNORE
#pragma GCC diagnostic pop
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ILLEGAL_COLUMN;
}
/** Behaviour in presence of NULLs:
*
* Functions AND, XOR, NOT use default implementation for NULLs:
* - if one of arguments is Nullable, they return Nullable result where NULLs are returned when at least one argument was NULL.
*
* But function OR is different.
* It always return non-Nullable result and NULL are equivalent to 0 (false).
* For example, 1 OR NULL returns 1, not NULL.
*/
struct AndImpl
{
static inline constexpr bool isSaturable()
{
return true;
}
static inline constexpr bool isSaturatedValue(bool a)
{
return !a;
}
static inline constexpr bool apply(bool a, bool b)
{
return a && b;
}
static inline constexpr bool specialImplementationForNulls() { return false; }
};
struct OrImpl
{
static inline constexpr bool isSaturable()
{
return true;
}
static inline constexpr bool isSaturatedValue(bool a)
{
return a;
}
static inline constexpr bool apply(bool a, bool b)
{
return a || b;
}
static inline constexpr bool specialImplementationForNulls() { return true; }
};
struct XorImpl
{
static inline constexpr bool isSaturable()
{
return false;
}
static inline constexpr bool isSaturatedValue(bool)
{
return false;
}
static inline constexpr bool apply(bool a, bool b)
{
return a != b;
}
static inline constexpr bool specialImplementationForNulls() { return false; }
#if USE_EMBEDDED_COMPILER
static inline llvm::Value * apply(llvm::IRBuilder<> & builder, llvm::Value * a, llvm::Value * b)
{
return builder.CreateXor(a, b);
}
#endif
};
template <typename A>
struct NotImpl
{
using ResultType = UInt8;
static inline UInt8 apply(A a)
{
return !a;
}
#if USE_EMBEDDED_COMPILER
static inline llvm::Value * apply(llvm::IRBuilder<> & builder, llvm::Value * a)
{
return builder.CreateNot(a);
}
#endif
};
using UInt8Container = ColumnUInt8::Container;
using UInt8ColumnPtrs = std::vector<const ColumnUInt8 *>;
template <typename Op, size_t N>
struct AssociativeOperationImpl
{
/// Erases the N last columns from `in` (if there are less, then all) and puts into `result` their combination.
static void NO_INLINE execute(UInt8ColumnPtrs & in, UInt8Container & result)
{
if (N > in.size())
{
AssociativeOperationImpl<Op, N - 1>::execute(in, result);
return;
}
AssociativeOperationImpl<Op, N> operation(in);
in.erase(in.end() - N, in.end());
size_t n = result.size();
for (size_t i = 0; i < n; ++i)
{
result[i] = operation.apply(i);
}
}
const UInt8Container & vec;
AssociativeOperationImpl<Op, N - 1> continuation;
/// Remembers the last N columns from `in`.
AssociativeOperationImpl(UInt8ColumnPtrs & in)
: vec(in[in.size() - N]->getData()), continuation(in) {}
/// Returns a combination of values in the i-th row of all columns stored in the constructor.
inline UInt8 apply(size_t i) const
{
if (Op::isSaturable())
{
UInt8 a = vec[i];
return Op::isSaturatedValue(a) ? a : continuation.apply(i);
}
else
{
return Op::apply(vec[i], continuation.apply(i));
}
}
};
template <typename Op>
struct AssociativeOperationImpl<Op, 1>
{
static void execute(UInt8ColumnPtrs &, UInt8Container &)
{
throw Exception("Logical error: AssociativeOperationImpl<Op, 1>::execute called", ErrorCodes::LOGICAL_ERROR);
}
const UInt8Container & vec;
AssociativeOperationImpl(UInt8ColumnPtrs & in)
: vec(in[in.size() - 1]->getData()) {}
inline UInt8 apply(size_t i) const
{
return vec[i];
}
};
template <typename Impl, typename Name>
class FunctionAnyArityLogical : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionAnyArityLogical>(); }
private:
bool extractConstColumns(ColumnRawPtrs & in, UInt8 & res)
{
bool has_res = false;
for (int i = static_cast<int>(in.size()) - 1; i >= 0; --i)
{
if (!in[i]->isColumnConst())
continue;
Field value = (*in[i])[0];
UInt8 x = !value.isNull() && applyVisitor(FieldVisitorConvertToNumber<bool>(), value);
if (has_res)
{
res = Impl::apply(res, x);
}
else
{
res = x;
has_res = true;
}
in.erase(in.begin() + i);
}
return has_res;
}
template <typename T>
bool convertTypeToUInt8(const IColumn * column, UInt8Container & res)
{
auto col = checkAndGetColumn<ColumnVector<T>>(column);
if (!col)
return false;
const auto & vec = col->getData();
size_t n = res.size();
for (size_t i = 0; i < n; ++i)
res[i] = !!vec[i];
return true;
}
template <typename T>
bool convertNullableTypeToUInt8(const IColumn * column, UInt8Container & res)
{
auto col_nullable = checkAndGetColumn<ColumnNullable>(column);
auto col = checkAndGetColumn<ColumnVector<T>>(&col_nullable->getNestedColumn());
if (!col)
return false;
const auto & vec = col->getData();
const auto & null_map = col_nullable->getNullMapData();
size_t n = res.size();
for (size_t i = 0; i < n; ++i)
res[i] = !!vec[i] && !null_map[i];
return true;
}
void convertToUInt8(const IColumn * column, UInt8Container & res)
{
if (!convertTypeToUInt8<Int8>(column, res) &&
!convertTypeToUInt8<Int16>(column, res) &&
!convertTypeToUInt8<Int32>(column, res) &&
!convertTypeToUInt8<Int64>(column, res) &&
!convertTypeToUInt8<UInt16>(column, res) &&
!convertTypeToUInt8<UInt32>(column, res) &&
!convertTypeToUInt8<UInt64>(column, res) &&
!convertTypeToUInt8<Float32>(column, res) &&
!convertTypeToUInt8<Float64>(column, res) &&
!convertNullableTypeToUInt8<Int8>(column, res) &&
!convertNullableTypeToUInt8<Int16>(column, res) &&
!convertNullableTypeToUInt8<Int32>(column, res) &&
!convertNullableTypeToUInt8<Int64>(column, res) &&
!convertNullableTypeToUInt8<UInt8>(column, res) &&
!convertNullableTypeToUInt8<UInt16>(column, res) &&
!convertNullableTypeToUInt8<UInt32>(column, res) &&
!convertNullableTypeToUInt8<UInt64>(column, res) &&
!convertNullableTypeToUInt8<Float32>(column, res) &&
!convertNullableTypeToUInt8<Float64>(column, res))
throw Exception("Unexpected type of column: " + column->getName(), ErrorCodes::ILLEGAL_COLUMN);
}
public:
String getName() const override
{
return name;
}
bool isVariadic() const override { return true; }
size_t getNumberOfArguments() const override { return 0; }
bool useDefaultImplementationForNulls() const override { return !Impl::specialImplementationForNulls(); }
/// Get result types by argument types. If the function does not apply to these arguments, throw an exception.
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (arguments.size() < 2)
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be at least 2.",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
for (size_t i = 0; i < arguments.size(); ++i)
if (!(isNumber(arguments[i])
|| (Impl::specialImplementationForNulls() && (arguments[i]->onlyNull() || isNumber(removeNullable(arguments[i]))))))
throw Exception("Illegal type ("
+ arguments[i]->getName()
+ ") of " + toString(i + 1) + " argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return std::make_shared<DataTypeUInt8>();
}
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
size_t num_arguments = arguments.size();
ColumnRawPtrs in(num_arguments);
for (size_t i = 0; i < num_arguments; ++i)
in[i] = block.getByPosition(arguments[i]).column.get();
size_t rows = in[0]->size();
/// Combine all constant columns into a single value.
UInt8 const_val = 0;
bool has_consts = extractConstColumns(in, const_val);
// If this value uniquely determines the result, return it.
if (has_consts && (in.empty() || Impl::apply(const_val, 0) == Impl::apply(const_val, 1)))
{
if (!in.empty())
const_val = Impl::apply(const_val, 0);
block.getByPosition(result).column = DataTypeUInt8().createColumnConst(rows, toField(const_val));
return;
}
/// If this value is a neutral element, let's forget about it.
if (has_consts && Impl::apply(const_val, 0) == 0 && Impl::apply(const_val, 1) == 1)
has_consts = false;
auto col_res = ColumnUInt8::create();
UInt8Container & vec_res = col_res->getData();
if (has_consts)
{
vec_res.assign(rows, const_val);
in.push_back(col_res.get());
}
else
{
vec_res.resize(rows);
}
/// Convert all columns to UInt8
UInt8ColumnPtrs uint8_in;
Columns converted_columns;
for (const IColumn * column : in)
{
if (auto uint8_column = checkAndGetColumn<ColumnUInt8>(column))
uint8_in.push_back(uint8_column);
else
{
auto converted_column = ColumnUInt8::create(rows);
convertToUInt8(column, converted_column->getData());
uint8_in.push_back(converted_column.get());
converted_columns.emplace_back(std::move(converted_column));
}
}
/// Effeciently combine all the columns of the correct type.
while (uint8_in.size() > 1)
{
/// With a large block size, combining 6 columns per pass is the fastest.
/// When small - more, is faster.
AssociativeOperationImpl<Impl, 10>::execute(uint8_in, vec_res);
uint8_in.push_back(col_res.get());
}
/// This is possible if there is exactly one non-constant among the arguments, and it is of type UInt8.
if (uint8_in[0] != col_res.get())
vec_res.assign(uint8_in[0]->getData());
block.getByPosition(result).column = std::move(col_res);
}
#if USE_EMBEDDED_COMPILER
bool isCompilableImpl(const DataTypes &) const override { return true; }
llvm::Value * compileImpl(llvm::IRBuilderBase & builder, const DataTypes & types, ValuePlaceholders values) const override
{
auto & b = static_cast<llvm::IRBuilder<> &>(builder);
if constexpr (!Impl::isSaturable())
{
auto * result = nativeBoolCast(b, types[0], values[0]());
for (size_t i = 1; i < types.size(); i++)
result = Impl::apply(b, result, nativeBoolCast(b, types[i], values[i]()));
return b.CreateSelect(result, b.getInt8(1), b.getInt8(0));
}
constexpr bool breakOnTrue = Impl::isSaturatedValue(true);
auto * next = b.GetInsertBlock();
auto * stop = llvm::BasicBlock::Create(next->getContext(), "", next->getParent());
b.SetInsertPoint(stop);
auto * phi = b.CreatePHI(b.getInt8Ty(), values.size());
for (size_t i = 0; i < types.size(); i++)
{
b.SetInsertPoint(next);
auto * value = values[i]();
auto * truth = nativeBoolCast(b, types[i], value);
if (!types[i]->equals(DataTypeUInt8{}))
value = b.CreateSelect(truth, b.getInt8(1), b.getInt8(0));
phi->addIncoming(value, b.GetInsertBlock());
if (i + 1 < types.size())
{
next = llvm::BasicBlock::Create(next->getContext(), "", next->getParent());
b.CreateCondBr(truth, breakOnTrue ? stop : next, breakOnTrue ? next : stop);
}
}
b.CreateBr(stop);
b.SetInsertPoint(stop);
return phi;
}
#endif
};
template <typename A, typename Op>
struct UnaryOperationImpl
{
using ResultType = typename Op::ResultType;
using ArrayA = typename ColumnVector<A>::Container;
using ArrayC = typename ColumnVector<ResultType>::Container;
static void NO_INLINE vector(const ArrayA & a, ArrayC & c)
{
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
c[i] = Op::apply(a[i]);
}
static void constant(A a, ResultType & c)
{
c = Op::apply(a);
}
};
template <template <typename> class Impl, typename Name>
class FunctionUnaryLogical : public IFunction
{
public:
static constexpr auto name = Name::name;
static FunctionPtr create(const Context &) { return std::make_shared<FunctionUnaryLogical>(); }
private:
template <typename T>
bool executeType(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (auto col = checkAndGetColumn<ColumnVector<T>>(block.getByPosition(arguments[0]).column.get()))
{
auto col_res = ColumnUInt8::create();
typename ColumnUInt8::Container & vec_res = col_res->getData();
vec_res.resize(col->getData().size());
UnaryOperationImpl<T, Impl<T>>::vector(col->getData(), vec_res);
block.getByPosition(result).column = std::move(col_res);
return true;
}
return false;
}
public:
String getName() const override
{
return name;
}
size_t getNumberOfArguments() const override { return 1; }
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
{
if (!isNumber(arguments[0]))
throw Exception("Illegal type ("
+ arguments[0]->getName()
+ ") of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return std::make_shared<DataTypeUInt8>();
}
bool useDefaultImplementationForConstants() const override { return true; }
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t /*input_rows_count*/) override
{
if (!(executeType<UInt8>(block, arguments, result)
|| executeType<UInt16>(block, arguments, result)
|| executeType<UInt32>(block, arguments, result)
|| executeType<UInt64>(block, arguments, result)
|| executeType<Int8>(block, arguments, result)
|| executeType<Int16>(block, arguments, result)
|| executeType<Int32>(block, arguments, result)
|| executeType<Int64>(block, arguments, result)
|| executeType<Float32>(block, arguments, result)
|| executeType<Float64>(block, arguments, result)))
throw Exception("Illegal column " + block.getByPosition(arguments[0]).column->getName()
+ " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
#if USE_EMBEDDED_COMPILER
bool isCompilableImpl(const DataTypes &) const override { return true; }
llvm::Value * compileImpl(llvm::IRBuilderBase & builder, const DataTypes & types, ValuePlaceholders values) const override
{
auto & b = static_cast<llvm::IRBuilder<> &>(builder);
return b.CreateSelect(Impl<UInt8>::apply(b, nativeBoolCast(b, types[0], values[0]())), b.getInt8(1), b.getInt8(0));
}
#endif
};
struct NameAnd { static constexpr auto name = "and"; };
struct NameOr { static constexpr auto name = "or"; };
struct NameXor { static constexpr auto name = "xor"; };
struct NameNot { static constexpr auto name = "not"; };
using FunctionAnd = FunctionAnyArityLogical<AndImpl, NameAnd>;
using FunctionOr = FunctionAnyArityLogical<OrImpl, NameOr>;
using FunctionXor = FunctionAnyArityLogical<XorImpl, NameXor>;
using FunctionNot = FunctionUnaryLogical<NotImpl, NameNot>;
}