mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-12 01:12:12 +00:00
7b4fc7300c
fix fix fix
573 lines
22 KiB
C++
573 lines
22 KiB
C++
#include <Functions/FunctionsStringHash.h>
|
|
|
|
#include <Functions/ExtractString.h>
|
|
#include <Functions/FunctionFactory.h>
|
|
#include <Functions/FunctionsHashing.h>
|
|
#include <Common/HashTable/ClearableHashMap.h>
|
|
#include <Common/HashTable/Hash.h>
|
|
#include <Common/PODArray.h>
|
|
|
|
#include <Core/Defines.h>
|
|
|
|
#include <bitset>
|
|
#include <functional>
|
|
#include <memory>
|
|
#include <tuple>
|
|
#include <vector>
|
|
#include <common/unaligned.h>
|
|
|
|
namespace DB
|
|
{
|
|
struct Hash
|
|
{
|
|
static ALWAYS_INLINE inline UInt64 ngramASCIIHash(const UInt8 * code_points)
|
|
{
|
|
return intHashCRC32(unalignedLoad<UInt32>(code_points));
|
|
}
|
|
|
|
static ALWAYS_INLINE inline UInt64 ngramUTF8Hash(const UInt32 * code_points)
|
|
{
|
|
UInt64 combined = (static_cast<UInt64>(code_points[0]) << 32) | code_points[1];
|
|
#ifdef __SSE4_2__
|
|
return _mm_crc32_u64(code_points[2], combined);
|
|
#else
|
|
return (intHashCRC32(combined) ^ intHashCRC32(code_points[2]));
|
|
#endif
|
|
}
|
|
|
|
static ALWAYS_INLINE inline UInt64 wordShinglesHash(const UInt64 * hashes, size_t size, size_t offset)
|
|
{
|
|
UInt64 crc = -1ULL;
|
|
#ifdef __SSE4_2__
|
|
for (size_t i = offset; i < size; ++i)
|
|
crc = _mm_crc32_u64(crc, hashes[i]);
|
|
for (size_t i = 0; i < offset; ++i)
|
|
crc = _mm_crc32_u64(crc, hashes[i]);
|
|
#else
|
|
for (size_t i = offset; i < size; ++i)
|
|
crc = intHashCRC32(crc) ^ intHashCRC32(hashes[i]);
|
|
for (size_t i = 0; i < offset; ++i)
|
|
crc = intHashCRC32(crc) ^ intHashCRC32(hashes[i]);
|
|
#endif
|
|
return crc;
|
|
}
|
|
|
|
template <typename CodePoint>
|
|
static ALWAYS_INLINE inline UInt64 hashSum(const CodePoint * hashes, size_t K)
|
|
{
|
|
UInt64 crc = -1ULL;
|
|
#ifdef __SSE4_2__
|
|
for (size_t i = 0; i < K; ++i)
|
|
crc = _mm_crc32_u64(crc, hashes[i]);
|
|
#else
|
|
for (size_t i = 0; i < K; ++i)
|
|
crc = intHashCRC32(crc) ^ intHashCRC32(hashes[i]);
|
|
#endif
|
|
return crc;
|
|
}
|
|
};
|
|
|
|
// Simhash String -> UInt64
|
|
// N: the length of ngram or words shingles
|
|
// CodePoint: UInt8(ASCII) or UInt32(UTF8)
|
|
// UTF8: means ASCII or UTF8, these two parameters CodePoint and UTF8 can only be (UInt8, false) or (UInt32, true)
|
|
// Ngram: means ngram(true) or words shingles(false)
|
|
// CaseInsensitive: means should we consider about letter case or not
|
|
template <size_t N, typename CodePoint, bool UTF8, bool Ngram, bool CaseInsensitive>
|
|
struct SimhashImpl
|
|
{
|
|
using ResultType = UInt64;
|
|
using StrOp = ExtractStringImpl<N, CaseInsensitive>;
|
|
// we made an assumption that the size of one word cann't exceed 128, which may not true
|
|
// if some word's size exceed 128, it would be cut up to several word
|
|
static constexpr size_t max_string_size = 1u << 15;
|
|
static constexpr size_t simultaneously_codepoints_num = StrOp::default_padding + N - 1;
|
|
|
|
// Simhash ngram calculate function: String ->UInt64
|
|
// this function extracting ngram from input string, and maintain a 64-dimensions vector
|
|
// for each ngram, calculate a 64 bit hash value, and update the vector according the hash value
|
|
// finally return a 64 bit value(UInt64), i'th bit is 1 means vector[i] > 0, otherwise, vector[i] < 0
|
|
static ALWAYS_INLINE inline UInt64 ngramCalculateHashValue(
|
|
const char * data,
|
|
size_t size,
|
|
size_t (*read_code_points)(CodePoint *, const char *&, const char *),
|
|
UInt64 (*hash_functor)(const CodePoint *))
|
|
{
|
|
const char * start = data;
|
|
const char * end = data + size;
|
|
// fingerprint vector, all dimensions initialized to zero at the first
|
|
Int64 finger_vec[64] = {};
|
|
CodePoint cp[simultaneously_codepoints_num] = {};
|
|
|
|
size_t found = read_code_points(cp, start, end);
|
|
size_t iter = N - 1;
|
|
|
|
do
|
|
{
|
|
for (; iter + N <= found; ++iter)
|
|
{
|
|
// for each ngram, we can calculate an 64 bit hash
|
|
// then update finger_vec according to this hash value
|
|
// if the i'th bit is 1, finger_vec[i] plus 1, otherwise minus 1
|
|
UInt64 hash_value = hash_functor(cp + iter);
|
|
std::bitset<64> bits(hash_value);
|
|
for (size_t i = 0; i < 64; ++i)
|
|
{
|
|
finger_vec[i] += ((bits.test(i)) ? 1 : -1);
|
|
}
|
|
}
|
|
iter = 0;
|
|
} while (start < end && (found = read_code_points(cp, start, end)));
|
|
|
|
// finally, we return a 64 bit value according to finger_vec
|
|
// if finger_vec[i] > 0, the i'th bit of the value is 1, otherwise 0
|
|
std::bitset<64> res_bit(0u);
|
|
for (size_t i = 0; i < 64; ++i)
|
|
{
|
|
if (finger_vec[i] > 0)
|
|
res_bit.set(i);
|
|
}
|
|
return res_bit.to_ullong();
|
|
}
|
|
|
|
// Simhash word shingle calculate funtion: String -> UInt64
|
|
// this function extracting n word shingle from input string, and maintain a 64-dimensions vector as well
|
|
// for each word shingle, calculate a 64 bit hash value, and update the vector according the hash value
|
|
// finally return a 64 bit value(UInt64), i'th bit is 1 means vector[i] > 0, otherwise, vector[i] < 0
|
|
//
|
|
// word shingle hash value calculate:
|
|
// 1. at the first, extracts N word shingles and calculate N hash values, store into an array, use this N hash values
|
|
// to calculate the first word shingle hash value
|
|
// 2. next, we extrac one word each time, and calculate a new hash value of the new word,then use the latest N hash
|
|
// values to caculate the next word shingle hash value
|
|
static ALWAYS_INLINE inline UInt64 wordShinglesCalculateHashValue(
|
|
const char * data,
|
|
size_t size,
|
|
size_t (*read_one_word)(PaddedPODArray<CodePoint> &, const char *&, const char *),
|
|
UInt64 (*hash_functor)(const UInt64 *, size_t, size_t))
|
|
{
|
|
const char * start = data;
|
|
const char * end = data + size;
|
|
|
|
// Also, a 64 bit vector initialized to zero
|
|
Int64 finger_vec[64] = {};
|
|
// a array to store N word hash values
|
|
UInt64 nword_hashes[N] = {};
|
|
// word buffer to store one word
|
|
PaddedPODArray<CodePoint> word_buf;
|
|
// get first word shingle
|
|
for (size_t i = 0; i < N && start < end; ++i)
|
|
{
|
|
read_one_word(word_buf, start, end);
|
|
if (!word_buf.empty())
|
|
{
|
|
// for each word, calculate a hash value and stored into the array
|
|
nword_hashes[i++] = Hash::hashSum(word_buf.data(), word_buf.size());
|
|
}
|
|
}
|
|
|
|
// calculate the first word shingle hash value
|
|
UInt64 hash_value = hash_functor(nword_hashes, N, 0);
|
|
std::bitset<64> first_bits(hash_value);
|
|
for (size_t i = 0; i < 64; ++i)
|
|
{
|
|
finger_vec[i] += ((first_bits.test(i)) ? 1 : -1);
|
|
}
|
|
|
|
size_t offset = 0;
|
|
while (start < end && read_one_word(word_buf, start, end))
|
|
{
|
|
// we need to store the new word hash value to the oldest location.
|
|
// for example, N = 5, array |a0|a1|a2|a3|a4|, now , a0 is the oldest location,
|
|
// so we need to store new word hash into location of a0, then ,this array become
|
|
// |a5|a1|a2|a3|a4|, next time, a1 become the oldest location, we need to store new
|
|
// word hash value into locaion of a1, then array become |a5|a6|a2|a3|a4|
|
|
nword_hashes[offset] = Hash::hashSum(word_buf.data(), word_buf.size());
|
|
offset = (offset + 1) % N;
|
|
// according to the word hash storation way, in order to not lose the word shingle's
|
|
// sequence information, when calculation word shingle hash value, we need provide the offset
|
|
// inforation, which is the offset of the first word's hash value of the word shingle
|
|
hash_value = hash_functor(nword_hashes, N, offset);
|
|
std::bitset<64> bits(hash_value);
|
|
for (size_t i = 0; i < 64; ++i)
|
|
{
|
|
finger_vec[i] += ((bits.test(i)) ? 1 : -1);
|
|
}
|
|
}
|
|
|
|
std::bitset<64> res_bit(0u);
|
|
for (size_t i = 0; i < 64; ++i)
|
|
{
|
|
if (finger_vec[i] > 0)
|
|
res_bit.set(i);
|
|
}
|
|
return res_bit.to_ullong();
|
|
}
|
|
|
|
template <typename CalcFunc, typename... Args>
|
|
static ALWAYS_INLINE inline auto dispatch(CalcFunc calc_func, Args &&... args)
|
|
{
|
|
if constexpr (Ngram)
|
|
{
|
|
if constexpr (!UTF8)
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readASCIICodePoints, Hash::ngramASCIIHash);
|
|
else
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readUTF8CodePoints, Hash::ngramUTF8Hash);
|
|
}
|
|
else
|
|
{
|
|
if constexpr (!UTF8)
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readOneASCIIWord, Hash::wordShinglesHash);
|
|
else
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readOneUTF8Word, Hash::wordShinglesHash);
|
|
}
|
|
}
|
|
|
|
static void apply(const ColumnString::Chars & data, const ColumnString::Offsets & offsets, PaddedPODArray<UInt64> & res)
|
|
{
|
|
for (size_t i = 0; i < offsets.size(); ++i)
|
|
{
|
|
const char * one_data = reinterpret_cast<const char *>(&data[offsets[i - 1]]);
|
|
const size_t data_size = offsets[i] - offsets[i - 1] - 1;
|
|
if (data_size <= max_string_size)
|
|
{
|
|
if constexpr (Ngram)
|
|
res[i] = dispatch(ngramCalculateHashValue, one_data, data_size);
|
|
else
|
|
res[i] = dispatch(wordShinglesCalculateHashValue, one_data, data_size);
|
|
}
|
|
else
|
|
res[i] = -1ull;
|
|
}
|
|
}
|
|
};
|
|
|
|
template <typename F, size_t K, size_t v>
|
|
class FixedHeap
|
|
{
|
|
public:
|
|
FixedHeap() = delete;
|
|
|
|
explicit FixedHeap(F f_) : f(f_), data_t(std::make_shared<std::vector<size_t>>(K, v))
|
|
{
|
|
std::make_heap(data_t->begin(), data_t->end(), f);
|
|
}
|
|
|
|
void insertAndReplace(size_t new_v)
|
|
{
|
|
data_t->push_back(new_v);
|
|
std::push_heap(data_t->begin(), data_t->end(), f);
|
|
std::pop_heap(data_t->begin(), data_t->end(), f);
|
|
data_t->pop_back();
|
|
}
|
|
|
|
const size_t * data() { return data_t->data(); }
|
|
|
|
private:
|
|
F f;
|
|
std::shared_ptr<std::vector<size_t>> data_t;
|
|
};
|
|
|
|
|
|
// Minhash: String -> Tuple(UInt64, UInt64)
|
|
// for each string, we extract ngram or word shingle,
|
|
// for each ngram or word shingle, calculate a hash value,
|
|
// then we take the K minimum hash values to calculate a hashsum,
|
|
// and take the K maximum hash values to calculate another hashsum,
|
|
// return this two hashsum: Tuple(hashsum1, hashsum2)
|
|
//
|
|
// N: the length of ngram or words shingles
|
|
// K: the number of minimum hashes and maximum hashes that we keep
|
|
// CodePoint: UInt8(ASCII) or UInt32(UTF8)
|
|
// UTF8: means ASCII or UTF8, these two parameters CodePoint and UTF8 can only be (UInt8, false) or (UInt32, true)
|
|
// Ngram: means ngram(true) or words shingles(false)
|
|
// CaseInsensitive: means should we consider about letter case or not
|
|
template <size_t N, size_t K, typename CodePoint, bool UTF8, bool Ngram, bool CaseInsensitive>
|
|
struct MinhashImpl
|
|
{
|
|
using Less = std::less<size_t>;
|
|
using Greater = std::greater<size_t>;
|
|
using MaxHeap = FixedHeap<std::less<size_t>, K, -1ULL>;
|
|
using MinHeap = FixedHeap<std::greater<size_t>, K, 0>;
|
|
using ResultType = UInt64;
|
|
using StrOp = ExtractStringImpl<N, CaseInsensitive>;
|
|
static constexpr size_t max_string_size = 1u << 15;
|
|
static constexpr size_t simultaneously_codepoints_num = StrOp::default_padding + N - 1;
|
|
|
|
// Minhash ngram calculate function, String -> Tuple(UInt64, UInt64)
|
|
// we extract ngram from input string, and calculate a hash value for each ngram
|
|
// then we take the K minimum hash values to calculate a hashsum,
|
|
// and take the K maximum hash values to calculate another hashsum,
|
|
// return this two hashsum: Tuple(hashsum1, hashsum2)
|
|
static ALWAYS_INLINE inline std::tuple<UInt64, UInt64> ngramCalculateHashValue(
|
|
const char * data,
|
|
size_t size,
|
|
size_t (*read_code_points)(CodePoint *, const char *&, const char *),
|
|
UInt64 (*hash_functor)(const CodePoint *))
|
|
{
|
|
const char * start = data;
|
|
const char * end = data + size;
|
|
// we just maintain the K minimu and K maximum hash values
|
|
MaxHeap k_minimum_hashes(Less{});
|
|
MinHeap k_maximum_hashes(Greater{});
|
|
CodePoint cp[simultaneously_codepoints_num] = {};
|
|
|
|
size_t found = read_code_points(cp, start, end);
|
|
size_t iter = N - 1;
|
|
|
|
do
|
|
{
|
|
for (; iter + N <= found; ++iter)
|
|
{
|
|
auto new_hash = hash_functor(cp + iter);
|
|
// insert the new hash value into array used to store K minimum value
|
|
// and K maximum value
|
|
k_minimum_hashes.insertAndReplace(new_hash);
|
|
k_maximum_hashes.insertAndReplace(new_hash);
|
|
}
|
|
iter = 0;
|
|
} while (start < end && (found = read_code_points(cp, start, end)));
|
|
|
|
// calculate hashsum of the K minimum hash values and K maximum hash values
|
|
UInt64 res1 = Hash::hashSum(k_minimum_hashes.data(), K);
|
|
UInt64 res2 = Hash::hashSum(k_maximum_hashes.data(), K);
|
|
return std::make_tuple(res1, res2);
|
|
}
|
|
|
|
// Minhash word shingle hash value calculate function: String ->Tuple(UInt64, UInt64)
|
|
// for each word shingle, we calculate a hash value, but in fact, we just maintain the
|
|
// K minimum and K maximum hash value
|
|
static ALWAYS_INLINE inline std::tuple<UInt64, UInt64> wordShinglesCalculateHashValue(
|
|
const char * data,
|
|
size_t size,
|
|
size_t (*read_one_word)(PaddedPODArray<CodePoint> &, const char *&, const char *),
|
|
UInt64 (*hash_functor)(const UInt64 *, size_t, size_t))
|
|
{
|
|
const char * start = data;
|
|
const char * end = start + size;
|
|
// also we just store the K minimu and K maximum hash values
|
|
MaxHeap k_minimum_hashes(Less{});
|
|
MinHeap k_maximum_hashes(Greater{});
|
|
// array to store n word hashes
|
|
UInt64 nword_hashes[N] = {};
|
|
// word buffer to store one word
|
|
PaddedPODArray<CodePoint> word_buf;
|
|
// how word shingle hash value calculation and word hash storation is same as we
|
|
// have descripted in Simhash wordShinglesCalculateHashValue function
|
|
for (size_t i = 0; i < N && start < end; ++i)
|
|
{
|
|
read_one_word(word_buf, start, end);
|
|
if (!word_buf.empty())
|
|
{
|
|
nword_hashes[i++] = Hash::hashSum(word_buf.data(), word_buf.size());
|
|
}
|
|
}
|
|
|
|
auto new_hash = hash_functor(nword_hashes, N, 0);
|
|
k_minimum_hashes.insertAndReplace(new_hash);
|
|
k_maximum_hashes.insertAndReplace(new_hash);
|
|
|
|
size_t offset = 0;
|
|
while (start < end && read_one_word(word_buf, start, end))
|
|
{
|
|
nword_hashes[offset] = Hash::hashSum(word_buf.data(), word_buf.size());
|
|
offset = (offset + 1) % N;
|
|
new_hash = hash_functor(nword_hashes, N, offset);
|
|
k_minimum_hashes.insertAndReplace(new_hash);
|
|
k_maximum_hashes.insertAndReplace(new_hash);
|
|
}
|
|
|
|
// calculate hashsum
|
|
UInt64 res1 = Hash::hashSum(k_minimum_hashes.data(), K);
|
|
UInt64 res2 = Hash::hashSum(k_maximum_hashes.data(), K);
|
|
return std::make_tuple(res1, res2);
|
|
}
|
|
|
|
template <typename CalcFunc, typename... Args>
|
|
static ALWAYS_INLINE inline auto dispatch(CalcFunc calc_func, Args &&... args)
|
|
{
|
|
if constexpr (Ngram)
|
|
{
|
|
if constexpr (!UTF8)
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readASCIICodePoints, Hash::ngramASCIIHash);
|
|
else
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readUTF8CodePoints, Hash::ngramUTF8Hash);
|
|
}
|
|
else
|
|
{
|
|
if constexpr (!UTF8)
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readOneASCIIWord, Hash::wordShinglesHash);
|
|
else
|
|
return calc_func(std::forward<Args>(args)..., StrOp::readOneUTF8Word, Hash::wordShinglesHash);
|
|
}
|
|
}
|
|
|
|
static void apply(
|
|
const ColumnString::Chars & data,
|
|
const ColumnString::Offsets & offsets,
|
|
PaddedPODArray<UInt64> & res1,
|
|
PaddedPODArray<UInt64> & res2)
|
|
{
|
|
for (size_t i = 0; i < offsets.size(); ++i)
|
|
{
|
|
const char * one_data = reinterpret_cast<const char *>(&data[offsets[i - 1]]);
|
|
const size_t data_size = offsets[i] - offsets[i - 1] - 1;
|
|
if (data_size <= max_string_size)
|
|
{
|
|
if constexpr (Ngram)
|
|
std::tie(res1[i], res2[i]) = dispatch(ngramCalculateHashValue, one_data, data_size);
|
|
else
|
|
std::tie(res1[i], res2[i]) = dispatch(wordShinglesCalculateHashValue, one_data, data_size);
|
|
}
|
|
else
|
|
std::tie(res1[i], res2[i]) = std::make_tuple(-1ull, -1ull);
|
|
}
|
|
}
|
|
};
|
|
|
|
struct NameNgramSimhash
|
|
{
|
|
static constexpr auto name = "ngramSimhash";
|
|
};
|
|
|
|
struct NameNgramSimhashCaseInsensitive
|
|
{
|
|
static constexpr auto name = "ngramSimhashCaseInsensitive";
|
|
};
|
|
|
|
struct NameNgramSimhashUTF8
|
|
{
|
|
static constexpr auto name = "ngramSimhashUTF8";
|
|
};
|
|
|
|
struct NameNgramSimhashCaseInsensitiveUTF8
|
|
{
|
|
static constexpr auto name = "ngramSimhashCaseInsensitiveUTF8";
|
|
};
|
|
|
|
struct NameWordShingleSimhash
|
|
{
|
|
static constexpr auto name = "wordShingleSimhash";
|
|
};
|
|
|
|
struct NameWordShingleSimhashCaseInsensitive
|
|
{
|
|
static constexpr auto name = "wordShingleSimhashCaseInsensitive";
|
|
};
|
|
|
|
struct NameWordShingleSimhashUTF8
|
|
{
|
|
static constexpr auto name = "wordShingleSimhashUTF8";
|
|
};
|
|
|
|
struct NameWordShingleSimhashCaseInsensitiveUTF8
|
|
{
|
|
static constexpr auto name = "wordShingleSimhashCaseInsensitiveUTF8";
|
|
};
|
|
|
|
struct NameNgramMinhash
|
|
{
|
|
static constexpr auto name = "ngramMinhash";
|
|
};
|
|
|
|
struct NameNgramMinhashCaseInsensitive
|
|
{
|
|
static constexpr auto name = "ngramMinhashCaseInsensitive";
|
|
};
|
|
|
|
struct NameNgramMinhashUTF8
|
|
{
|
|
static constexpr auto name = "ngramMinhashUTF8";
|
|
};
|
|
|
|
struct NameNgramMinhashCaseInsensitiveUTF8
|
|
{
|
|
static constexpr auto name = "ngramMinhashCaseInsensitiveUTF8";
|
|
};
|
|
|
|
struct NameWordShingleMinhash
|
|
{
|
|
static constexpr auto name = "wordShingleMinhash";
|
|
};
|
|
|
|
struct NameWordShingleMinhashCaseInsensitive
|
|
{
|
|
static constexpr auto name = "wordShingleMinhashCaseInsensitive";
|
|
};
|
|
|
|
struct NameWordShingleMinhashUTF8
|
|
{
|
|
static constexpr auto name = "wordShingleMinhashUTF8";
|
|
};
|
|
|
|
struct NameWordShingleMinhashCaseInsensitiveUTF8
|
|
{
|
|
static constexpr auto name = "wordShingleMinhashCaseInsensitiveUTF8";
|
|
};
|
|
|
|
// Simhash
|
|
using FunctionNgramSimhash = FunctionsStringHash<SimhashImpl<4, UInt8, false, true, false>, NameNgramSimhash, true>;
|
|
|
|
using FunctionNgramSimhashCaseInsensitive
|
|
= FunctionsStringHash<SimhashImpl<4, UInt8, false, true, true>, NameNgramSimhashCaseInsensitive, true>;
|
|
|
|
using FunctionNgramSimhashUTF8 = FunctionsStringHash<SimhashImpl<3, UInt32, true, true, false>, NameNgramSimhashUTF8, true>;
|
|
|
|
using FunctionNgramSimhashCaseInsensitiveUTF8
|
|
= FunctionsStringHash<SimhashImpl<3, UInt32, true, true, true>, NameNgramSimhashCaseInsensitiveUTF8, true>;
|
|
|
|
using FunctionWordShingleSimhash = FunctionsStringHash<SimhashImpl<3, UInt8, false, false, false>, NameWordShingleSimhash, true>;
|
|
|
|
using FunctionWordShingleSimhashCaseInsensitive
|
|
= FunctionsStringHash<SimhashImpl<3, UInt8, false, false, true>, NameWordShingleSimhashCaseInsensitive, true>;
|
|
|
|
using FunctionWordShingleSimhashUTF8 = FunctionsStringHash<SimhashImpl<3, UInt32, true, false, false>, NameWordShingleSimhashUTF8, true>;
|
|
|
|
using FunctionWordShingleSimhashCaseInsensitiveUTF8
|
|
= FunctionsStringHash<SimhashImpl<3, UInt32, true, false, true>, NameWordShingleSimhashCaseInsensitiveUTF8, true>;
|
|
|
|
// Minhash
|
|
using FunctionNgramMinhash = FunctionsStringHash<MinhashImpl<4, 6, UInt8, false, true, false>, NameNgramMinhash, false>;
|
|
|
|
using FunctionNgramMinhashCaseInsensitive
|
|
= FunctionsStringHash<MinhashImpl<4, 6, UInt8, false, true, true>, NameNgramMinhashCaseInsensitive, false>;
|
|
|
|
using FunctionNgramMinhashUTF8 = FunctionsStringHash<MinhashImpl<4, 6, UInt32, true, true, false>, NameNgramMinhashUTF8, false>;
|
|
|
|
using FunctionNgramMinhashCaseInsensitiveUTF8
|
|
= FunctionsStringHash<MinhashImpl<4, 6, UInt32, true, true, true>, NameNgramMinhashCaseInsensitiveUTF8, false>;
|
|
|
|
using FunctionWordShingleMinhash = FunctionsStringHash<MinhashImpl<3, 6, UInt8, false, false, false>, NameWordShingleMinhash, false>;
|
|
|
|
using FunctionWordShingleMinhashCaseInsensitive
|
|
= FunctionsStringHash<MinhashImpl<3, 6, UInt8, false, false, true>, NameWordShingleMinhashCaseInsensitive, false>;
|
|
|
|
using FunctionWordShingleMinhashUTF8
|
|
= FunctionsStringHash<MinhashImpl<3, 6, UInt32, true, false, false>, NameWordShingleMinhashUTF8, false>;
|
|
|
|
using FunctionWordShingleMinhashCaseInsensitiveUTF8
|
|
= FunctionsStringHash<MinhashImpl<3, 6, UInt32, true, false, true>, NameWordShingleMinhashCaseInsensitiveUTF8, false>;
|
|
|
|
void registerFunctionsStringHash(FunctionFactory & factory)
|
|
{
|
|
factory.registerFunction<FunctionNgramSimhash>();
|
|
factory.registerFunction<FunctionNgramSimhashCaseInsensitive>();
|
|
factory.registerFunction<FunctionNgramSimhashUTF8>();
|
|
factory.registerFunction<FunctionNgramSimhashCaseInsensitiveUTF8>();
|
|
factory.registerFunction<FunctionWordShingleSimhash>();
|
|
factory.registerFunction<FunctionWordShingleSimhashCaseInsensitive>();
|
|
factory.registerFunction<FunctionWordShingleSimhashUTF8>();
|
|
factory.registerFunction<FunctionWordShingleSimhashCaseInsensitiveUTF8>();
|
|
|
|
factory.registerFunction<FunctionNgramMinhash>();
|
|
factory.registerFunction<FunctionNgramMinhashCaseInsensitive>();
|
|
factory.registerFunction<FunctionNgramMinhashUTF8>();
|
|
factory.registerFunction<FunctionNgramMinhashCaseInsensitiveUTF8>();
|
|
factory.registerFunction<FunctionWordShingleMinhash>();
|
|
factory.registerFunction<FunctionWordShingleMinhashCaseInsensitive>();
|
|
factory.registerFunction<FunctionWordShingleMinhashUTF8>();
|
|
factory.registerFunction<FunctionWordShingleMinhashCaseInsensitiveUTF8>();
|
|
}
|
|
}
|
|
|