mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-11 17:02:25 +00:00
3313 lines
143 KiB
C++
3313 lines
143 KiB
C++
#include <Access/AccessControl.h>
|
|
|
|
#include <DataTypes/DataTypeAggregateFunction.h>
|
|
#include <DataTypes/DataTypeInterval.h>
|
|
|
|
#include <Parsers/ASTFunction.h>
|
|
#include <Parsers/ASTIdentifier.h>
|
|
#include <Parsers/ASTLiteral.h>
|
|
#include <Parsers/ASTOrderByElement.h>
|
|
#include <Parsers/ASTInterpolateElement.h>
|
|
#include <Parsers/ASTSelectWithUnionQuery.h>
|
|
#include <Parsers/ASTSelectIntersectExceptQuery.h>
|
|
#include <Parsers/ASTTablesInSelectQuery.h>
|
|
#include <Parsers/ExpressionListParsers.h>
|
|
#include <Parsers/parseQuery.h>
|
|
|
|
#include <Access/Common/AccessFlags.h>
|
|
#include <Access/ContextAccess.h>
|
|
|
|
#include <AggregateFunctions/AggregateFunctionCount.h>
|
|
#include <DataTypes/DataTypeNullable.h>
|
|
|
|
#include <Interpreters/ApplyWithAliasVisitor.h>
|
|
#include <Interpreters/ApplyWithSubqueryVisitor.h>
|
|
#include <Interpreters/InterpreterFactory.h>
|
|
#include <Interpreters/InterpreterSelectQuery.h>
|
|
#include <Interpreters/InterpreterSelectWithUnionQuery.h>
|
|
#include <Interpreters/InterpreterSetQuery.h>
|
|
#include <Interpreters/evaluateConstantExpression.h>
|
|
#include <Interpreters/convertFieldToType.h>
|
|
#include <Interpreters/addTypeConversionToAST.h>
|
|
#include <Interpreters/ExpressionAnalyzer.h>
|
|
#include <Interpreters/getTableExpressions.h>
|
|
#include <Interpreters/JoinToSubqueryTransformVisitor.h>
|
|
#include <Interpreters/CrossToInnerJoinVisitor.h>
|
|
#include <Interpreters/TableJoin.h>
|
|
#include <Interpreters/JoinedTables.h>
|
|
#include <Interpreters/OpenTelemetrySpanLog.h>
|
|
#include <Interpreters/QueryAliasesVisitor.h>
|
|
#include <Interpreters/QueryLog.h>
|
|
#include <Interpreters/replaceAliasColumnsInQuery.h>
|
|
#include <Interpreters/RewriteCountDistinctVisitor.h>
|
|
#include <Interpreters/RewriteUniqToCountVisitor.h>
|
|
#include <Interpreters/getCustomKeyFilterForParallelReplicas.h>
|
|
|
|
#include <QueryPipeline/Pipe.h>
|
|
#include <Processors/QueryPlan/AggregatingStep.h>
|
|
#include <Processors/QueryPlan/ArrayJoinStep.h>
|
|
#include <Processors/QueryPlan/CreateSetAndFilterOnTheFlyStep.h>
|
|
#include <Processors/QueryPlan/CreatingSetsStep.h>
|
|
#include <Processors/QueryPlan/CubeStep.h>
|
|
#include <Processors/QueryPlan/DistinctStep.h>
|
|
#include <Processors/QueryPlan/ExpressionStep.h>
|
|
#include <Processors/QueryPlan/ExtremesStep.h>
|
|
#include <Processors/QueryPlan/FillingStep.h>
|
|
#include <Processors/QueryPlan/FilterStep.h>
|
|
#include <Processors/QueryPlan/JoinStep.h>
|
|
#include <Processors/QueryPlan/LimitByStep.h>
|
|
#include <Processors/QueryPlan/LimitStep.h>
|
|
#include <Processors/QueryPlan/SortingStep.h>
|
|
#include <Processors/QueryPlan/MergingAggregatedStep.h>
|
|
#include <Processors/QueryPlan/OffsetStep.h>
|
|
#include <Processors/QueryPlan/QueryPlan.h>
|
|
#include <Processors/QueryPlan/ReadFromPreparedSource.h>
|
|
#include <Processors/QueryPlan/ReadNothingStep.h>
|
|
#include <Processors/QueryPlan/RollupStep.h>
|
|
#include <Processors/QueryPlan/TotalsHavingStep.h>
|
|
#include <Processors/QueryPlan/WindowStep.h>
|
|
#include <Processors/QueryPlan/Optimizations/QueryPlanOptimizationSettings.h>
|
|
#include <Processors/Sources/NullSource.h>
|
|
#include <Processors/Sources/SourceFromSingleChunk.h>
|
|
#include <Processors/Transforms/AggregatingTransform.h>
|
|
#include <Processors/Transforms/FilterTransform.h>
|
|
#include <QueryPipeline/QueryPipelineBuilder.h>
|
|
|
|
#include <Storages/MergeTree/MergeTreeWhereOptimizer.h>
|
|
#include <Storages/StorageDistributed.h>
|
|
#include <Storages/StorageDummy.h>
|
|
#include <Storages/StorageMerge.h>
|
|
#include <Storages/StorageValues.h>
|
|
#include <Storages/StorageView.h>
|
|
|
|
#include <Columns/Collator.h>
|
|
#include <Core/ColumnNumbers.h>
|
|
#include <Core/Field.h>
|
|
#include <Core/ProtocolDefines.h>
|
|
#include <Interpreters/Aggregator.h>
|
|
#include <Interpreters/IJoin.h>
|
|
#include <QueryPipeline/SizeLimits.h>
|
|
#include <base/map.h>
|
|
#include <Common/FieldVisitorToString.h>
|
|
#include <Common/FieldVisitorsAccurateComparison.h>
|
|
#include <Common/checkStackSize.h>
|
|
#include <Common/scope_guard_safe.h>
|
|
#include <Common/typeid_cast.h>
|
|
#include <Common/ProfileEvents.h>
|
|
#include <Common/NaNUtils.h>
|
|
|
|
|
|
namespace ProfileEvents
|
|
{
|
|
extern const Event SelectQueriesWithSubqueries;
|
|
extern const Event QueriesWithSubqueries;
|
|
}
|
|
|
|
namespace DB
|
|
{
|
|
|
|
static UInt64 getLimitUIntValue(const ASTPtr & node, const ContextPtr & context, const std::string & expr);
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int TOO_DEEP_SUBQUERIES;
|
|
extern const int SAMPLING_NOT_SUPPORTED;
|
|
extern const int ILLEGAL_FINAL;
|
|
extern const int ILLEGAL_PREWHERE;
|
|
extern const int TOO_MANY_COLUMNS;
|
|
extern const int LOGICAL_ERROR;
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int PARAMETER_OUT_OF_BOUND;
|
|
extern const int INVALID_LIMIT_EXPRESSION;
|
|
extern const int INVALID_WITH_FILL_EXPRESSION;
|
|
extern const int ACCESS_DENIED;
|
|
extern const int UNKNOWN_IDENTIFIER;
|
|
extern const int BAD_ARGUMENTS;
|
|
extern const int SUPPORT_IS_DISABLED;
|
|
}
|
|
|
|
/// Assumes `storage` is set and the table filter (row-level security) is not empty.
|
|
FilterDAGInfoPtr generateFilterActions(
|
|
const StorageID & table_id,
|
|
const ASTPtr & row_policy_filter_expression,
|
|
const ContextPtr & context,
|
|
const StoragePtr & storage,
|
|
const StorageSnapshotPtr & storage_snapshot,
|
|
const StorageMetadataPtr & metadata_snapshot,
|
|
Names & prerequisite_columns,
|
|
PreparedSetsPtr prepared_sets)
|
|
{
|
|
auto filter_info = std::make_shared<FilterDAGInfo>();
|
|
|
|
const auto & db_name = table_id.getDatabaseName();
|
|
const auto & table_name = table_id.getTableName();
|
|
|
|
/// TODO: implement some AST builders for this kind of stuff
|
|
ASTPtr query_ast = std::make_shared<ASTSelectQuery>();
|
|
auto * select_ast = query_ast->as<ASTSelectQuery>();
|
|
|
|
select_ast->setExpression(ASTSelectQuery::Expression::SELECT, std::make_shared<ASTExpressionList>());
|
|
auto expr_list = select_ast->select();
|
|
|
|
/// The first column is our filter expression.
|
|
/// the row_policy_filter_expression should be cloned, because it may be changed by TreeRewriter.
|
|
/// which make it possible an invalid expression, although it may be valid in whole select.
|
|
expr_list->children.push_back(row_policy_filter_expression->clone());
|
|
|
|
/// Keep columns that are required after the filter actions.
|
|
for (const auto & column_str : prerequisite_columns)
|
|
{
|
|
ParserExpression expr_parser;
|
|
/// We should add back quotes around column name as it can contain dots.
|
|
expr_list->children.push_back(parseQuery(expr_parser, backQuoteIfNeed(column_str), 0, context->getSettingsRef().max_parser_depth, context->getSettingsRef().max_parser_backtracks));
|
|
}
|
|
|
|
select_ast->setExpression(ASTSelectQuery::Expression::TABLES, std::make_shared<ASTTablesInSelectQuery>());
|
|
auto tables = select_ast->tables();
|
|
auto tables_elem = std::make_shared<ASTTablesInSelectQueryElement>();
|
|
auto table_expr = std::make_shared<ASTTableExpression>();
|
|
tables->children.push_back(tables_elem);
|
|
tables_elem->table_expression = table_expr;
|
|
tables_elem->children.push_back(table_expr);
|
|
table_expr->database_and_table_name = std::make_shared<ASTTableIdentifier>(db_name, table_name);
|
|
table_expr->children.push_back(table_expr->database_and_table_name);
|
|
|
|
/// Using separate expression analyzer to prevent any possible alias injection
|
|
auto syntax_result = TreeRewriter(context).analyzeSelect(query_ast, TreeRewriterResult({}, storage, storage_snapshot));
|
|
SelectQueryExpressionAnalyzer analyzer(query_ast, syntax_result, context, metadata_snapshot, {}, false, {}, prepared_sets);
|
|
filter_info->actions = analyzer.simpleSelectActions();
|
|
|
|
filter_info->column_name = expr_list->children.at(0)->getColumnName();
|
|
filter_info->actions->removeUnusedActions(NameSet{filter_info->column_name});
|
|
filter_info->actions->projectInput(false);
|
|
|
|
for (const auto * node : filter_info->actions->getInputs())
|
|
filter_info->actions->getOutputs().push_back(node);
|
|
|
|
auto required_columns_from_filter = filter_info->actions->getRequiredColumns();
|
|
|
|
for (const auto & column : required_columns_from_filter)
|
|
{
|
|
if (prerequisite_columns.end() == std::find(prerequisite_columns.begin(), prerequisite_columns.end(), column.name))
|
|
prerequisite_columns.push_back(column.name);
|
|
}
|
|
|
|
return filter_info;
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextPtr & context_,
|
|
const SelectQueryOptions & options_,
|
|
const Names & required_result_column_names_)
|
|
: InterpreterSelectQuery(query_ptr_, context_, std::nullopt, nullptr, options_, required_result_column_names_)
|
|
{}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextMutablePtr & context_,
|
|
const SelectQueryOptions & options_,
|
|
const Names & required_result_column_names_)
|
|
: InterpreterSelectQuery(query_ptr_, context_, std::nullopt, nullptr, options_, required_result_column_names_)
|
|
{}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextPtr & context_,
|
|
Pipe input_pipe_,
|
|
const SelectQueryOptions & options_)
|
|
: InterpreterSelectQuery(query_ptr_, context_, std::move(input_pipe_), nullptr, options_.copy().noSubquery())
|
|
{}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextPtr & context_,
|
|
const StoragePtr & storage_,
|
|
const StorageMetadataPtr & metadata_snapshot_,
|
|
const SelectQueryOptions & options_)
|
|
: InterpreterSelectQuery(
|
|
query_ptr_, context_, std::nullopt, storage_, options_.copy().noSubquery(), {}, metadata_snapshot_)
|
|
{
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextPtr & context_,
|
|
const SelectQueryOptions & options_,
|
|
PreparedSetsPtr prepared_sets_)
|
|
: InterpreterSelectQuery(
|
|
query_ptr_, context_, std::nullopt, nullptr, options_, {}, {}, prepared_sets_)
|
|
{}
|
|
|
|
InterpreterSelectQuery::~InterpreterSelectQuery() = default;
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
/** There are no limits on the maximum size of the result for the subquery.
|
|
* Since the result of the query is not the result of the entire query.
|
|
*/
|
|
ContextPtr getSubqueryContext(const ContextPtr & context)
|
|
{
|
|
auto subquery_context = Context::createCopy(context);
|
|
Settings subquery_settings = context->getSettings();
|
|
subquery_settings.max_result_rows = 0;
|
|
subquery_settings.max_result_bytes = 0;
|
|
/// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query).
|
|
subquery_settings.extremes = false;
|
|
subquery_context->setSettings(subquery_settings);
|
|
return subquery_context;
|
|
}
|
|
|
|
void rewriteMultipleJoins(ASTPtr & query, const TablesWithColumns & tables, const String & database, const Settings & settings)
|
|
{
|
|
ASTSelectQuery & select = query->as<ASTSelectQuery &>();
|
|
|
|
Aliases aliases;
|
|
if (ASTPtr with = select.with())
|
|
QueryAliasesNoSubqueriesVisitor(aliases).visit(with);
|
|
QueryAliasesNoSubqueriesVisitor(aliases).visit(select.select());
|
|
|
|
CrossToInnerJoinVisitor::Data cross_to_inner{tables, aliases, database};
|
|
cross_to_inner.cross_to_inner_join_rewrite = static_cast<UInt8>(std::min<UInt64>(settings.cross_to_inner_join_rewrite, 2));
|
|
CrossToInnerJoinVisitor(cross_to_inner).visit(query);
|
|
|
|
JoinToSubqueryTransformVisitor::Data join_to_subs_data{tables, aliases};
|
|
join_to_subs_data.try_to_keep_original_names = settings.multiple_joins_try_to_keep_original_names;
|
|
|
|
JoinToSubqueryTransformVisitor(join_to_subs_data).visit(query);
|
|
}
|
|
|
|
/// Checks that the current user has the SELECT privilege.
|
|
void checkAccessRightsForSelect(
|
|
const ContextPtr & context,
|
|
const StorageID & table_id,
|
|
const StorageMetadataPtr & table_metadata,
|
|
const TreeRewriterResult & syntax_analyzer_result)
|
|
{
|
|
if (!syntax_analyzer_result.has_explicit_columns && table_metadata && !table_metadata->getColumns().empty())
|
|
{
|
|
/// For a trivial query like "SELECT count() FROM table" access is granted if at least
|
|
/// one column is accessible.
|
|
/// In this case just checking access for `required_columns` doesn't work correctly
|
|
/// because `required_columns` will contain the name of a column of minimum size (see TreeRewriterResult::collectUsedColumns())
|
|
/// which is probably not the same column as the column the current user has access to.
|
|
auto access = context->getAccess();
|
|
for (const auto & column : table_metadata->getColumns())
|
|
{
|
|
if (access->isGranted(AccessType::SELECT, table_id.database_name, table_id.table_name, column.name))
|
|
return;
|
|
}
|
|
throw Exception(
|
|
ErrorCodes::ACCESS_DENIED,
|
|
"{}: Not enough privileges. To execute this query, it's necessary to have the grant SELECT for at least one column on {}",
|
|
context->getUserName(),
|
|
table_id.getFullTableName());
|
|
}
|
|
|
|
/// General check.
|
|
context->checkAccess(AccessType::SELECT, table_id, syntax_analyzer_result.requiredSourceColumnsForAccessCheck());
|
|
}
|
|
|
|
ASTPtr parseAdditionalFilterConditionForTable(
|
|
const Map & additional_table_filters,
|
|
const DatabaseAndTableWithAlias & target,
|
|
const Context & context)
|
|
{
|
|
for (const auto & additional_filter : additional_table_filters)
|
|
{
|
|
const auto & tuple = additional_filter.safeGet<const Tuple &>();
|
|
auto & table = tuple.at(0).safeGet<String>();
|
|
auto & filter = tuple.at(1).safeGet<String>();
|
|
|
|
if (table == target.alias ||
|
|
(table == target.table && context.getCurrentDatabase() == target.database) ||
|
|
(table == target.database + '.' + target.table))
|
|
{
|
|
/// Try to parse expression
|
|
ParserExpression parser;
|
|
const auto & settings = context.getSettingsRef();
|
|
return parseQuery(
|
|
parser, filter.data(), filter.data() + filter.size(),
|
|
"additional filter", settings.max_query_size, settings.max_parser_depth, settings.max_parser_backtracks);
|
|
}
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
/// Returns true if we should ignore quotas and limits for a specified table in the system database.
|
|
bool shouldIgnoreQuotaAndLimits(const StorageID & table_id)
|
|
{
|
|
if (table_id.database_name == DatabaseCatalog::SYSTEM_DATABASE)
|
|
{
|
|
static const boost::container::flat_set<String> tables_ignoring_quota{"quotas", "quota_limits", "quota_usage", "quotas_usage", "one"};
|
|
if (tables_ignoring_quota.count(table_id.table_name))
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextPtr & context_,
|
|
std::optional<Pipe> input_pipe_,
|
|
const StoragePtr & storage_,
|
|
const SelectQueryOptions & options_,
|
|
const Names & required_result_column_names,
|
|
const StorageMetadataPtr & metadata_snapshot_,
|
|
PreparedSetsPtr prepared_sets_)
|
|
: InterpreterSelectQuery(
|
|
query_ptr_,
|
|
Context::createCopy(context_),
|
|
std::move(input_pipe_),
|
|
storage_,
|
|
options_,
|
|
required_result_column_names,
|
|
metadata_snapshot_,
|
|
prepared_sets_)
|
|
{}
|
|
|
|
InterpreterSelectQuery::InterpreterSelectQuery(
|
|
const ASTPtr & query_ptr_,
|
|
const ContextMutablePtr & context_,
|
|
std::optional<Pipe> input_pipe_,
|
|
const StoragePtr & storage_,
|
|
const SelectQueryOptions & options_,
|
|
const Names & required_result_column_names,
|
|
const StorageMetadataPtr & metadata_snapshot_,
|
|
PreparedSetsPtr prepared_sets_)
|
|
/// NOTE: the query almost always should be cloned because it will be modified during analysis.
|
|
: IInterpreterUnionOrSelectQuery(options_.modify_inplace ? query_ptr_ : query_ptr_->clone(), context_, options_)
|
|
, storage(storage_)
|
|
, input_pipe(std::move(input_pipe_))
|
|
, log(getLogger("InterpreterSelectQuery"))
|
|
, metadata_snapshot(metadata_snapshot_)
|
|
, prepared_sets(prepared_sets_)
|
|
{
|
|
checkStackSize();
|
|
|
|
if (!prepared_sets)
|
|
prepared_sets = std::make_shared<PreparedSets>();
|
|
|
|
query_info.is_internal = options.is_internal;
|
|
|
|
initSettings();
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
if (settings.max_subquery_depth && options.subquery_depth > settings.max_subquery_depth)
|
|
throw Exception(ErrorCodes::TOO_DEEP_SUBQUERIES, "Too deep subqueries. Maximum: {}",
|
|
settings.max_subquery_depth.toString());
|
|
|
|
bool has_input = input_pipe != std::nullopt;
|
|
if (input_pipe)
|
|
{
|
|
/// Read from prepared input.
|
|
source_header = input_pipe->getHeader();
|
|
}
|
|
|
|
// Only propagate WITH elements to subqueries if we're not a subquery
|
|
if (!options.is_subquery)
|
|
{
|
|
if (context->getSettingsRef().enable_global_with_statement)
|
|
ApplyWithAliasVisitor::visit(query_ptr);
|
|
ApplyWithSubqueryVisitor::visit(query_ptr);
|
|
}
|
|
|
|
query_info.query = query_ptr->clone();
|
|
|
|
if (settings.count_distinct_optimization)
|
|
{
|
|
RewriteCountDistinctFunctionMatcher::Data data_rewrite_countdistinct;
|
|
RewriteCountDistinctFunctionVisitor(data_rewrite_countdistinct).visit(query_ptr);
|
|
}
|
|
|
|
if (settings.optimize_uniq_to_count)
|
|
{
|
|
RewriteUniqToCountMatcher::Data data_rewrite_uniq_count;
|
|
RewriteUniqToCountVisitor(data_rewrite_uniq_count).visit(query_ptr);
|
|
}
|
|
|
|
JoinedTables joined_tables(getSubqueryContext(context), getSelectQuery(), options.with_all_cols, options_.is_create_parameterized_view);
|
|
|
|
bool got_storage_from_query = false;
|
|
if (!has_input && !storage)
|
|
{
|
|
storage = joined_tables.getLeftTableStorage();
|
|
// Mark uses_view_source if the returned storage is the same as the one saved in viewSource
|
|
uses_view_source |= storage && storage == context->getViewSource();
|
|
got_storage_from_query = true;
|
|
}
|
|
|
|
if (storage)
|
|
{
|
|
table_lock = storage->lockForShare(context->getInitialQueryId(), context->getSettingsRef().lock_acquire_timeout);
|
|
table_id = storage->getStorageID();
|
|
if (!metadata_snapshot)
|
|
metadata_snapshot = storage->getInMemoryMetadataPtr();
|
|
|
|
if (options.only_analyze)
|
|
storage_snapshot = storage->getStorageSnapshotWithoutData(metadata_snapshot, context);
|
|
else
|
|
storage_snapshot = storage->getStorageSnapshotForQuery(metadata_snapshot, query_ptr, context);
|
|
}
|
|
|
|
if (has_input || !joined_tables.resolveTables())
|
|
joined_tables.makeFakeTable(storage, metadata_snapshot, source_header);
|
|
|
|
if (context->getCurrentTransaction() && context->getSettingsRef().throw_on_unsupported_query_inside_transaction)
|
|
{
|
|
if (storage)
|
|
checkStorageSupportsTransactionsIfNeeded(storage, context, /* is_readonly_query */ true);
|
|
for (const auto & table : joined_tables.tablesWithColumns())
|
|
{
|
|
if (table.table.table.empty())
|
|
continue;
|
|
auto maybe_storage = DatabaseCatalog::instance().tryGetTable({table.table.database, table.table.table}, context);
|
|
if (!maybe_storage)
|
|
continue;
|
|
checkStorageSupportsTransactionsIfNeeded(storage, context, /* is_readonly_query */ true);
|
|
}
|
|
}
|
|
|
|
/// Check support for JOIN for parallel replicas with custom key
|
|
if (joined_tables.tablesCount() > 1 && !settings.parallel_replicas_custom_key.value.empty())
|
|
{
|
|
LOG_DEBUG(log, "JOINs are not supported with parallel_replicas_custom_key. Query will be executed without using them.");
|
|
context->setSetting("parallel_replicas_custom_key", String{""});
|
|
}
|
|
|
|
/// Check support for FINAL for parallel replicas
|
|
bool is_query_with_final = isQueryWithFinal(query_info);
|
|
if (is_query_with_final && context->canUseTaskBasedParallelReplicas())
|
|
{
|
|
if (settings.allow_experimental_parallel_reading_from_replicas == 1)
|
|
{
|
|
LOG_DEBUG(log, "FINAL modifier is not supported with parallel replicas. Query will be executed without using them.");
|
|
context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0));
|
|
}
|
|
else if (settings.allow_experimental_parallel_reading_from_replicas >= 2)
|
|
{
|
|
throw Exception(ErrorCodes::SUPPORT_IS_DISABLED, "FINAL modifier is not supported with parallel replicas");
|
|
}
|
|
}
|
|
|
|
/// Check support for parallel replicas for non-replicated storage (plain MergeTree)
|
|
bool is_plain_merge_tree = storage && storage->isMergeTree() && !storage->supportsReplication();
|
|
if (is_plain_merge_tree && settings.allow_experimental_parallel_reading_from_replicas > 0 && !settings.parallel_replicas_for_non_replicated_merge_tree)
|
|
{
|
|
if (settings.allow_experimental_parallel_reading_from_replicas == 1)
|
|
{
|
|
LOG_DEBUG(log, "To use parallel replicas with plain MergeTree tables please enable setting `parallel_replicas_for_non_replicated_merge_tree`. For now query will be executed without using them.");
|
|
context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0));
|
|
}
|
|
else if (settings.allow_experimental_parallel_reading_from_replicas >= 2)
|
|
{
|
|
throw Exception(ErrorCodes::SUPPORT_IS_DISABLED, "To use parallel replicas with plain MergeTree tables please enable setting `parallel_replicas_for_non_replicated_merge_tree`");
|
|
}
|
|
}
|
|
|
|
/// Rewrite JOINs
|
|
if (!has_input && joined_tables.tablesCount() > 1)
|
|
{
|
|
rewriteMultipleJoins(query_ptr, joined_tables.tablesWithColumns(), context->getCurrentDatabase(), context->getSettingsRef());
|
|
|
|
joined_tables.reset(getSelectQuery());
|
|
joined_tables.resolveTables();
|
|
if (auto view_source = context->getViewSource())
|
|
{
|
|
// If we are using a virtual block view to replace a table and that table is used
|
|
// inside the JOIN then we need to update uses_view_source accordingly so we avoid propagating scalars that we can't cache
|
|
const auto & storage_values = static_cast<const StorageValues &>(*view_source);
|
|
auto tmp_table_id = storage_values.getStorageID();
|
|
for (const auto & t : joined_tables.tablesWithColumns())
|
|
uses_view_source |= (t.table.database == tmp_table_id.database_name && t.table.table == tmp_table_id.table_name);
|
|
}
|
|
|
|
if (storage && joined_tables.isLeftTableSubquery())
|
|
{
|
|
/// Rewritten with subquery. Free storage locks here.
|
|
storage = nullptr;
|
|
table_lock.reset();
|
|
table_id = StorageID::createEmpty();
|
|
metadata_snapshot = nullptr;
|
|
storage_snapshot = nullptr;
|
|
}
|
|
}
|
|
|
|
if (!has_input)
|
|
{
|
|
interpreter_subquery = joined_tables.makeLeftTableSubquery(options.subquery());
|
|
if (interpreter_subquery)
|
|
{
|
|
source_header = interpreter_subquery->getSampleBlock();
|
|
uses_view_source |= interpreter_subquery->usesViewSource();
|
|
}
|
|
}
|
|
|
|
joined_tables.rewriteDistributedInAndJoins(query_ptr);
|
|
|
|
max_streams = settings.max_threads;
|
|
ASTSelectQuery & query = getSelectQuery();
|
|
std::shared_ptr<TableJoin> table_join = joined_tables.makeTableJoin(query);
|
|
|
|
if (storage)
|
|
row_policy_filter = context->getRowPolicyFilter(table_id.getDatabaseName(), table_id.getTableName(), RowPolicyFilterType::SELECT_FILTER);
|
|
|
|
StorageView * view = nullptr;
|
|
if (storage)
|
|
view = dynamic_cast<StorageView *>(storage.get());
|
|
|
|
if (!settings.additional_table_filters.value.empty() && storage && !joined_tables.tablesWithColumns().empty())
|
|
query_info.additional_filter_ast = parseAdditionalFilterConditionForTable(
|
|
settings.additional_table_filters, joined_tables.tablesWithColumns().front().table, *context);
|
|
|
|
ASTPtr parallel_replicas_custom_filter_ast = nullptr;
|
|
if (storage && context->getParallelReplicasMode() == Context::ParallelReplicasMode::CUSTOM_KEY && !joined_tables.tablesWithColumns().empty())
|
|
{
|
|
if (settings.parallel_replicas_count > 1)
|
|
{
|
|
if (auto custom_key_ast = parseCustomKeyForTable(settings.parallel_replicas_custom_key, *context))
|
|
{
|
|
LOG_TRACE(log, "Processing query on a replica using custom_key '{}'", settings.parallel_replicas_custom_key.value);
|
|
|
|
parallel_replicas_custom_filter_ast = getCustomKeyFilterForParallelReplica(
|
|
settings.parallel_replicas_count,
|
|
settings.parallel_replica_offset,
|
|
std::move(custom_key_ast),
|
|
settings.parallel_replicas_custom_key_filter_type,
|
|
storage->getInMemoryMetadataPtr()->columns,
|
|
context);
|
|
}
|
|
else if (settings.parallel_replica_offset > 0)
|
|
{
|
|
throw Exception(
|
|
ErrorCodes::BAD_ARGUMENTS,
|
|
"Parallel replicas processing with custom_key has been requested "
|
|
"(setting 'max_parallel_replicas') but the table does not have custom_key defined for it "
|
|
"or it's invalid (settings `parallel_replicas_custom_key`)");
|
|
}
|
|
}
|
|
else if (auto * distributed = dynamic_cast<StorageDistributed *>(storage.get());
|
|
distributed && context->canUseParallelReplicasCustomKey(*distributed->getCluster()))
|
|
{
|
|
context->setSetting("distributed_group_by_no_merge", 2);
|
|
}
|
|
}
|
|
|
|
if (autoFinalOnQuery(query))
|
|
{
|
|
query.setFinal();
|
|
}
|
|
|
|
auto analyze = [&] (bool try_move_to_prewhere)
|
|
{
|
|
/// Allow push down and other optimizations for VIEW: replace with subquery and rewrite it.
|
|
ASTPtr view_table;
|
|
if (view)
|
|
{
|
|
query_info.is_parameterized_view = view->isParameterizedView();
|
|
StorageView::replaceWithSubquery(getSelectQuery(), view_table, metadata_snapshot, view->isParameterizedView());
|
|
}
|
|
|
|
syntax_analyzer_result = TreeRewriter(context).analyzeSelect(
|
|
query_ptr,
|
|
TreeRewriterResult(source_header.getNamesAndTypesList(), storage, storage_snapshot),
|
|
options,
|
|
joined_tables.tablesWithColumns(),
|
|
required_result_column_names,
|
|
table_join);
|
|
|
|
query_info.syntax_analyzer_result = syntax_analyzer_result;
|
|
context->setDistributed(syntax_analyzer_result->is_remote_storage);
|
|
|
|
if (storage && !query.final() && storage->needRewriteQueryWithFinal(syntax_analyzer_result->requiredSourceColumns()))
|
|
query.setFinal();
|
|
|
|
if (view)
|
|
{
|
|
/// Restore original view name. Save rewritten subquery for future usage in StorageView.
|
|
query_info.view_query = StorageView::restoreViewName(getSelectQuery(), view_table);
|
|
view = nullptr;
|
|
}
|
|
|
|
if (try_move_to_prewhere
|
|
&& storage && storage->canMoveConditionsToPrewhere()
|
|
&& query.where() && !query.prewhere()
|
|
&& !query.hasJoin()) /// Join may produce rows with nulls or default values, it's difficult to analyze if they affected or not.
|
|
{
|
|
/// PREWHERE optimization: transfer some condition from WHERE to PREWHERE if enabled and viable
|
|
if (const auto & column_sizes = storage->getColumnSizes(); !column_sizes.empty())
|
|
{
|
|
/// Extract column compressed sizes.
|
|
std::unordered_map<std::string, UInt64> column_compressed_sizes;
|
|
for (const auto & [name, sizes] : column_sizes)
|
|
column_compressed_sizes[name] = sizes.data_compressed;
|
|
|
|
SelectQueryInfo current_info;
|
|
current_info.query = query_ptr;
|
|
current_info.syntax_analyzer_result = syntax_analyzer_result;
|
|
|
|
Names queried_columns = syntax_analyzer_result->requiredSourceColumns();
|
|
const auto & supported_prewhere_columns = storage->supportedPrewhereColumns();
|
|
|
|
MergeTreeWhereOptimizer where_optimizer{
|
|
std::move(column_compressed_sizes),
|
|
metadata_snapshot,
|
|
storage->getConditionEstimatorByPredicate(query_info, storage_snapshot, context),
|
|
queried_columns,
|
|
supported_prewhere_columns,
|
|
log};
|
|
|
|
where_optimizer.optimize(current_info, context);
|
|
}
|
|
}
|
|
|
|
if (query.prewhere() && query.where())
|
|
{
|
|
/// Filter block in WHERE instead to get better performance
|
|
query.setExpression(
|
|
ASTSelectQuery::Expression::WHERE, makeASTFunction("and", query.prewhere()->clone(), query.where()->clone()));
|
|
}
|
|
|
|
query_analyzer = std::make_unique<SelectQueryExpressionAnalyzer>(
|
|
query_ptr,
|
|
syntax_analyzer_result,
|
|
context,
|
|
metadata_snapshot,
|
|
required_result_column_names,
|
|
!options.only_analyze,
|
|
options,
|
|
prepared_sets);
|
|
|
|
if (!options.only_analyze)
|
|
{
|
|
if (query.sampleSize() && (input_pipe || !storage || !storage->supportsSampling()))
|
|
{
|
|
if (storage)
|
|
throw Exception(
|
|
ErrorCodes::SAMPLING_NOT_SUPPORTED,
|
|
"Storage {} doesn't support sampling",
|
|
storage->getStorageID().getNameForLogs());
|
|
else
|
|
throw Exception(ErrorCodes::SAMPLING_NOT_SUPPORTED, "Illegal SAMPLE: sampling is only allowed with the table engines that support it");
|
|
}
|
|
|
|
if (query.final() && (input_pipe || !storage || !storage->supportsFinal()))
|
|
{
|
|
if (!input_pipe && storage)
|
|
throw Exception(ErrorCodes::ILLEGAL_FINAL, "Storage {} doesn't support FINAL", storage->getName());
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_FINAL, "Illegal FINAL");
|
|
}
|
|
|
|
if (query.prewhere() && (input_pipe || !storage || !storage->supportsPrewhere()))
|
|
{
|
|
if (!input_pipe && storage)
|
|
throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "Storage {} doesn't support PREWHERE", storage->getName());
|
|
else
|
|
throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "Illegal PREWHERE");
|
|
}
|
|
|
|
/// Save the new temporary tables in the query context
|
|
for (const auto & it : query_analyzer->getExternalTables())
|
|
if (!context->tryResolveStorageID({"", it.first}, Context::ResolveExternal))
|
|
context->addExternalTable(it.first, std::move(*it.second));
|
|
}
|
|
|
|
if (!options.only_analyze || options.modify_inplace)
|
|
{
|
|
if (syntax_analyzer_result->rewrite_subqueries)
|
|
{
|
|
/// remake interpreter_subquery when PredicateOptimizer rewrites subqueries and main table is subquery
|
|
interpreter_subquery = joined_tables.makeLeftTableSubquery(options.subquery());
|
|
}
|
|
}
|
|
|
|
if (interpreter_subquery)
|
|
{
|
|
/// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery.
|
|
if (query_analyzer->hasAggregation())
|
|
interpreter_subquery->ignoreWithTotals();
|
|
uses_view_source |= interpreter_subquery->usesViewSource();
|
|
}
|
|
|
|
required_columns = syntax_analyzer_result->requiredSourceColumns();
|
|
|
|
if (storage)
|
|
{
|
|
query_info.filter_asts.clear();
|
|
|
|
/// Fix source_header for filter actions.
|
|
if (row_policy_filter && !row_policy_filter->empty())
|
|
{
|
|
filter_info = generateFilterActions(
|
|
table_id, row_policy_filter->expression, context, storage, storage_snapshot, metadata_snapshot, required_columns,
|
|
prepared_sets);
|
|
|
|
query_info.filter_asts.push_back(row_policy_filter->expression);
|
|
}
|
|
|
|
if (query_info.additional_filter_ast)
|
|
{
|
|
additional_filter_info = generateFilterActions(
|
|
table_id, query_info.additional_filter_ast, context, storage, storage_snapshot, metadata_snapshot, required_columns,
|
|
prepared_sets);
|
|
|
|
additional_filter_info->do_remove_column = true;
|
|
|
|
query_info.filter_asts.push_back(query_info.additional_filter_ast);
|
|
}
|
|
|
|
if (parallel_replicas_custom_filter_ast)
|
|
{
|
|
parallel_replicas_custom_filter_info = generateFilterActions(
|
|
table_id, parallel_replicas_custom_filter_ast, context, storage, storage_snapshot, metadata_snapshot, required_columns,
|
|
prepared_sets);
|
|
|
|
parallel_replicas_custom_filter_info->do_remove_column = true;
|
|
query_info.filter_asts.push_back(parallel_replicas_custom_filter_ast);
|
|
}
|
|
|
|
source_header = storage_snapshot->getSampleBlockForColumns(required_columns);
|
|
}
|
|
|
|
/// Calculate structure of the result.
|
|
result_header = getSampleBlockImpl();
|
|
};
|
|
|
|
|
|
/// This is a hack to make sure we reanalyze if GlobalSubqueriesVisitor changed allow_experimental_parallel_reading_from_replicas
|
|
/// inside the query context (because it doesn't have write access to the main context)
|
|
UInt64 parallel_replicas_before_analysis
|
|
= context->hasQueryContext() ? context->getQueryContext()->getSettingsRef().allow_experimental_parallel_reading_from_replicas : 0;
|
|
|
|
/// Conditionally support AST-based PREWHERE optimization.
|
|
analyze(shouldMoveToPrewhere() && (!settings.query_plan_optimize_prewhere || !settings.query_plan_enable_optimizations));
|
|
|
|
|
|
bool need_analyze_again = false;
|
|
bool can_analyze_again = false;
|
|
|
|
if (context->hasQueryContext())
|
|
{
|
|
/// As this query can't be executed with parallel replicas, we must reanalyze it
|
|
if (context->getQueryContext()->getSettingsRef().allow_experimental_parallel_reading_from_replicas
|
|
!= parallel_replicas_before_analysis)
|
|
{
|
|
context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0));
|
|
context->setSetting("max_parallel_replicas", UInt64{1});
|
|
need_analyze_again = true;
|
|
}
|
|
|
|
/// Check number of calls of 'analyze' function.
|
|
/// If it is too big, we will not analyze the query again not to have exponential blowup.
|
|
std::atomic<size_t> & current_query_analyze_count = context->getQueryContext()->kitchen_sink.analyze_counter;
|
|
++current_query_analyze_count;
|
|
can_analyze_again = settings.max_analyze_depth == 0 || current_query_analyze_count < settings.max_analyze_depth;
|
|
}
|
|
|
|
if (can_analyze_again && (analysis_result.prewhere_constant_filter_description.always_false ||
|
|
analysis_result.prewhere_constant_filter_description.always_true))
|
|
{
|
|
if (analysis_result.prewhere_constant_filter_description.always_true)
|
|
query.setExpression(ASTSelectQuery::Expression::PREWHERE, {});
|
|
else
|
|
query.setExpression(ASTSelectQuery::Expression::PREWHERE, std::make_shared<ASTLiteral>(0u));
|
|
need_analyze_again = true;
|
|
}
|
|
|
|
if (can_analyze_again && (analysis_result.where_constant_filter_description.always_false ||
|
|
analysis_result.where_constant_filter_description.always_true))
|
|
{
|
|
if (analysis_result.where_constant_filter_description.always_true)
|
|
query.setExpression(ASTSelectQuery::Expression::WHERE, {});
|
|
else
|
|
query.setExpression(ASTSelectQuery::Expression::WHERE, std::make_shared<ASTLiteral>(0u));
|
|
need_analyze_again = true;
|
|
}
|
|
|
|
if (can_analyze_again)
|
|
need_analyze_again |= adjustParallelReplicasAfterAnalysis();
|
|
|
|
if (need_analyze_again)
|
|
{
|
|
size_t current_query_analyze_count = context->getQueryContext()->kitchen_sink.analyze_counter.load();
|
|
LOG_TRACE(log, "Running 'analyze' second time (current analyze depth: {})", current_query_analyze_count);
|
|
|
|
/// Reuse already built sets for multiple passes of analysis
|
|
prepared_sets = query_analyzer->getPreparedSets();
|
|
|
|
/// Do not try move conditions to PREWHERE for the second time.
|
|
/// Otherwise, we won't be able to fallback from inefficient PREWHERE to WHERE later.
|
|
analyze(/* try_move_to_prewhere = */ false);
|
|
}
|
|
|
|
/// If there is no WHERE, filter blocks as usual
|
|
if (query.prewhere() && !query.where())
|
|
analysis_result.prewhere_info->need_filter = true;
|
|
|
|
if (table_id && got_storage_from_query && !joined_tables.isLeftTableFunction() && !options.ignore_access_check)
|
|
{
|
|
/// The current user should have the SELECT privilege. If this table_id is for a table
|
|
/// function we don't check access rights here because in this case they have been already
|
|
/// checked in ITableFunction::execute().
|
|
checkAccessRightsForSelect(context, table_id, metadata_snapshot, *syntax_analyzer_result);
|
|
|
|
/// Remove limits for some tables in the `system` database.
|
|
if (shouldIgnoreQuotaAndLimits(table_id) && (joined_tables.tablesCount() <= 1))
|
|
{
|
|
options.ignore_quota = true;
|
|
options.ignore_limits = true;
|
|
}
|
|
}
|
|
|
|
/// Add prewhere actions with alias columns and record needed columns from storage.
|
|
if (storage)
|
|
{
|
|
addPrewhereAliasActions();
|
|
analysis_result.required_columns = required_columns;
|
|
}
|
|
|
|
/// Blocks used in expression analysis contains size 1 const columns for constant folding and
|
|
/// null non-const columns to avoid useless memory allocations. However, a valid block sample
|
|
/// requires all columns to be of size 0, thus we need to sanitize the block here.
|
|
sanitizeBlock(result_header, true);
|
|
}
|
|
|
|
bool InterpreterSelectQuery::adjustParallelReplicasAfterAnalysis()
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
ASTSelectQuery & query = getSelectQuery();
|
|
|
|
/// While only_analyze we don't know anything about parts, so any decision about how many parallel replicas to use would be wrong
|
|
if (!storage || options.only_analyze || !context->canUseParallelReplicasOnInitiator())
|
|
return false;
|
|
|
|
if (getTrivialCount(0).has_value())
|
|
{
|
|
/// The query could use trivial count if it didn't use parallel replicas, so let's disable it and reanalyze
|
|
context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0));
|
|
context->setSetting("max_parallel_replicas", UInt64{1});
|
|
LOG_DEBUG(log, "Disabling parallel replicas to be able to use a trivial count optimization");
|
|
return true;
|
|
}
|
|
|
|
auto storage_merge_tree = std::dynamic_pointer_cast<MergeTreeData>(storage);
|
|
if (!storage_merge_tree || settings.parallel_replicas_min_number_of_rows_per_replica == 0)
|
|
return false;
|
|
|
|
auto query_info_copy = query_info;
|
|
auto analysis_copy = analysis_result;
|
|
|
|
/// There is a couple of instances where there might be a lower limit on the rows to be read
|
|
/// * The max_rows_to_read setting
|
|
/// * A LIMIT in a simple query (see maxBlockSizeByLimit())
|
|
UInt64 max_rows = maxBlockSizeByLimit();
|
|
if (settings.max_rows_to_read)
|
|
max_rows = max_rows ? std::min(max_rows, settings.max_rows_to_read.value) : settings.max_rows_to_read;
|
|
query_info_copy.limit = max_rows;
|
|
|
|
/// Apply filters to prewhere and add them to the query_info so we can filter out parts efficiently during row estimation
|
|
applyFiltersToPrewhereInAnalysis(analysis_copy);
|
|
if (analysis_copy.prewhere_info)
|
|
{
|
|
query_info_copy.prewhere_info = analysis_copy.prewhere_info;
|
|
if (query.prewhere() && !query.where())
|
|
query_info_copy.prewhere_info->need_filter = true;
|
|
}
|
|
|
|
ActionDAGNodes added_filter_nodes = MergeTreeData::getFiltersForPrimaryKeyAnalysis(*this);
|
|
if (query_info_copy.prewhere_info)
|
|
{
|
|
{
|
|
const auto & node
|
|
= query_info_copy.prewhere_info->prewhere_actions->findInOutputs(query_info_copy.prewhere_info->prewhere_column_name);
|
|
added_filter_nodes.nodes.push_back(&node);
|
|
}
|
|
|
|
if (query_info_copy.prewhere_info->row_level_filter)
|
|
{
|
|
const auto & node
|
|
= query_info_copy.prewhere_info->row_level_filter->findInOutputs(query_info_copy.prewhere_info->row_level_column_name);
|
|
added_filter_nodes.nodes.push_back(&node);
|
|
}
|
|
}
|
|
|
|
query_info_copy.filter_actions_dag = ActionsDAG::buildFilterActionsDAG(added_filter_nodes.nodes);
|
|
UInt64 rows_to_read = storage_merge_tree->estimateNumberOfRowsToRead(context, storage_snapshot, query_info_copy);
|
|
/// Note that we treat an estimation of 0 rows as a real estimation
|
|
size_t number_of_replicas_to_use = rows_to_read / settings.parallel_replicas_min_number_of_rows_per_replica;
|
|
LOG_TRACE(log, "Estimated {} rows to read. It is enough work for {} parallel replicas", rows_to_read, number_of_replicas_to_use);
|
|
|
|
if (number_of_replicas_to_use <= 1)
|
|
{
|
|
context->setSetting("allow_experimental_parallel_reading_from_replicas", Field(0));
|
|
context->setSetting("max_parallel_replicas", UInt64{1});
|
|
LOG_DEBUG(log, "Disabling parallel replicas because there aren't enough rows to read");
|
|
return true;
|
|
}
|
|
else if (number_of_replicas_to_use < settings.max_parallel_replicas)
|
|
{
|
|
context->setSetting("max_parallel_replicas", number_of_replicas_to_use);
|
|
LOG_DEBUG(log, "Reducing the number of replicas to use to {}", number_of_replicas_to_use);
|
|
/// No need to reanalyze
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void InterpreterSelectQuery::buildQueryPlan(QueryPlan & query_plan)
|
|
{
|
|
executeImpl(query_plan, std::move(input_pipe));
|
|
|
|
/// We must guarantee that result structure is the same as in getSampleBlock()
|
|
if (!blocksHaveEqualStructure(query_plan.getCurrentDataStream().header, result_header))
|
|
{
|
|
auto convert_actions_dag = ActionsDAG::makeConvertingActions(
|
|
query_plan.getCurrentDataStream().header.getColumnsWithTypeAndName(),
|
|
result_header.getColumnsWithTypeAndName(),
|
|
ActionsDAG::MatchColumnsMode::Name,
|
|
true);
|
|
|
|
auto converting = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), convert_actions_dag);
|
|
query_plan.addStep(std::move(converting));
|
|
}
|
|
|
|
/// Extend lifetime of context, table lock, storage.
|
|
query_plan.addInterpreterContext(context);
|
|
if (table_lock)
|
|
query_plan.addTableLock(std::move(table_lock));
|
|
if (storage)
|
|
query_plan.addStorageHolder(storage);
|
|
}
|
|
|
|
BlockIO InterpreterSelectQuery::execute()
|
|
{
|
|
BlockIO res;
|
|
QueryPlan query_plan;
|
|
|
|
buildQueryPlan(query_plan);
|
|
|
|
auto builder = query_plan.buildQueryPipeline(
|
|
QueryPlanOptimizationSettings::fromContext(context), BuildQueryPipelineSettings::fromContext(context));
|
|
|
|
res.pipeline = QueryPipelineBuilder::getPipeline(std::move(*builder));
|
|
|
|
setQuota(res.pipeline);
|
|
|
|
return res;
|
|
}
|
|
|
|
Block InterpreterSelectQuery::getSampleBlockImpl()
|
|
{
|
|
auto & select_query = getSelectQuery();
|
|
|
|
query_info.query = query_ptr;
|
|
|
|
/// NOTE: this is required for getQueryProcessingStage(), so should be initialized before ExpressionAnalysisResult.
|
|
query_info.has_window = query_analyzer->hasWindow();
|
|
/// NOTE: this is required only for IStorage::read(), and to be precise MergeTreeData::read(), in case of projections.
|
|
query_info.has_order_by = select_query.orderBy() != nullptr;
|
|
query_info.need_aggregate = query_analyzer->hasAggregation();
|
|
|
|
if (storage && !options.only_analyze)
|
|
{
|
|
query_info.prepared_sets = query_analyzer->getPreparedSets();
|
|
from_stage = storage->getQueryProcessingStage(context, options.to_stage, storage_snapshot, query_info);
|
|
}
|
|
|
|
/// Do I need to perform the first part of the pipeline?
|
|
/// Running on remote servers during distributed processing or if query is not distributed.
|
|
///
|
|
/// Also note that with distributed_group_by_no_merge=1 or when there is
|
|
/// only one remote server, it is equal to local query in terms of query
|
|
/// stages (or when due to optimize_distributed_group_by_sharding_key the query was processed up to Complete stage).
|
|
bool first_stage = from_stage < QueryProcessingStage::WithMergeableState
|
|
&& options.to_stage >= QueryProcessingStage::WithMergeableState;
|
|
/// Do I need to execute the second part of the pipeline?
|
|
/// Running on the initiating server during distributed processing or if query is not distributed.
|
|
///
|
|
/// Also note that with distributed_group_by_no_merge=2 (i.e. when optimize_distributed_group_by_sharding_key takes place)
|
|
/// the query on the remote server will be processed up to WithMergeableStateAfterAggregationAndLimit,
|
|
/// So it will do partial second stage (second_stage=true), and initiator will do the final part.
|
|
bool second_stage = from_stage <= QueryProcessingStage::WithMergeableState
|
|
&& options.to_stage > QueryProcessingStage::WithMergeableState;
|
|
|
|
analysis_result = ExpressionAnalysisResult(
|
|
*query_analyzer, metadata_snapshot, first_stage, second_stage, options.only_analyze, filter_info, additional_filter_info, source_header);
|
|
|
|
if (options.to_stage == QueryProcessingStage::Enum::FetchColumns)
|
|
{
|
|
auto header = source_header;
|
|
|
|
if (analysis_result.prewhere_info)
|
|
{
|
|
header = analysis_result.prewhere_info->prewhere_actions->updateHeader(header);
|
|
if (analysis_result.prewhere_info->remove_prewhere_column)
|
|
header.erase(analysis_result.prewhere_info->prewhere_column_name);
|
|
}
|
|
return header;
|
|
}
|
|
|
|
if (options.to_stage == QueryProcessingStage::Enum::WithMergeableState)
|
|
{
|
|
if (!analysis_result.need_aggregate)
|
|
{
|
|
// What's the difference with selected_columns?
|
|
// Here we calculate the header we want from remote server after it
|
|
// executes query up to WithMergeableState. When there is an ORDER BY,
|
|
// it is executed on remote server firstly, then we execute merge
|
|
// sort on initiator. To execute ORDER BY, we need to calculate the
|
|
// ORDER BY keys. These keys might be not present among the final
|
|
// SELECT columns given by the `selected_column`. This is why we have
|
|
// to use proper keys given by the result columns of the
|
|
// `before_order_by` expression actions.
|
|
// Another complication is window functions -- if we have them, they
|
|
// are calculated on initiator, before ORDER BY columns. In this case,
|
|
// the shard has to return columns required for window function
|
|
// calculation and further steps, given by the `before_window`
|
|
// expression actions.
|
|
// As of 21.6 this is broken: the actions in `before_window` might
|
|
// not contain everything required for the ORDER BY step, but this
|
|
// is a responsibility of ExpressionAnalyzer and is not a problem
|
|
// with this code. See
|
|
// https://github.com/ClickHouse/ClickHouse/issues/19857 for details.
|
|
if (analysis_result.before_window)
|
|
return analysis_result.before_window->getResultColumns();
|
|
|
|
// NOTE: should not handle before_limit_by specially since
|
|
// WithMergeableState does not process LIMIT BY
|
|
|
|
return analysis_result.before_order_by->getResultColumns();
|
|
}
|
|
|
|
Block header = analysis_result.before_aggregation->getResultColumns();
|
|
|
|
Block res;
|
|
|
|
if (analysis_result.use_grouping_set_key)
|
|
res.insert({ nullptr, std::make_shared<DataTypeUInt64>(), "__grouping_set" });
|
|
|
|
if (context->getSettingsRef().group_by_use_nulls && analysis_result.use_grouping_set_key)
|
|
{
|
|
for (const auto & key : query_analyzer->aggregationKeys())
|
|
res.insert({nullptr, makeNullableSafe(header.getByName(key.name).type), key.name});
|
|
}
|
|
else
|
|
{
|
|
for (const auto & key : query_analyzer->aggregationKeys())
|
|
res.insert({nullptr, header.getByName(key.name).type, key.name});
|
|
}
|
|
|
|
for (const auto & aggregate : query_analyzer->aggregates())
|
|
{
|
|
size_t arguments_size = aggregate.argument_names.size();
|
|
DataTypes argument_types(arguments_size);
|
|
for (size_t j = 0; j < arguments_size; ++j)
|
|
argument_types[j] = header.getByName(aggregate.argument_names[j]).type;
|
|
|
|
DataTypePtr type = std::make_shared<DataTypeAggregateFunction>(aggregate.function, argument_types, aggregate.parameters);
|
|
|
|
res.insert({nullptr, type, aggregate.column_name});
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
if (options.to_stage >= QueryProcessingStage::Enum::WithMergeableStateAfterAggregation)
|
|
{
|
|
// It's different from selected_columns, see the comment above for
|
|
// WithMergeableState stage.
|
|
if (analysis_result.before_window)
|
|
return analysis_result.before_window->getResultColumns();
|
|
|
|
// In case of query on remote shards executed up to
|
|
// WithMergeableStateAfterAggregation*, they can process LIMIT BY,
|
|
// since the initiator will not apply LIMIT BY again.
|
|
if (analysis_result.before_limit_by)
|
|
return analysis_result.before_limit_by->getResultColumns();
|
|
|
|
return analysis_result.before_order_by->getResultColumns();
|
|
}
|
|
|
|
return analysis_result.final_projection->getResultColumns();
|
|
}
|
|
|
|
|
|
static std::pair<Field, DataTypePtr> getWithFillFieldValue(const ASTPtr & node, ContextPtr context)
|
|
{
|
|
auto field_type = evaluateConstantExpression(node, context);
|
|
|
|
if (!isColumnedAsNumber(field_type.second))
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION,
|
|
"Illegal type {} of WITH FILL expression, must be numeric type", field_type.second->getName());
|
|
|
|
return field_type;
|
|
}
|
|
|
|
static std::pair<Field, std::optional<IntervalKind>> getWithFillStep(const ASTPtr & node, const ContextPtr & context)
|
|
{
|
|
auto [field, type] = evaluateConstantExpression(node, context);
|
|
|
|
if (const auto * type_interval = typeid_cast<const DataTypeInterval *>(type.get()))
|
|
return std::make_pair(std::move(field), type_interval->getKind());
|
|
|
|
if (isColumnedAsNumber(type))
|
|
return std::make_pair(std::move(field), std::nullopt);
|
|
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION,
|
|
"Illegal type {} of WITH FILL expression, must be numeric type", type->getName());
|
|
}
|
|
|
|
static FillColumnDescription getWithFillDescription(const ASTOrderByElement & order_by_elem, const ContextPtr & context)
|
|
{
|
|
FillColumnDescription descr;
|
|
|
|
if (order_by_elem.getFillFrom())
|
|
std::tie(descr.fill_from, descr.fill_from_type) = getWithFillFieldValue(order_by_elem.getFillFrom(), context);
|
|
if (order_by_elem.getFillTo())
|
|
std::tie(descr.fill_to, descr.fill_to_type) = getWithFillFieldValue(order_by_elem.getFillTo(), context);
|
|
|
|
if (order_by_elem.getFillStep())
|
|
std::tie(descr.fill_step, descr.step_kind) = getWithFillStep(order_by_elem.getFillStep(), context);
|
|
else
|
|
descr.fill_step = order_by_elem.direction;
|
|
|
|
if (applyVisitor(FieldVisitorAccurateEquals(), descr.fill_step, Field{0}))
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, "WITH FILL STEP value cannot be zero");
|
|
|
|
if (order_by_elem.direction == 1)
|
|
{
|
|
if (applyVisitor(FieldVisitorAccurateLess(), descr.fill_step, Field{0}))
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, "WITH FILL STEP value cannot be negative for sorting in ascending direction");
|
|
|
|
if (!descr.fill_from.isNull() && !descr.fill_to.isNull() &&
|
|
applyVisitor(FieldVisitorAccurateLess(), descr.fill_to, descr.fill_from))
|
|
{
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION,
|
|
"WITH FILL TO value cannot be less than FROM value for sorting in ascending direction");
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (applyVisitor(FieldVisitorAccurateLess(), Field{0}, descr.fill_step))
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION, "WITH FILL STEP value cannot be positive for sorting in descending direction");
|
|
|
|
if (!descr.fill_from.isNull() && !descr.fill_to.isNull() &&
|
|
applyVisitor(FieldVisitorAccurateLess(), descr.fill_from, descr.fill_to))
|
|
{
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION,
|
|
"WITH FILL FROM value cannot be less than TO value for sorting in descending direction");
|
|
}
|
|
}
|
|
|
|
return descr;
|
|
}
|
|
|
|
SortDescription InterpreterSelectQuery::getSortDescription(const ASTSelectQuery & query, const ContextPtr & context_)
|
|
{
|
|
SortDescription order_descr;
|
|
order_descr.reserve(query.orderBy()->children.size());
|
|
|
|
for (const auto & elem : query.orderBy()->children)
|
|
{
|
|
const String & column_name = elem->children.front()->getColumnName();
|
|
const auto & order_by_elem = elem->as<ASTOrderByElement &>();
|
|
|
|
std::shared_ptr<Collator> collator;
|
|
if (order_by_elem.getCollation())
|
|
collator = std::make_shared<Collator>(order_by_elem.getCollation()->as<ASTLiteral &>().value.get<String>());
|
|
|
|
if (order_by_elem.with_fill)
|
|
{
|
|
FillColumnDescription fill_desc = getWithFillDescription(order_by_elem, context_);
|
|
order_descr.emplace_back(column_name, order_by_elem.direction, order_by_elem.nulls_direction, collator, true, fill_desc);
|
|
}
|
|
else
|
|
order_descr.emplace_back(column_name, order_by_elem.direction, order_by_elem.nulls_direction, collator);
|
|
}
|
|
|
|
order_descr.compile_sort_description = context_->getSettingsRef().compile_sort_description;
|
|
order_descr.min_count_to_compile_sort_description = context_->getSettingsRef().min_count_to_compile_sort_description;
|
|
|
|
return order_descr;
|
|
}
|
|
|
|
static InterpolateDescriptionPtr getInterpolateDescription(
|
|
const ASTSelectQuery & query, const Block & source_block, const Block & result_block, const Aliases & aliases, ContextPtr context)
|
|
{
|
|
InterpolateDescriptionPtr interpolate_descr;
|
|
if (query.interpolate())
|
|
{
|
|
NamesAndTypesList source_columns;
|
|
ColumnsWithTypeAndName result_columns;
|
|
ASTPtr exprs = std::make_shared<ASTExpressionList>();
|
|
|
|
if (query.interpolate()->children.empty())
|
|
{
|
|
std::unordered_map<String, DataTypePtr> column_names;
|
|
for (const auto & column : result_block.getColumnsWithTypeAndName())
|
|
column_names[column.name] = column.type;
|
|
for (const auto & elem : query.orderBy()->children)
|
|
if (elem->as<ASTOrderByElement>()->with_fill)
|
|
column_names.erase(elem->as<ASTOrderByElement>()->children.front()->getColumnName());
|
|
for (const auto & [name, type] : column_names)
|
|
{
|
|
source_columns.emplace_back(name, type);
|
|
result_columns.emplace_back(type, name);
|
|
exprs->children.emplace_back(std::make_shared<ASTIdentifier>(name));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
NameSet col_set;
|
|
for (const auto & elem : query.interpolate()->children)
|
|
{
|
|
const auto & interpolate = elem->as<ASTInterpolateElement &>();
|
|
|
|
if (const ColumnWithTypeAndName *result_block_column = result_block.findByName(interpolate.column))
|
|
{
|
|
if (!col_set.insert(result_block_column->name).second)
|
|
throw Exception(ErrorCodes::INVALID_WITH_FILL_EXPRESSION,
|
|
"Duplicate INTERPOLATE column '{}'", interpolate.column);
|
|
|
|
result_columns.emplace_back(result_block_column->type, result_block_column->name);
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER,
|
|
"Missing column '{}' as an INTERPOLATE expression target", interpolate.column);
|
|
|
|
exprs->children.emplace_back(interpolate.expr->clone());
|
|
}
|
|
|
|
col_set.clear();
|
|
for (const auto & column : result_block)
|
|
{
|
|
source_columns.emplace_back(column.name, column.type);
|
|
col_set.insert(column.name);
|
|
}
|
|
for (const auto & column : source_block)
|
|
if (!col_set.contains(column.name))
|
|
source_columns.emplace_back(column.name, column.type);
|
|
}
|
|
|
|
auto syntax_result = TreeRewriter(context).analyze(exprs, source_columns);
|
|
ExpressionAnalyzer analyzer(exprs, syntax_result, context);
|
|
ActionsDAGPtr actions = analyzer.getActionsDAG(true);
|
|
ActionsDAGPtr conv_dag = ActionsDAG::makeConvertingActions(actions->getResultColumns(),
|
|
result_columns, ActionsDAG::MatchColumnsMode::Position, true);
|
|
ActionsDAGPtr merge_dag = ActionsDAG::merge(std::move(*actions->clone()), std::move(*conv_dag));
|
|
|
|
interpolate_descr = std::make_shared<InterpolateDescription>(merge_dag, aliases);
|
|
}
|
|
|
|
return interpolate_descr;
|
|
}
|
|
|
|
static SortDescription getSortDescriptionFromGroupBy(const ASTSelectQuery & query)
|
|
{
|
|
if (!query.groupBy())
|
|
return {};
|
|
|
|
SortDescription order_descr;
|
|
order_descr.reserve(query.groupBy()->children.size());
|
|
|
|
for (const auto & elem : query.groupBy()->children)
|
|
{
|
|
String name = elem->getColumnName();
|
|
order_descr.emplace_back(name, 1, 1);
|
|
}
|
|
|
|
return order_descr;
|
|
}
|
|
|
|
static UInt64 getLimitUIntValue(const ASTPtr & node, const ContextPtr & context, const std::string & expr)
|
|
{
|
|
const auto & [field, type] = evaluateConstantExpression(node, context);
|
|
|
|
if (!isNativeNumber(type))
|
|
throw Exception(ErrorCodes::INVALID_LIMIT_EXPRESSION, "Illegal type {} of {} expression, must be numeric type",
|
|
type->getName(), expr);
|
|
|
|
Field converted = convertFieldToType(field, DataTypeUInt64());
|
|
if (converted.isNull())
|
|
throw Exception(ErrorCodes::INVALID_LIMIT_EXPRESSION, "The value {} of {} expression is not representable as UInt64",
|
|
applyVisitor(FieldVisitorToString(), field), expr);
|
|
|
|
return converted.safeGet<UInt64>();
|
|
}
|
|
|
|
|
|
std::pair<UInt64, UInt64> InterpreterSelectQuery::getLimitLengthAndOffset(const ASTSelectQuery & query, const ContextPtr & context_)
|
|
{
|
|
UInt64 length = 0;
|
|
UInt64 offset = 0;
|
|
|
|
if (query.limitLength())
|
|
{
|
|
length = getLimitUIntValue(query.limitLength(), context_, "LIMIT");
|
|
if (query.limitOffset() && length)
|
|
offset = getLimitUIntValue(query.limitOffset(), context_, "OFFSET");
|
|
}
|
|
else if (query.limitOffset())
|
|
offset = getLimitUIntValue(query.limitOffset(), context_, "OFFSET");
|
|
return {length, offset};
|
|
}
|
|
|
|
|
|
UInt64 InterpreterSelectQuery::getLimitForSorting(const ASTSelectQuery & query, const ContextPtr & context_)
|
|
{
|
|
/// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY, neither ARRAY JOIN.
|
|
if (!query.distinct && !query.limitBy() && !query.limit_with_ties && !query.arrayJoinExpressionList().first && query.limitLength())
|
|
{
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context_);
|
|
if (limit_length > std::numeric_limits<UInt64>::max() - limit_offset)
|
|
return 0;
|
|
|
|
return limit_length + limit_offset;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query)
|
|
{
|
|
if (query.group_by_with_totals)
|
|
return true;
|
|
|
|
/** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard.
|
|
* In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end.
|
|
*/
|
|
if (auto query_table = extractTableExpression(query, 0))
|
|
{
|
|
if (const auto * ast_union = query_table->as<ASTSelectWithUnionQuery>())
|
|
{
|
|
/** NOTE
|
|
* 1. For ASTSelectWithUnionQuery after normalization for union child node the height of the AST tree is at most 2.
|
|
* 2. For ASTSelectIntersectExceptQuery after normalization in case there are intersect or except nodes,
|
|
* the height of the AST tree can have any depth (each intersect/except adds a level), but the
|
|
* number of children in those nodes is always 2.
|
|
*/
|
|
std::function<bool(ASTPtr)> traverse_recursively = [&](ASTPtr child_ast) -> bool
|
|
{
|
|
if (const auto * select_child = child_ast->as <ASTSelectQuery>())
|
|
{
|
|
if (hasWithTotalsInAnySubqueryInFromClause(select_child->as<ASTSelectQuery &>()))
|
|
return true;
|
|
}
|
|
else if (const auto * union_child = child_ast->as<ASTSelectWithUnionQuery>())
|
|
{
|
|
for (const auto & subchild : union_child->list_of_selects->children)
|
|
if (traverse_recursively(subchild))
|
|
return true;
|
|
}
|
|
else if (const auto * intersect_child = child_ast->as<ASTSelectIntersectExceptQuery>())
|
|
{
|
|
auto selects = intersect_child->getListOfSelects();
|
|
for (const auto & subchild : selects)
|
|
if (traverse_recursively(subchild))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
for (const auto & elem : ast_union->list_of_selects->children)
|
|
if (traverse_recursively(elem))
|
|
return true;
|
|
}
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeImpl(QueryPlan & query_plan, std::optional<Pipe> prepared_pipe)
|
|
{
|
|
ProfileEvents::increment(ProfileEvents::SelectQueriesWithSubqueries);
|
|
ProfileEvents::increment(ProfileEvents::QueriesWithSubqueries);
|
|
|
|
/** Streams of data. When the query is executed in parallel, we have several data streams.
|
|
* If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then
|
|
* if there is an ORDER BY, then glue the streams using ResizeProcessor, and then MergeSorting transforms,
|
|
* if not, then glue it using ResizeProcessor,
|
|
* then apply LIMIT.
|
|
* If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel;
|
|
* a parallel GROUP BY will glue streams into one,
|
|
* then perform the remaining operations with one resulting stream.
|
|
*/
|
|
|
|
/// Now we will compose block streams that perform the necessary actions.
|
|
auto & query = getSelectQuery();
|
|
const Settings & settings = context->getSettingsRef();
|
|
auto & expressions = analysis_result;
|
|
bool intermediate_stage = false;
|
|
bool to_aggregation_stage = false;
|
|
bool from_aggregation_stage = false;
|
|
|
|
/// Do I need to aggregate in a separate row that has not passed max_rows_to_group_by?
|
|
bool aggregate_overflow_row =
|
|
expressions.need_aggregate &&
|
|
query.group_by_with_totals &&
|
|
settings.max_rows_to_group_by &&
|
|
settings.group_by_overflow_mode == OverflowMode::ANY &&
|
|
settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE;
|
|
|
|
/// Do I need to immediately finalize the aggregate functions after the aggregation?
|
|
bool aggregate_final =
|
|
expressions.need_aggregate &&
|
|
options.to_stage > QueryProcessingStage::WithMergeableState &&
|
|
!query.group_by_with_totals && !query.group_by_with_rollup && !query.group_by_with_cube;
|
|
|
|
bool use_grouping_set_key = expressions.use_grouping_set_key;
|
|
|
|
if (query.group_by_with_grouping_sets && query.group_by_with_totals)
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "WITH TOTALS and GROUPING SETS are not supported together");
|
|
|
|
if (query.group_by_with_grouping_sets && (query.group_by_with_rollup || query.group_by_with_cube))
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "GROUPING SETS are not supported together with ROLLUP and CUBE");
|
|
|
|
if (expressions.hasHaving() && query.group_by_with_totals && (query.group_by_with_rollup || query.group_by_with_cube))
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING");
|
|
|
|
if (options.only_analyze)
|
|
{
|
|
auto read_nothing = std::make_unique<ReadNothingStep>(source_header);
|
|
query_plan.addStep(std::move(read_nothing));
|
|
|
|
if (expressions.filter_info)
|
|
{
|
|
auto row_level_security_step = std::make_unique<FilterStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.filter_info->actions,
|
|
expressions.filter_info->column_name,
|
|
expressions.filter_info->do_remove_column);
|
|
|
|
row_level_security_step->setStepDescription("Row-level security filter");
|
|
query_plan.addStep(std::move(row_level_security_step));
|
|
}
|
|
|
|
if (expressions.prewhere_info)
|
|
{
|
|
if (expressions.prewhere_info->row_level_filter)
|
|
{
|
|
auto row_level_filter_step = std::make_unique<FilterStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.prewhere_info->row_level_filter,
|
|
expressions.prewhere_info->row_level_column_name,
|
|
true);
|
|
|
|
row_level_filter_step->setStepDescription("Row-level security filter (PREWHERE)");
|
|
query_plan.addStep(std::move(row_level_filter_step));
|
|
}
|
|
|
|
auto prewhere_step = std::make_unique<FilterStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.prewhere_info->prewhere_actions,
|
|
expressions.prewhere_info->prewhere_column_name,
|
|
expressions.prewhere_info->remove_prewhere_column);
|
|
|
|
prewhere_step->setStepDescription("PREWHERE");
|
|
query_plan.addStep(std::move(prewhere_step));
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (prepared_pipe)
|
|
{
|
|
auto prepared_source_step = std::make_unique<ReadFromPreparedSource>(std::move(*prepared_pipe));
|
|
query_plan.addStep(std::move(prepared_source_step));
|
|
query_plan.addInterpreterContext(context);
|
|
}
|
|
|
|
if (from_stage == QueryProcessingStage::WithMergeableState &&
|
|
options.to_stage == QueryProcessingStage::WithMergeableState)
|
|
intermediate_stage = true;
|
|
|
|
/// Support optimize_distributed_group_by_sharding_key
|
|
/// Is running on the initiating server during distributed processing?
|
|
if (from_stage >= QueryProcessingStage::WithMergeableStateAfterAggregation)
|
|
from_aggregation_stage = true;
|
|
/// Is running on remote servers during distributed processing?
|
|
if (options.to_stage >= QueryProcessingStage::WithMergeableStateAfterAggregation)
|
|
to_aggregation_stage = true;
|
|
|
|
/// Read the data from Storage. from_stage - to what stage the request was completed in Storage.
|
|
executeFetchColumns(from_stage, query_plan);
|
|
|
|
LOG_TRACE(log, "{} -> {}", QueryProcessingStage::toString(from_stage), QueryProcessingStage::toString(options.to_stage));
|
|
}
|
|
|
|
InputOrderInfoPtr input_order_info_for_order;
|
|
if (!expressions.need_aggregate)
|
|
input_order_info_for_order = query_info.input_order_info;
|
|
|
|
if (options.to_stage > QueryProcessingStage::FetchColumns)
|
|
{
|
|
auto preliminary_sort = [&]()
|
|
{
|
|
/** For distributed query processing,
|
|
* if no GROUP, HAVING set,
|
|
* but there is an ORDER or LIMIT,
|
|
* then we will perform the preliminary sorting and LIMIT on the remote server.
|
|
*/
|
|
if (!expressions.second_stage
|
|
&& !expressions.need_aggregate
|
|
&& !expressions.hasHaving()
|
|
&& !expressions.has_window)
|
|
{
|
|
if (expressions.has_order_by)
|
|
executeOrder(query_plan, input_order_info_for_order);
|
|
|
|
/// pre_distinct = false, because if we have limit and distinct,
|
|
/// we need to merge streams to one and calculate overall distinct.
|
|
/// Otherwise we can take several equal values from different streams
|
|
/// according to limit and skip some distinct values.
|
|
if (query.limitLength())
|
|
executeDistinct(query_plan, false, expressions.selected_columns, false);
|
|
|
|
/// In case of query executed on remote shards (up to
|
|
/// WithMergeableState*) LIMIT BY cannot be applied, since it
|
|
/// will be applied on the initiator as well, and the header
|
|
/// may not match in some obscure cases.
|
|
if (options.to_stage == QueryProcessingStage::FetchColumns && expressions.hasLimitBy())
|
|
{
|
|
executeExpression(query_plan, expressions.before_limit_by, "Before LIMIT BY");
|
|
executeLimitBy(query_plan);
|
|
}
|
|
|
|
if (query.limitLength() && !query.limitBy())
|
|
executePreLimit(query_plan, true);
|
|
}
|
|
};
|
|
|
|
if (intermediate_stage)
|
|
{
|
|
if (expressions.first_stage || expressions.second_stage)
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Query with intermediate stage cannot have any other stages");
|
|
|
|
preliminary_sort();
|
|
if (expressions.need_aggregate)
|
|
executeMergeAggregated(query_plan, aggregate_overflow_row, aggregate_final, use_grouping_set_key);
|
|
}
|
|
|
|
if (from_aggregation_stage)
|
|
{
|
|
if (intermediate_stage || expressions.first_stage || expressions.second_stage)
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Query with after aggregation stage cannot have any other stages");
|
|
}
|
|
|
|
if (expressions.first_stage)
|
|
{
|
|
// If there is a storage that supports prewhere, this will always be nullptr
|
|
// Thus, we don't actually need to check if projection is active.
|
|
if (expressions.filter_info)
|
|
{
|
|
auto row_level_security_step = std::make_unique<FilterStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.filter_info->actions,
|
|
expressions.filter_info->column_name,
|
|
expressions.filter_info->do_remove_column);
|
|
|
|
row_level_security_step->setStepDescription("Row-level security filter");
|
|
query_plan.addStep(std::move(row_level_security_step));
|
|
}
|
|
|
|
const auto add_filter_step = [&](const auto & new_filter_info, const std::string & description)
|
|
{
|
|
auto filter_step = std::make_unique<FilterStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
new_filter_info->actions,
|
|
new_filter_info->column_name,
|
|
new_filter_info->do_remove_column);
|
|
|
|
filter_step->setStepDescription(description);
|
|
query_plan.addStep(std::move(filter_step));
|
|
};
|
|
|
|
if (additional_filter_info)
|
|
add_filter_step(additional_filter_info, "Additional filter");
|
|
|
|
if (parallel_replicas_custom_filter_info)
|
|
add_filter_step(parallel_replicas_custom_filter_info, "Parallel replica custom key filter");
|
|
|
|
if (expressions.before_array_join)
|
|
{
|
|
QueryPlanStepPtr before_array_join_step
|
|
= std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expressions.before_array_join);
|
|
before_array_join_step->setStepDescription("Before ARRAY JOIN");
|
|
query_plan.addStep(std::move(before_array_join_step));
|
|
}
|
|
|
|
if (expressions.array_join)
|
|
{
|
|
QueryPlanStepPtr array_join_step
|
|
= std::make_unique<ArrayJoinStep>(query_plan.getCurrentDataStream(), expressions.array_join);
|
|
|
|
array_join_step->setStepDescription("ARRAY JOIN");
|
|
query_plan.addStep(std::move(array_join_step));
|
|
}
|
|
|
|
if (expressions.before_join)
|
|
{
|
|
QueryPlanStepPtr before_join_step = std::make_unique<ExpressionStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.before_join);
|
|
before_join_step->setStepDescription("Before JOIN");
|
|
query_plan.addStep(std::move(before_join_step));
|
|
}
|
|
|
|
/// Optional step to convert key columns to common supertype.
|
|
if (expressions.converting_join_columns)
|
|
{
|
|
QueryPlanStepPtr convert_join_step = std::make_unique<ExpressionStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.converting_join_columns);
|
|
convert_join_step->setStepDescription("Convert JOIN columns");
|
|
query_plan.addStep(std::move(convert_join_step));
|
|
}
|
|
|
|
if (expressions.hasJoin())
|
|
{
|
|
if (expressions.join->isFilled())
|
|
{
|
|
QueryPlanStepPtr filled_join_step = std::make_unique<FilledJoinStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
expressions.join,
|
|
settings.max_block_size);
|
|
|
|
filled_join_step->setStepDescription("JOIN");
|
|
query_plan.addStep(std::move(filled_join_step));
|
|
}
|
|
else
|
|
{
|
|
auto joined_plan = query_analyzer->getJoinedPlan();
|
|
|
|
if (!joined_plan)
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "There is no joined plan for query");
|
|
|
|
auto add_sorting = [&settings, this] (QueryPlan & plan, const Names & key_names, JoinTableSide join_pos)
|
|
{
|
|
SortDescription order_descr;
|
|
order_descr.reserve(key_names.size());
|
|
for (const auto & key_name : key_names)
|
|
order_descr.emplace_back(key_name);
|
|
|
|
SortingStep::Settings sort_settings(*context);
|
|
|
|
auto sorting_step = std::make_unique<SortingStep>(
|
|
plan.getCurrentDataStream(),
|
|
std::move(order_descr),
|
|
0 /* LIMIT */, sort_settings,
|
|
settings.optimize_sorting_by_input_stream_properties);
|
|
sorting_step->setStepDescription(fmt::format("Sort {} before JOIN", join_pos));
|
|
plan.addStep(std::move(sorting_step));
|
|
};
|
|
|
|
auto crosswise_connection = CreateSetAndFilterOnTheFlyStep::createCrossConnection();
|
|
auto add_create_set = [&settings, crosswise_connection](QueryPlan & plan, const Names & key_names, JoinTableSide join_pos)
|
|
{
|
|
auto creating_set_step = std::make_unique<CreateSetAndFilterOnTheFlyStep>(
|
|
plan.getCurrentDataStream(), key_names, settings.max_rows_in_set_to_optimize_join, crosswise_connection, join_pos);
|
|
creating_set_step->setStepDescription(fmt::format("Create set and filter {} joined stream", join_pos));
|
|
|
|
auto * step_raw_ptr = creating_set_step.get();
|
|
plan.addStep(std::move(creating_set_step));
|
|
return step_raw_ptr;
|
|
};
|
|
|
|
if (expressions.join->pipelineType() == JoinPipelineType::YShaped && expressions.join->getTableJoin().kind() != JoinKind::Paste)
|
|
{
|
|
const auto & table_join = expressions.join->getTableJoin();
|
|
const auto & join_clause = table_join.getOnlyClause();
|
|
|
|
auto join_kind = table_join.kind();
|
|
bool kind_allows_filtering = isInner(join_kind) || isLeft(join_kind) || isRight(join_kind);
|
|
|
|
auto has_non_const = [](const Block & block, const auto & keys)
|
|
{
|
|
for (const auto & key : keys)
|
|
{
|
|
const auto & column = block.getByName(key).column;
|
|
if (column && !isColumnConst(*column))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
/// This optimization relies on the sorting that should buffer the whole stream before emitting any rows.
|
|
/// It doesn't hold such a guarantee for streams with const keys.
|
|
/// Note: it's also doesn't work with the read-in-order optimization.
|
|
/// No checks here because read in order is not applied if we have `CreateSetAndFilterOnTheFlyStep` in the pipeline between the reading and sorting steps.
|
|
bool has_non_const_keys = has_non_const(query_plan.getCurrentDataStream().header, join_clause.key_names_left)
|
|
&& has_non_const(joined_plan->getCurrentDataStream().header, join_clause.key_names_right);
|
|
|
|
if (settings.max_rows_in_set_to_optimize_join > 0 && kind_allows_filtering && has_non_const_keys)
|
|
{
|
|
auto * left_set = add_create_set(query_plan, join_clause.key_names_left, JoinTableSide::Left);
|
|
auto * right_set = add_create_set(*joined_plan, join_clause.key_names_right, JoinTableSide::Right);
|
|
|
|
if (isInnerOrLeft(join_kind))
|
|
right_set->setFiltering(left_set->getSet());
|
|
|
|
if (isInnerOrRight(join_kind))
|
|
left_set->setFiltering(right_set->getSet());
|
|
}
|
|
|
|
add_sorting(query_plan, join_clause.key_names_left, JoinTableSide::Left);
|
|
add_sorting(*joined_plan, join_clause.key_names_right, JoinTableSide::Right);
|
|
}
|
|
|
|
QueryPlanStepPtr join_step = std::make_unique<JoinStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
joined_plan->getCurrentDataStream(),
|
|
expressions.join,
|
|
settings.max_block_size,
|
|
max_streams,
|
|
analysis_result.optimize_read_in_order);
|
|
|
|
join_step->setStepDescription(fmt::format("JOIN {}", expressions.join->pipelineType()));
|
|
std::vector<QueryPlanPtr> plans;
|
|
plans.emplace_back(std::make_unique<QueryPlan>(std::move(query_plan)));
|
|
plans.emplace_back(std::move(joined_plan));
|
|
|
|
query_plan = QueryPlan();
|
|
query_plan.unitePlans(std::move(join_step), {std::move(plans)});
|
|
}
|
|
}
|
|
|
|
if (expressions.hasWhere())
|
|
executeWhere(query_plan, expressions.before_where, expressions.remove_where_filter);
|
|
|
|
if (expressions.need_aggregate)
|
|
executeAggregation(
|
|
query_plan, expressions.before_aggregation, aggregate_overflow_row, aggregate_final, query_info.input_order_info);
|
|
|
|
// Now we must execute:
|
|
// 1) expressions before window functions,
|
|
// 2) window functions,
|
|
// 3) expressions after window functions,
|
|
// 4) preliminary distinct.
|
|
// This code decides which part we execute on shard (first_stage)
|
|
// and which part on initiator (second_stage). See also the counterpart
|
|
// code for "second_stage" that has to execute the rest.
|
|
if (expressions.need_aggregate)
|
|
{
|
|
// We have aggregation, so we can't execute any later-stage
|
|
// expressions on shards, neither "before window functions" nor
|
|
// "before ORDER BY".
|
|
}
|
|
else
|
|
{
|
|
// We don't have aggregation.
|
|
// Window functions must be executed on initiator (second_stage).
|
|
// ORDER BY and DISTINCT might depend on them, so if we have
|
|
// window functions, we can't execute ORDER BY and DISTINCT
|
|
// now, on shard (first_stage).
|
|
if (query_analyzer->hasWindow())
|
|
{
|
|
executeExpression(query_plan, expressions.before_window, "Before window functions");
|
|
}
|
|
else
|
|
{
|
|
// We don't have window functions, so we can execute the
|
|
// expressions before ORDER BY and the preliminary DISTINCT
|
|
// now, on shards (first_stage).
|
|
assert(!expressions.before_window);
|
|
executeExpression(query_plan, expressions.before_order_by, "Before ORDER BY");
|
|
executeDistinct(query_plan, true, expressions.selected_columns, true);
|
|
}
|
|
}
|
|
|
|
preliminary_sort();
|
|
}
|
|
|
|
if (expressions.second_stage || from_aggregation_stage)
|
|
{
|
|
if (from_aggregation_stage)
|
|
{
|
|
/// No need to aggregate anything, since this was done on remote shards.
|
|
}
|
|
else if (expressions.need_aggregate)
|
|
{
|
|
/// If you need to combine aggregated results from multiple servers
|
|
if (!expressions.first_stage)
|
|
executeMergeAggregated(query_plan, aggregate_overflow_row, aggregate_final, use_grouping_set_key);
|
|
|
|
if (!aggregate_final)
|
|
{
|
|
if (query.group_by_with_totals)
|
|
{
|
|
bool final = !query.group_by_with_rollup && !query.group_by_with_cube;
|
|
executeTotalsAndHaving(
|
|
query_plan, expressions.hasHaving(), expressions.before_having, expressions.remove_having_filter, aggregate_overflow_row, final);
|
|
}
|
|
|
|
if (query.group_by_with_rollup)
|
|
executeRollupOrCube(query_plan, Modificator::ROLLUP);
|
|
else if (query.group_by_with_cube)
|
|
executeRollupOrCube(query_plan, Modificator::CUBE);
|
|
|
|
if ((query.group_by_with_rollup || query.group_by_with_cube || query.group_by_with_grouping_sets) && expressions.hasHaving())
|
|
executeHaving(query_plan, expressions.before_having, expressions.remove_having_filter);
|
|
}
|
|
else if (expressions.hasHaving())
|
|
executeHaving(query_plan, expressions.before_having, expressions.remove_having_filter);
|
|
}
|
|
else if (query.group_by_with_totals || query.group_by_with_rollup || query.group_by_with_cube || query.group_by_with_grouping_sets)
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "WITH TOTALS, ROLLUP, CUBE or GROUPING SETS are not supported without aggregation");
|
|
|
|
// Now we must execute:
|
|
// 1) expressions before window functions,
|
|
// 2) window functions,
|
|
// 3) expressions after window functions,
|
|
// 4) preliminary distinct.
|
|
// Some of these were already executed at the shards (first_stage),
|
|
// see the counterpart code and comments there.
|
|
if (from_aggregation_stage)
|
|
{
|
|
if (query_analyzer->hasWindow())
|
|
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Window functions does not support processing from WithMergeableStateAfterAggregation");
|
|
}
|
|
else if (expressions.need_aggregate)
|
|
{
|
|
executeExpression(query_plan, expressions.before_window,
|
|
"Before window functions");
|
|
executeWindow(query_plan);
|
|
executeExpression(query_plan, expressions.before_order_by, "Before ORDER BY");
|
|
executeDistinct(query_plan, true, expressions.selected_columns, true);
|
|
}
|
|
else
|
|
{
|
|
if (query_analyzer->hasWindow())
|
|
{
|
|
executeWindow(query_plan);
|
|
executeExpression(query_plan, expressions.before_order_by, "Before ORDER BY");
|
|
executeDistinct(query_plan, true, expressions.selected_columns, true);
|
|
}
|
|
else
|
|
{
|
|
// Neither aggregation nor windows, all expressions before
|
|
// ORDER BY executed on shards.
|
|
}
|
|
}
|
|
|
|
if (expressions.has_order_by)
|
|
{
|
|
/** If there is an ORDER BY for distributed query processing,
|
|
* but there is no aggregation, then on the remote servers ORDER BY was made
|
|
* - therefore, we merge the sorted streams from remote servers.
|
|
*
|
|
* Also in case of remote servers was process the query up to WithMergeableStateAfterAggregationAndLimit
|
|
* (distributed_group_by_no_merge=2 or optimize_distributed_group_by_sharding_key=1 takes place),
|
|
* then merge the sorted streams is enough, since remote servers already did full ORDER BY.
|
|
*/
|
|
|
|
if (from_aggregation_stage)
|
|
executeMergeSorted(query_plan, "after aggregation stage for ORDER BY");
|
|
else if (!expressions.first_stage
|
|
&& !expressions.need_aggregate
|
|
&& !expressions.has_window
|
|
&& !(query.group_by_with_totals && !aggregate_final))
|
|
executeMergeSorted(query_plan, "for ORDER BY, without aggregation");
|
|
else /// Otherwise, just sort.
|
|
executeOrder(query_plan, input_order_info_for_order);
|
|
}
|
|
|
|
/** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT,
|
|
* limiting the number of rows in each up to `offset + limit`.
|
|
*/
|
|
bool has_withfill = false;
|
|
if (query.orderBy())
|
|
{
|
|
SortDescription order_descr = getSortDescription(query, context);
|
|
for (auto & desc : order_descr)
|
|
if (desc.with_fill)
|
|
{
|
|
has_withfill = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
bool apply_limit = options.to_stage != QueryProcessingStage::WithMergeableStateAfterAggregation;
|
|
bool apply_prelimit = apply_limit &&
|
|
query.limitLength() && !query.limit_with_ties &&
|
|
!hasWithTotalsInAnySubqueryInFromClause(query) &&
|
|
!query.arrayJoinExpressionList().first &&
|
|
!query.distinct &&
|
|
!expressions.hasLimitBy() &&
|
|
!settings.extremes &&
|
|
!has_withfill;
|
|
bool apply_offset = options.to_stage != QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit;
|
|
if (apply_prelimit)
|
|
{
|
|
executePreLimit(query_plan, /* do_not_skip_offset= */!apply_offset);
|
|
}
|
|
|
|
/** If there was more than one stream,
|
|
* then DISTINCT needs to be performed once again after merging all streams.
|
|
*/
|
|
if (!from_aggregation_stage && query.distinct)
|
|
executeDistinct(query_plan, false, expressions.selected_columns, false);
|
|
|
|
if (!from_aggregation_stage && expressions.hasLimitBy())
|
|
{
|
|
executeExpression(query_plan, expressions.before_limit_by, "Before LIMIT BY");
|
|
executeLimitBy(query_plan);
|
|
}
|
|
|
|
executeWithFill(query_plan);
|
|
|
|
/// If we have 'WITH TIES', we need execute limit before projection,
|
|
/// because in that case columns from 'ORDER BY' are used.
|
|
if (query.limit_with_ties && apply_offset)
|
|
{
|
|
executeLimit(query_plan);
|
|
}
|
|
|
|
/// Projection not be done on the shards, since then initiator will not find column in blocks.
|
|
/// (significant only for WithMergeableStateAfterAggregation/WithMergeableStateAfterAggregationAndLimit).
|
|
if (!to_aggregation_stage)
|
|
{
|
|
/// We must do projection after DISTINCT because projection may remove some columns.
|
|
executeProjection(query_plan, expressions.final_projection);
|
|
}
|
|
|
|
/// Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok.
|
|
executeExtremes(query_plan);
|
|
|
|
bool limit_applied = apply_prelimit || (query.limit_with_ties && apply_offset);
|
|
/// Limit is no longer needed if there is prelimit.
|
|
///
|
|
/// NOTE: that LIMIT cannot be applied if OFFSET should not be applied,
|
|
/// since LIMIT will apply OFFSET too.
|
|
/// This is the case for various optimizations for distributed queries,
|
|
/// and when LIMIT cannot be applied it will be applied on the initiator anyway.
|
|
if (apply_limit && !limit_applied && apply_offset)
|
|
executeLimit(query_plan);
|
|
|
|
if (apply_offset)
|
|
executeOffset(query_plan);
|
|
}
|
|
}
|
|
|
|
executeSubqueriesInSetsAndJoins(query_plan);
|
|
}
|
|
|
|
static void executeMergeAggregatedImpl(
|
|
QueryPlan & query_plan,
|
|
bool overflow_row,
|
|
bool final,
|
|
bool is_remote_storage,
|
|
bool has_grouping_sets,
|
|
const Settings & settings,
|
|
const NamesAndTypesList & aggregation_keys,
|
|
const AggregateDescriptions & aggregates,
|
|
bool should_produce_results_in_order_of_bucket_number,
|
|
SortDescription group_by_sort_description)
|
|
{
|
|
auto keys = aggregation_keys.getNames();
|
|
if (has_grouping_sets)
|
|
keys.insert(keys.begin(), "__grouping_set");
|
|
|
|
/** There are two modes of distributed aggregation.
|
|
*
|
|
* 1. In different threads read from the remote servers blocks.
|
|
* Save all the blocks in the RAM. Merge blocks.
|
|
* If the aggregation is two-level - parallelize to the number of buckets.
|
|
*
|
|
* 2. In one thread, read blocks from different servers in order.
|
|
* RAM stores only one block from each server.
|
|
* If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level.
|
|
*
|
|
* The second option consumes less memory (up to 256 times less)
|
|
* in the case of two-level aggregation, which is used for large results after GROUP BY,
|
|
* but it can work more slowly.
|
|
*/
|
|
|
|
Aggregator::Params params(keys, aggregates, overflow_row, settings.max_threads, settings.max_block_size, settings.min_hit_rate_to_use_consecutive_keys_optimization);
|
|
|
|
auto merging_aggregated = std::make_unique<MergingAggregatedStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
params,
|
|
final,
|
|
/// Grouping sets don't work with distributed_aggregation_memory_efficient enabled (#43989)
|
|
settings.distributed_aggregation_memory_efficient && is_remote_storage && !has_grouping_sets,
|
|
settings.max_threads,
|
|
settings.aggregation_memory_efficient_merge_threads,
|
|
should_produce_results_in_order_of_bucket_number,
|
|
settings.max_block_size,
|
|
settings.aggregation_in_order_max_block_bytes,
|
|
std::move(group_by_sort_description),
|
|
settings.enable_memory_bound_merging_of_aggregation_results);
|
|
|
|
query_plan.addStep(std::move(merging_aggregated));
|
|
}
|
|
|
|
void InterpreterSelectQuery::addEmptySourceToQueryPlan(QueryPlan & query_plan, const Block & source_header, const SelectQueryInfo & query_info)
|
|
{
|
|
Pipe pipe(std::make_shared<NullSource>(source_header));
|
|
|
|
if (query_info.prewhere_info)
|
|
{
|
|
auto & prewhere_info = *query_info.prewhere_info;
|
|
|
|
if (prewhere_info.row_level_filter)
|
|
{
|
|
pipe.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<FilterTransform>(header,
|
|
std::make_shared<ExpressionActions>(prewhere_info.row_level_filter),
|
|
prewhere_info.row_level_column_name, true);
|
|
});
|
|
}
|
|
|
|
pipe.addSimpleTransform([&](const Block & header)
|
|
{
|
|
return std::make_shared<FilterTransform>(
|
|
header, std::make_shared<ExpressionActions>(prewhere_info.prewhere_actions),
|
|
prewhere_info.prewhere_column_name, prewhere_info.remove_prewhere_column);
|
|
});
|
|
}
|
|
|
|
auto read_from_pipe = std::make_unique<ReadFromPreparedSource>(std::move(pipe));
|
|
read_from_pipe->setStepDescription("Read from NullSource");
|
|
query_plan.addStep(std::move(read_from_pipe));
|
|
}
|
|
|
|
RowPolicyFilterPtr InterpreterSelectQuery::getRowPolicyFilter() const
|
|
{
|
|
return row_policy_filter;
|
|
}
|
|
|
|
void InterpreterSelectQuery::extendQueryLogElemImpl(QueryLogElement & elem, const ASTPtr & /*ast*/, ContextPtr /*context_*/) const
|
|
{
|
|
for (const auto & row_policy : row_policy_filter->policies)
|
|
{
|
|
auto name = row_policy->getFullName().toString();
|
|
elem.used_row_policies.emplace(std::move(name));
|
|
}
|
|
}
|
|
|
|
bool InterpreterSelectQuery::shouldMoveToPrewhere() const
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
const ASTSelectQuery & query = query_ptr->as<const ASTSelectQuery &>();
|
|
return settings.optimize_move_to_prewhere && (!query.final() || settings.optimize_move_to_prewhere_if_final);
|
|
}
|
|
|
|
/// Note that this is const and accepts the analysis ref to be able to use it to do analysis for parallel replicas
|
|
/// without affecting the final analysis multiple times
|
|
void InterpreterSelectQuery::applyFiltersToPrewhereInAnalysis(ExpressionAnalysisResult & analysis) const
|
|
{
|
|
if (!analysis.filter_info)
|
|
return;
|
|
|
|
if (!analysis.prewhere_info)
|
|
{
|
|
const bool does_storage_support_prewhere = !input_pipe && storage && storage->supportsPrewhere();
|
|
if (does_storage_support_prewhere && shouldMoveToPrewhere())
|
|
{
|
|
/// Execute row level filter in prewhere as a part of "move to prewhere" optimization.
|
|
analysis.prewhere_info = std::make_shared<PrewhereInfo>(analysis.filter_info->actions, analysis.filter_info->column_name);
|
|
analysis.prewhere_info->prewhere_actions->projectInput(false);
|
|
analysis.prewhere_info->remove_prewhere_column = analysis.filter_info->do_remove_column;
|
|
analysis.prewhere_info->need_filter = true;
|
|
analysis.filter_info = nullptr;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/// Add row level security actions to prewhere.
|
|
analysis.prewhere_info->row_level_filter = analysis.filter_info->actions;
|
|
analysis.prewhere_info->row_level_column_name = analysis.filter_info->column_name;
|
|
analysis.prewhere_info->row_level_filter->projectInput(false);
|
|
analysis.filter_info = nullptr;
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::addPrewhereAliasActions()
|
|
{
|
|
applyFiltersToPrewhereInAnalysis(analysis_result);
|
|
auto & prewhere_info = analysis_result.prewhere_info;
|
|
auto & columns_to_remove_after_prewhere = analysis_result.columns_to_remove_after_prewhere;
|
|
|
|
/// Detect, if ALIAS columns are required for query execution
|
|
auto alias_columns_required = false;
|
|
const ColumnsDescription & storage_columns = metadata_snapshot->getColumns();
|
|
for (const auto & column_name : required_columns)
|
|
{
|
|
auto column_default = storage_columns.getDefault(column_name);
|
|
if (column_default && column_default->kind == ColumnDefaultKind::Alias)
|
|
{
|
|
alias_columns_required = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// Set of all (including ALIAS) required columns for PREWHERE
|
|
auto get_prewhere_columns = [&]()
|
|
{
|
|
NameSet columns;
|
|
|
|
if (prewhere_info)
|
|
{
|
|
/// Get some columns directly from PREWHERE expression actions
|
|
auto prewhere_required_columns = prewhere_info->prewhere_actions->getRequiredColumns().getNames();
|
|
columns.insert(prewhere_required_columns.begin(), prewhere_required_columns.end());
|
|
|
|
if (prewhere_info->row_level_filter)
|
|
{
|
|
auto row_level_required_columns = prewhere_info->row_level_filter->getRequiredColumns().getNames();
|
|
columns.insert(row_level_required_columns.begin(), row_level_required_columns.end());
|
|
}
|
|
}
|
|
|
|
return columns;
|
|
};
|
|
|
|
/// There are multiple sources of required columns:
|
|
/// - raw required columns,
|
|
/// - columns deduced from ALIAS columns,
|
|
/// - raw required columns from PREWHERE,
|
|
/// - columns deduced from ALIAS columns from PREWHERE.
|
|
/// PREWHERE is a special case, since we need to resolve it and pass directly to `IStorage::read()`
|
|
/// before any other executions.
|
|
if (alias_columns_required)
|
|
{
|
|
NameSet required_columns_from_prewhere = get_prewhere_columns();
|
|
NameSet required_aliases_from_prewhere; /// Set of ALIAS required columns for PREWHERE
|
|
|
|
/// Expression, that contains all raw required columns
|
|
ASTPtr required_columns_all_expr = std::make_shared<ASTExpressionList>();
|
|
|
|
/// Expression, that contains raw required columns for PREWHERE
|
|
ASTPtr required_columns_from_prewhere_expr = std::make_shared<ASTExpressionList>();
|
|
|
|
/// Sort out already known required columns between expressions,
|
|
/// also populate `required_aliases_from_prewhere`.
|
|
for (const auto & column : required_columns)
|
|
{
|
|
ASTPtr column_expr;
|
|
const auto column_default = storage_columns.getDefault(column);
|
|
bool is_alias = column_default && column_default->kind == ColumnDefaultKind::Alias;
|
|
if (is_alias)
|
|
{
|
|
auto column_decl = storage_columns.get(column);
|
|
column_expr = column_default->expression->clone();
|
|
// recursive visit for alias to alias
|
|
replaceAliasColumnsInQuery(
|
|
column_expr, metadata_snapshot->getColumns(), syntax_analyzer_result->array_join_result_to_source, context);
|
|
|
|
column_expr = addTypeConversionToAST(
|
|
std::move(column_expr), column_decl.type->getName(), metadata_snapshot->getColumns().getAll(), context);
|
|
column_expr = setAlias(column_expr, column);
|
|
}
|
|
else
|
|
column_expr = std::make_shared<ASTIdentifier>(column);
|
|
|
|
if (required_columns_from_prewhere.contains(column))
|
|
{
|
|
required_columns_from_prewhere_expr->children.emplace_back(std::move(column_expr));
|
|
|
|
if (is_alias)
|
|
required_aliases_from_prewhere.insert(column);
|
|
}
|
|
else
|
|
required_columns_all_expr->children.emplace_back(std::move(column_expr));
|
|
}
|
|
|
|
/// Columns, which we will get after prewhere and filter executions.
|
|
NamesAndTypesList required_columns_after_prewhere;
|
|
NameSet required_columns_after_prewhere_set;
|
|
|
|
/// Collect required columns from prewhere expression actions.
|
|
if (prewhere_info)
|
|
{
|
|
NameSet columns_to_remove(columns_to_remove_after_prewhere.begin(), columns_to_remove_after_prewhere.end());
|
|
Block prewhere_actions_result = prewhere_info->prewhere_actions->getResultColumns();
|
|
|
|
/// Populate required columns with the columns, added by PREWHERE actions and not removed afterwards.
|
|
/// XXX: looks hacky that we already know which columns after PREWHERE we won't need for sure.
|
|
for (const auto & column : prewhere_actions_result)
|
|
{
|
|
if (prewhere_info->remove_prewhere_column && column.name == prewhere_info->prewhere_column_name)
|
|
continue;
|
|
|
|
if (columns_to_remove.contains(column.name))
|
|
continue;
|
|
|
|
required_columns_all_expr->children.emplace_back(std::make_shared<ASTIdentifier>(column.name));
|
|
required_columns_after_prewhere.emplace_back(column.name, column.type);
|
|
}
|
|
|
|
required_columns_after_prewhere_set
|
|
= collections::map<NameSet>(required_columns_after_prewhere, [](const auto & it) { return it.name; });
|
|
}
|
|
|
|
auto syntax_result
|
|
= TreeRewriter(context).analyze(required_columns_all_expr, required_columns_after_prewhere, storage, storage_snapshot, options.is_create_parameterized_view);
|
|
alias_actions = ExpressionAnalyzer(required_columns_all_expr, syntax_result, context).getActionsDAG(true);
|
|
|
|
/// The set of required columns could be added as a result of adding an action to calculate ALIAS.
|
|
required_columns = alias_actions->getRequiredColumns().getNames();
|
|
|
|
/// Do not remove prewhere filter if it is a column which is used as alias.
|
|
if (prewhere_info && prewhere_info->remove_prewhere_column)
|
|
if (required_columns.end() != std::find(required_columns.begin(), required_columns.end(), prewhere_info->prewhere_column_name))
|
|
prewhere_info->remove_prewhere_column = false;
|
|
|
|
/// Remove columns which will be added by prewhere.
|
|
std::erase_if(required_columns, [&](const String & name) { return required_columns_after_prewhere_set.contains(name); });
|
|
|
|
if (prewhere_info)
|
|
{
|
|
/// Don't remove columns which are needed to be aliased.
|
|
for (const auto & name : required_columns)
|
|
prewhere_info->prewhere_actions->tryRestoreColumn(name);
|
|
|
|
/// Add physical columns required by prewhere actions.
|
|
for (const auto & column : required_columns_from_prewhere)
|
|
if (!required_aliases_from_prewhere.contains(column))
|
|
if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column))
|
|
required_columns.push_back(column);
|
|
}
|
|
}
|
|
|
|
const auto & supported_prewhere_columns = storage->supportedPrewhereColumns();
|
|
if (supported_prewhere_columns.has_value())
|
|
{
|
|
NameSet required_columns_from_prewhere = get_prewhere_columns();
|
|
|
|
for (const auto & column_name : required_columns_from_prewhere)
|
|
{
|
|
if (!supported_prewhere_columns->contains(column_name))
|
|
throw Exception(ErrorCodes::ILLEGAL_PREWHERE, "Storage {} doesn't support PREWHERE for {}", storage->getName(), column_name);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Based on the query analysis, check if using a trivial count (storage or partition metadata) is possible
|
|
std::optional<UInt64> InterpreterSelectQuery::getTrivialCount(UInt64 max_parallel_replicas)
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
bool optimize_trivial_count =
|
|
syntax_analyzer_result->optimize_trivial_count
|
|
&& (max_parallel_replicas <= 1)
|
|
&& !settings.allow_experimental_query_deduplication
|
|
&& !settings.empty_result_for_aggregation_by_empty_set
|
|
&& storage
|
|
&& storage->supportsTrivialCountOptimization(storage_snapshot, getContext())
|
|
&& query_info.filter_asts.empty()
|
|
&& query_analyzer->hasAggregation()
|
|
&& (query_analyzer->aggregates().size() == 1)
|
|
&& typeid_cast<const AggregateFunctionCount *>(query_analyzer->aggregates()[0].function.get());
|
|
|
|
if (!optimize_trivial_count)
|
|
return {};
|
|
|
|
auto & query = getSelectQuery();
|
|
if (!query.prewhere() && !query.where() && !context->getCurrentTransaction())
|
|
{
|
|
/// Some storages can optimize trivial count in read() method instead of totalRows() because it still can
|
|
/// require reading some data (but much faster than reading columns).
|
|
/// Set a special flag in query info so the storage will see it and optimize count in read() method.
|
|
query_info.optimize_trivial_count = optimize_trivial_count;
|
|
return storage->totalRows(settings);
|
|
}
|
|
else
|
|
{
|
|
// It's possible to optimize count() given only partition predicates
|
|
ActionsDAG::NodeRawConstPtrs filter_nodes;
|
|
if (analysis_result.hasPrewhere())
|
|
{
|
|
auto & prewhere_info = analysis_result.prewhere_info;
|
|
filter_nodes.push_back(&prewhere_info->prewhere_actions->findInOutputs(prewhere_info->prewhere_column_name));
|
|
|
|
if (prewhere_info->row_level_filter)
|
|
filter_nodes.push_back(&prewhere_info->row_level_filter->findInOutputs(prewhere_info->row_level_column_name));
|
|
}
|
|
if (analysis_result.hasWhere())
|
|
{
|
|
filter_nodes.push_back(&analysis_result.before_where->findInOutputs(analysis_result.where_column_name));
|
|
}
|
|
|
|
auto filter_actions_dag = ActionsDAG::buildFilterActionsDAG(filter_nodes);
|
|
if (!filter_actions_dag)
|
|
return {};
|
|
|
|
return storage->totalRowsByPartitionPredicate(filter_actions_dag, context);
|
|
}
|
|
}
|
|
|
|
/** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, JOIN, LIMIT BY, WITH TIES
|
|
* but LIMIT is specified, and limit + offset < max_block_size,
|
|
* then as the block size we will use limit + offset (not to read more from the table than requested),
|
|
* and also set the number of threads to 1.
|
|
*/
|
|
UInt64 InterpreterSelectQuery::maxBlockSizeByLimit() const
|
|
{
|
|
const auto & query = query_ptr->as<const ASTSelectQuery &>();
|
|
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
|
|
if (!query.distinct
|
|
&& !query.limit_with_ties
|
|
&& !query.prewhere()
|
|
&& !query.where()
|
|
&& query_info.filter_asts.empty()
|
|
&& !query.groupBy()
|
|
&& !query.having()
|
|
&& !query.orderBy()
|
|
&& !query.limitBy()
|
|
&& !query.join()
|
|
&& !query_analyzer->hasAggregation()
|
|
&& !query_analyzer->hasWindow()
|
|
&& query.limitLength()
|
|
&& limit_length <= std::numeric_limits<UInt64>::max() - limit_offset)
|
|
return limit_length + limit_offset;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/** Storages can rely that filters that for storage will be available for analysis before
|
|
* plan is fully constructed and optimized.
|
|
*
|
|
* StorageMerge common header calculation and prewhere push-down relies on this.
|
|
*
|
|
* This is similar to Planner::collectFiltersForAnalysis
|
|
*/
|
|
void collectFiltersForAnalysis(
|
|
const ASTPtr & query_ptr,
|
|
const ContextPtr & query_context,
|
|
const StorageSnapshotPtr & storage_snapshot,
|
|
const SelectQueryOptions & options,
|
|
SelectQueryInfo & query_info)
|
|
{
|
|
auto get_column_options = GetColumnsOptions(GetColumnsOptions::All).withExtendedObjects().withVirtuals();
|
|
|
|
auto dummy = std::make_shared<StorageDummy>(
|
|
storage_snapshot->storage.getStorageID(), ColumnsDescription(storage_snapshot->getColumns(get_column_options)), storage_snapshot);
|
|
|
|
QueryPlan query_plan;
|
|
InterpreterSelectQuery(query_ptr, query_context, dummy, dummy->getInMemoryMetadataPtr(), options).buildQueryPlan(query_plan);
|
|
|
|
auto optimization_settings = QueryPlanOptimizationSettings::fromContext(query_context);
|
|
query_plan.optimize(optimization_settings);
|
|
|
|
std::vector<QueryPlan::Node *> nodes_to_process;
|
|
nodes_to_process.push_back(query_plan.getRootNode());
|
|
|
|
while (!nodes_to_process.empty())
|
|
{
|
|
const auto * node_to_process = nodes_to_process.back();
|
|
nodes_to_process.pop_back();
|
|
nodes_to_process.insert(nodes_to_process.end(), node_to_process->children.begin(), node_to_process->children.end());
|
|
|
|
auto * read_from_dummy = typeid_cast<ReadFromDummy *>(node_to_process->step.get());
|
|
if (!read_from_dummy)
|
|
continue;
|
|
|
|
query_info.filter_actions_dag = read_from_dummy->getFilterActionsDAG();
|
|
query_info.optimized_prewhere_info = read_from_dummy->getPrewhereInfo();
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeFetchColumns(QueryProcessingStage::Enum processing_stage, QueryPlan & query_plan)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
const Settings & settings = context->getSettingsRef();
|
|
std::optional<UInt64> num_rows;
|
|
|
|
/// Optimization for trivial query like SELECT count() FROM table.
|
|
if (processing_stage == QueryProcessingStage::FetchColumns && (num_rows = getTrivialCount(settings.max_parallel_replicas)))
|
|
{
|
|
const auto & desc = query_analyzer->aggregates()[0];
|
|
const auto & func = desc.function;
|
|
const AggregateFunctionCount & agg_count = static_cast<const AggregateFunctionCount &>(*func);
|
|
|
|
/// We will process it up to "WithMergeableState".
|
|
std::vector<char> state(agg_count.sizeOfData());
|
|
AggregateDataPtr place = state.data();
|
|
|
|
agg_count.create(place);
|
|
SCOPE_EXIT_MEMORY_SAFE(agg_count.destroy(place));
|
|
|
|
AggregateFunctionCount::set(place, *num_rows);
|
|
|
|
auto column = ColumnAggregateFunction::create(func);
|
|
column->insertFrom(place);
|
|
|
|
Block header = analysis_result.before_aggregation->getResultColumns();
|
|
size_t arguments_size = desc.argument_names.size();
|
|
DataTypes argument_types(arguments_size);
|
|
for (size_t j = 0; j < arguments_size; ++j)
|
|
argument_types[j] = header.getByName(desc.argument_names[j]).type;
|
|
|
|
Block block_with_count{
|
|
{std::move(column), std::make_shared<DataTypeAggregateFunction>(func, argument_types, desc.parameters), desc.column_name}};
|
|
|
|
auto source = std::make_shared<SourceFromSingleChunk>(block_with_count);
|
|
auto prepared_count = std::make_unique<ReadFromPreparedSource>(Pipe(std::move(source)));
|
|
prepared_count->setStepDescription("Optimized trivial count");
|
|
query_plan.addStep(std::move(prepared_count));
|
|
from_stage = QueryProcessingStage::WithMergeableState;
|
|
analysis_result.first_stage = false;
|
|
return;
|
|
}
|
|
|
|
/// Limitation on the number of columns to read.
|
|
/// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns.
|
|
if (!options.only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read)
|
|
throw Exception(
|
|
ErrorCodes::TOO_MANY_COLUMNS,
|
|
"Limit for number of columns to read exceeded. Requested: {}, maximum: {}",
|
|
required_columns.size(),
|
|
settings.max_columns_to_read);
|
|
|
|
/// General limit for the number of threads.
|
|
size_t max_threads_execute_query = settings.max_threads;
|
|
|
|
/**
|
|
* To simultaneously query more remote servers when async_socket_for_remote is off
|
|
* instead of max_threads, max_distributed_connections is used:
|
|
* since threads there mostly spend time waiting for data from remote servers,
|
|
* we can increase the degree of parallelism to avoid sequential querying of remote servers.
|
|
*
|
|
* DANGER: that can lead to insane number of threads working if there are a lot of stream and prefer_localhost_replica is used.
|
|
*
|
|
* That is not needed when async_socket_for_remote is on, because in that case
|
|
* threads are not blocked waiting for data from remote servers.
|
|
*
|
|
*/
|
|
bool is_sync_remote = false;
|
|
if (storage && storage->isRemote() && !settings.async_socket_for_remote)
|
|
{
|
|
is_sync_remote = true;
|
|
max_threads_execute_query = max_streams = settings.max_distributed_connections;
|
|
}
|
|
|
|
UInt64 max_block_size = settings.max_block_size;
|
|
auto local_limits = getStorageLimits(*context, options);
|
|
|
|
if (UInt64 max_block_limited = maxBlockSizeByLimit())
|
|
{
|
|
if (max_block_limited < max_block_size)
|
|
{
|
|
max_block_size = std::max<UInt64>(1, max_block_limited);
|
|
max_threads_execute_query = max_streams = 1;
|
|
}
|
|
|
|
if (local_limits.local_limits.size_limits.max_rows != 0)
|
|
{
|
|
if (max_block_limited < local_limits.local_limits.size_limits.max_rows)
|
|
query_info.limit = max_block_limited;
|
|
else if (local_limits.local_limits.size_limits.max_rows < std::numeric_limits<UInt64>::max()) /// Ask to read just enough rows to make the max_rows limit effective (so it has a chance to be triggered).
|
|
query_info.limit = 1 + local_limits.local_limits.size_limits.max_rows;
|
|
}
|
|
else
|
|
{
|
|
query_info.limit = max_block_limited;
|
|
}
|
|
}
|
|
|
|
if (!max_block_size)
|
|
throw Exception(ErrorCodes::PARAMETER_OUT_OF_BOUND, "Setting 'max_block_size' cannot be zero");
|
|
|
|
storage_limits.emplace_back(local_limits);
|
|
|
|
/// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input?
|
|
if (query_plan.isInitialized())
|
|
{
|
|
/// Prepared input.
|
|
}
|
|
else if (interpreter_subquery)
|
|
{
|
|
/// Subquery.
|
|
ASTPtr subquery = extractTableExpression(query, 0);
|
|
if (!subquery)
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Subquery expected");
|
|
|
|
interpreter_subquery = std::make_unique<InterpreterSelectWithUnionQuery>(
|
|
subquery, getSubqueryContext(context),
|
|
options.copy().subquery().noModify(), required_columns);
|
|
|
|
interpreter_subquery->addStorageLimits(storage_limits);
|
|
|
|
if (query_analyzer->hasAggregation())
|
|
interpreter_subquery->ignoreWithTotals();
|
|
|
|
interpreter_subquery->buildQueryPlan(query_plan);
|
|
query_plan.addInterpreterContext(context);
|
|
}
|
|
else if (storage)
|
|
{
|
|
if (shouldMoveToPrewhere() && settings.query_plan_optimize_prewhere && settings.query_plan_enable_optimizations
|
|
&& typeid_cast<const StorageMerge *>(storage.get()))
|
|
collectFiltersForAnalysis(query_ptr, context, storage_snapshot, options, query_info);
|
|
|
|
/// Table.
|
|
if (max_streams == 0)
|
|
max_streams = 1;
|
|
|
|
/// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads.
|
|
if (max_streams > 1 && !is_sync_remote)
|
|
{
|
|
if (auto streams_with_ratio = max_streams * settings.max_streams_to_max_threads_ratio; canConvertTo<size_t>(streams_with_ratio))
|
|
max_streams = static_cast<size_t>(streams_with_ratio);
|
|
else
|
|
throw Exception(ErrorCodes::PARAMETER_OUT_OF_BOUND,
|
|
"Exceeded limit for `max_streams` with `max_streams_to_max_threads_ratio`. "
|
|
"Make sure that `max_streams * max_streams_to_max_threads_ratio` is in some reasonable boundaries, current value: {}",
|
|
streams_with_ratio);
|
|
}
|
|
|
|
auto & prewhere_info = analysis_result.prewhere_info;
|
|
|
|
if (prewhere_info)
|
|
query_info.prewhere_info = prewhere_info;
|
|
|
|
bool optimize_read_in_order = analysis_result.optimize_read_in_order;
|
|
bool optimize_aggregation_in_order = analysis_result.optimize_aggregation_in_order && !query_analyzer->useGroupingSetKey();
|
|
|
|
/// Create optimizer with prepared actions.
|
|
/// Maybe we will need to calc input_order_info later, e.g. while reading from StorageMerge.
|
|
if (optimize_read_in_order)
|
|
{
|
|
query_info.order_optimizer = std::make_shared<ReadInOrderOptimizer>(
|
|
query,
|
|
analysis_result.order_by_elements_actions,
|
|
getSortDescription(query, context),
|
|
query_info.syntax_analyzer_result);
|
|
|
|
/// If we don't have filtration, we can pushdown limit to reading stage for optimizations.
|
|
UInt64 limit = query.hasFiltration() ? 0 : getLimitForSorting(query, context);
|
|
query_info.input_order_info = query_info.order_optimizer->getInputOrder(metadata_snapshot, context, limit);
|
|
}
|
|
else if (optimize_aggregation_in_order)
|
|
{
|
|
query_info.order_optimizer = std::make_shared<ReadInOrderOptimizer>(
|
|
query,
|
|
analysis_result.group_by_elements_actions,
|
|
getSortDescriptionFromGroupBy(query),
|
|
query_info.syntax_analyzer_result);
|
|
|
|
query_info.input_order_info = query_info.order_optimizer->getInputOrder(metadata_snapshot, context, /*limit=*/ 0);
|
|
}
|
|
|
|
query_info.storage_limits = std::make_shared<StorageLimitsList>(storage_limits);
|
|
query_info.settings_limit_offset_done = options.settings_limit_offset_done;
|
|
/// Possible filters: row-security, additional filter, replica filter (before array join), where (after array join)
|
|
query_info.has_filters_and_no_array_join_before_filter = row_policy_filter || additional_filter_info
|
|
|| parallel_replicas_custom_filter_info
|
|
|| (analysis_result.hasWhere() && !analysis_result.before_where->hasArrayJoin() && !analysis_result.array_join);
|
|
storage->read(query_plan, required_columns, storage_snapshot, query_info, context, processing_stage, max_block_size, max_streams);
|
|
|
|
if (context->hasQueryContext() && !options.is_internal)
|
|
{
|
|
auto local_storage_id = storage->getStorageID();
|
|
context->getQueryContext()->addQueryAccessInfo(
|
|
backQuoteIfNeed(local_storage_id.getDatabaseName()),
|
|
local_storage_id.getFullTableName(),
|
|
required_columns);
|
|
}
|
|
|
|
/// Create step which reads from empty source if storage has no data.
|
|
if (!query_plan.isInitialized())
|
|
{
|
|
auto header = storage_snapshot->getSampleBlockForColumns(required_columns);
|
|
addEmptySourceToQueryPlan(query_plan, header, query_info);
|
|
}
|
|
}
|
|
else
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error in InterpreterSelectQuery: nowhere to read");
|
|
|
|
/// Specify the number of threads only if it wasn't specified in storage.
|
|
///
|
|
/// But in case of remote query and prefer_localhost_replica=1 (default)
|
|
/// The inner local query (that is done in the same process, without
|
|
/// network interaction), it will setMaxThreads earlier and distributed
|
|
/// query will not update it.
|
|
if (!query_plan.getMaxThreads() || is_sync_remote)
|
|
query_plan.setMaxThreads(max_threads_execute_query);
|
|
|
|
query_plan.setConcurrencyControl(settings.use_concurrency_control);
|
|
|
|
/// Aliases in table declaration.
|
|
if (processing_stage == QueryProcessingStage::FetchColumns && alias_actions)
|
|
{
|
|
auto table_aliases = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), alias_actions);
|
|
table_aliases->setStepDescription("Add table aliases");
|
|
query_plan.addStep(std::move(table_aliases));
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeWhere(QueryPlan & query_plan, const ActionsDAGPtr & expression, bool remove_filter)
|
|
{
|
|
auto where_step = std::make_unique<FilterStep>(
|
|
query_plan.getCurrentDataStream(), expression, getSelectQuery().where()->getColumnName(), remove_filter);
|
|
|
|
where_step->setStepDescription("WHERE");
|
|
query_plan.addStep(std::move(where_step));
|
|
}
|
|
|
|
static Aggregator::Params getAggregatorParams(
|
|
const ASTPtr & query_ptr,
|
|
const SelectQueryExpressionAnalyzer & query_analyzer,
|
|
const Context & context,
|
|
const Names & keys,
|
|
const AggregateDescriptions & aggregates,
|
|
bool overflow_row,
|
|
const Settings & settings,
|
|
size_t group_by_two_level_threshold,
|
|
size_t group_by_two_level_threshold_bytes)
|
|
{
|
|
const auto stats_collecting_params = Aggregator::Params::StatsCollectingParams(
|
|
query_ptr,
|
|
settings.collect_hash_table_stats_during_aggregation,
|
|
settings.max_entries_for_hash_table_stats,
|
|
settings.max_size_to_preallocate_for_aggregation);
|
|
|
|
return Aggregator::Params
|
|
{
|
|
keys,
|
|
aggregates,
|
|
overflow_row,
|
|
settings.max_rows_to_group_by,
|
|
settings.group_by_overflow_mode,
|
|
group_by_two_level_threshold,
|
|
group_by_two_level_threshold_bytes,
|
|
settings.max_bytes_before_external_group_by,
|
|
settings.empty_result_for_aggregation_by_empty_set
|
|
|| (settings.empty_result_for_aggregation_by_constant_keys_on_empty_set && keys.empty()
|
|
&& query_analyzer.hasConstAggregationKeys()),
|
|
context.getTempDataOnDisk(),
|
|
settings.max_threads,
|
|
settings.min_free_disk_space_for_temporary_data,
|
|
settings.compile_aggregate_expressions,
|
|
settings.min_count_to_compile_aggregate_expression,
|
|
settings.max_block_size,
|
|
settings.enable_software_prefetch_in_aggregation,
|
|
/* only_merge */ false,
|
|
settings.optimize_group_by_constant_keys,
|
|
settings.min_hit_rate_to_use_consecutive_keys_optimization,
|
|
stats_collecting_params
|
|
};
|
|
}
|
|
|
|
static GroupingSetsParamsList getAggregatorGroupingSetsParams(const SelectQueryExpressionAnalyzer & query_analyzer, const Names & all_keys)
|
|
{
|
|
GroupingSetsParamsList result;
|
|
if (query_analyzer.useGroupingSetKey())
|
|
{
|
|
auto const & aggregation_keys_list = query_analyzer.aggregationKeysList();
|
|
|
|
for (const auto & aggregation_keys : aggregation_keys_list)
|
|
{
|
|
NameSet keys;
|
|
for (const auto & key : aggregation_keys)
|
|
keys.insert(key.name);
|
|
|
|
Names missing_keys;
|
|
for (const auto & key : all_keys)
|
|
if (!keys.contains(key))
|
|
missing_keys.push_back(key);
|
|
|
|
result.emplace_back(aggregation_keys.getNames(), std::move(missing_keys));
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeAggregation(QueryPlan & query_plan, const ActionsDAGPtr & expression, bool overflow_row, bool final, InputOrderInfoPtr group_by_info)
|
|
{
|
|
auto expression_before_aggregation = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expression);
|
|
expression_before_aggregation->setStepDescription("Before GROUP BY");
|
|
query_plan.addStep(std::move(expression_before_aggregation));
|
|
|
|
AggregateDescriptions aggregates = query_analyzer->aggregates();
|
|
const Settings & settings = context->getSettingsRef();
|
|
const auto & keys = query_analyzer->aggregationKeys().getNames();
|
|
|
|
auto aggregator_params = getAggregatorParams(
|
|
query_ptr,
|
|
*query_analyzer,
|
|
*context,
|
|
keys,
|
|
aggregates,
|
|
overflow_row,
|
|
settings,
|
|
settings.group_by_two_level_threshold,
|
|
settings.group_by_two_level_threshold_bytes);
|
|
|
|
auto grouping_sets_params = getAggregatorGroupingSetsParams(*query_analyzer, keys);
|
|
|
|
SortDescription group_by_sort_description;
|
|
SortDescription sort_description_for_merging;
|
|
|
|
if (group_by_info && settings.optimize_aggregation_in_order && !query_analyzer->useGroupingSetKey())
|
|
{
|
|
group_by_sort_description = getSortDescriptionFromGroupBy(getSelectQuery());
|
|
sort_description_for_merging = group_by_info->sort_description_for_merging;
|
|
}
|
|
else
|
|
group_by_info = nullptr;
|
|
|
|
if (!group_by_info && settings.force_aggregation_in_order)
|
|
{
|
|
group_by_sort_description = getSortDescriptionFromGroupBy(getSelectQuery());
|
|
sort_description_for_merging = group_by_sort_description;
|
|
}
|
|
|
|
auto merge_threads = max_streams;
|
|
auto temporary_data_merge_threads = settings.aggregation_memory_efficient_merge_threads
|
|
? static_cast<size_t>(settings.aggregation_memory_efficient_merge_threads)
|
|
: static_cast<size_t>(settings.max_threads);
|
|
|
|
bool storage_has_evenly_distributed_read = storage && storage->hasEvenlyDistributedRead();
|
|
|
|
const bool should_produce_results_in_order_of_bucket_number = options.to_stage == QueryProcessingStage::WithMergeableState
|
|
&& (settings.distributed_aggregation_memory_efficient || settings.enable_memory_bound_merging_of_aggregation_results);
|
|
|
|
auto aggregating_step = std::make_unique<AggregatingStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
std::move(aggregator_params),
|
|
std::move(grouping_sets_params),
|
|
final,
|
|
settings.max_block_size,
|
|
settings.aggregation_in_order_max_block_bytes,
|
|
merge_threads,
|
|
temporary_data_merge_threads,
|
|
storage_has_evenly_distributed_read,
|
|
settings.group_by_use_nulls,
|
|
std::move(sort_description_for_merging),
|
|
std::move(group_by_sort_description),
|
|
should_produce_results_in_order_of_bucket_number,
|
|
settings.enable_memory_bound_merging_of_aggregation_results,
|
|
!group_by_info && settings.force_aggregation_in_order);
|
|
query_plan.addStep(std::move(aggregating_step));
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeMergeAggregated(QueryPlan & query_plan, bool overflow_row, bool final, bool has_grouping_sets)
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
/// Used to determine if we should use memory bound merging strategy.
|
|
auto group_by_sort_description
|
|
= !query_analyzer->useGroupingSetKey() ? getSortDescriptionFromGroupBy(getSelectQuery()) : SortDescription{};
|
|
|
|
const bool should_produce_results_in_order_of_bucket_number = options.to_stage == QueryProcessingStage::WithMergeableState
|
|
&& (settings.distributed_aggregation_memory_efficient || settings.enable_memory_bound_merging_of_aggregation_results);
|
|
const bool parallel_replicas_from_merge_tree = storage->isMergeTree() && context->canUseParallelReplicasOnInitiator();
|
|
|
|
executeMergeAggregatedImpl(
|
|
query_plan,
|
|
overflow_row,
|
|
final,
|
|
storage && (storage->isRemote() || parallel_replicas_from_merge_tree),
|
|
has_grouping_sets,
|
|
context->getSettingsRef(),
|
|
query_analyzer->aggregationKeys(),
|
|
query_analyzer->aggregates(),
|
|
should_produce_results_in_order_of_bucket_number,
|
|
std::move(group_by_sort_description));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeHaving(QueryPlan & query_plan, const ActionsDAGPtr & expression, bool remove_filter)
|
|
{
|
|
auto having_step
|
|
= std::make_unique<FilterStep>(query_plan.getCurrentDataStream(), expression, getSelectQuery().having()->getColumnName(), remove_filter);
|
|
|
|
having_step->setStepDescription("HAVING");
|
|
query_plan.addStep(std::move(having_step));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeTotalsAndHaving(
|
|
QueryPlan & query_plan, bool has_having, const ActionsDAGPtr & expression, bool remove_filter, bool overflow_row, bool final)
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
auto totals_having_step = std::make_unique<TotalsHavingStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
query_analyzer->aggregates(),
|
|
overflow_row,
|
|
expression,
|
|
has_having ? getSelectQuery().having()->getColumnName() : "",
|
|
remove_filter,
|
|
settings.totals_mode,
|
|
settings.totals_auto_threshold,
|
|
final);
|
|
|
|
query_plan.addStep(std::move(totals_having_step));
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeRollupOrCube(QueryPlan & query_plan, Modificator modificator)
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
const auto & keys = query_analyzer->aggregationKeys().getNames();
|
|
|
|
// Arguments will not be present in Rollup / Cube input header and they don't actually needed 'cause these steps will work with AggregateFunctionState-s anyway.
|
|
auto aggregates = query_analyzer->aggregates();
|
|
for (auto & aggregate : aggregates)
|
|
aggregate.argument_names.clear();
|
|
|
|
auto params = getAggregatorParams(query_ptr, *query_analyzer, *context, keys, aggregates, false, settings, 0, 0);
|
|
const bool final = true;
|
|
|
|
QueryPlanStepPtr step;
|
|
if (modificator == Modificator::ROLLUP)
|
|
step = std::make_unique<RollupStep>(query_plan.getCurrentDataStream(), std::move(params), final, settings.group_by_use_nulls);
|
|
else if (modificator == Modificator::CUBE)
|
|
step = std::make_unique<CubeStep>(query_plan.getCurrentDataStream(), std::move(params), final, settings.group_by_use_nulls);
|
|
|
|
query_plan.addStep(std::move(step));
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeExpression(QueryPlan & query_plan, const ActionsDAGPtr & expression, const std::string & description)
|
|
{
|
|
if (!expression)
|
|
return;
|
|
|
|
auto expression_step = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expression);
|
|
|
|
expression_step->setStepDescription(description);
|
|
query_plan.addStep(std::move(expression_step));
|
|
}
|
|
|
|
static bool windowDescriptionComparator(const WindowDescription * _left, const WindowDescription * _right)
|
|
{
|
|
const auto & left = _left->full_sort_description;
|
|
const auto & right = _right->full_sort_description;
|
|
|
|
for (size_t i = 0; i < std::min(left.size(), right.size()); ++i)
|
|
{
|
|
if (left[i].column_name < right[i].column_name)
|
|
return true;
|
|
else if (left[i].column_name > right[i].column_name)
|
|
return false;
|
|
else if (left[i].direction < right[i].direction)
|
|
return true;
|
|
else if (left[i].direction > right[i].direction)
|
|
return false;
|
|
else if (left[i].nulls_direction < right[i].nulls_direction)
|
|
return true;
|
|
else if (left[i].nulls_direction > right[i].nulls_direction)
|
|
return false;
|
|
|
|
assert(left[i] == right[i]);
|
|
}
|
|
|
|
// Note that we check the length last, because we want to put together the
|
|
// sort orders that have common prefix but different length.
|
|
return left.size() > right.size();
|
|
}
|
|
|
|
static bool sortIsPrefix(const WindowDescription & _prefix,
|
|
const WindowDescription & _full)
|
|
{
|
|
const auto & prefix = _prefix.full_sort_description;
|
|
const auto & full = _full.full_sort_description;
|
|
|
|
if (prefix.size() > full.size())
|
|
return false;
|
|
|
|
for (size_t i = 0; i < prefix.size(); ++i)
|
|
{
|
|
if (full[i] != prefix[i])
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeWindow(QueryPlan & query_plan)
|
|
{
|
|
// Try to sort windows in such an order that the window with the longest
|
|
// sort description goes first, and all window that use its prefixes follow.
|
|
std::vector<const WindowDescription *> windows_sorted;
|
|
for (const auto & [_, window] : query_analyzer->windowDescriptions())
|
|
windows_sorted.push_back(&window);
|
|
|
|
::sort(windows_sorted.begin(), windows_sorted.end(), windowDescriptionComparator);
|
|
|
|
const Settings & settings = context->getSettingsRef();
|
|
for (size_t i = 0; i < windows_sorted.size(); ++i)
|
|
{
|
|
const auto & window = *windows_sorted[i];
|
|
|
|
// We don't need to sort again if the input from previous window already
|
|
// has suitable sorting. Also don't create sort steps when there are no
|
|
// columns to sort by, because the sort nodes are confused by this. It
|
|
// happens in case of `over ()`.
|
|
// Even if full_sort_description of both windows match, in case of different
|
|
// partitioning we need to add a SortingStep to reshuffle data in the streams.
|
|
bool need_sort = !window.full_sort_description.empty();
|
|
if (need_sort && i != 0)
|
|
{
|
|
need_sort = !sortIsPrefix(window, *windows_sorted[i - 1])
|
|
|| (settings.max_threads != 1 && window.partition_by.size() != windows_sorted[i - 1]->partition_by.size());
|
|
}
|
|
if (need_sort)
|
|
{
|
|
SortingStep::Settings sort_settings(*context);
|
|
|
|
auto sorting_step = std::make_unique<SortingStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
window.full_sort_description,
|
|
window.partition_by,
|
|
0 /* LIMIT */,
|
|
sort_settings,
|
|
settings.optimize_sorting_by_input_stream_properties);
|
|
sorting_step->setStepDescription("Sorting for window '" + window.window_name + "'");
|
|
query_plan.addStep(std::move(sorting_step));
|
|
}
|
|
|
|
// Fan out streams only for the last window to preserve the ordering between windows,
|
|
// and WindowTransform works on single stream anyway.
|
|
const bool streams_fan_out = settings.query_plan_enable_multithreading_after_window_functions && ((i + 1) == windows_sorted.size());
|
|
|
|
auto window_step = std::make_unique<WindowStep>(query_plan.getCurrentDataStream(), window, window.window_functions, streams_fan_out);
|
|
window_step->setStepDescription("Window step for window '" + window.window_name + "'");
|
|
|
|
query_plan.addStep(std::move(window_step));
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeOrderOptimized(QueryPlan & query_plan, InputOrderInfoPtr input_sorting_info, UInt64 limit, SortDescription & output_order_descr)
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
auto finish_sorting_step = std::make_unique<SortingStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
input_sorting_info->sort_description_for_merging,
|
|
output_order_descr,
|
|
settings.max_block_size,
|
|
limit);
|
|
|
|
query_plan.addStep(std::move(finish_sorting_step));
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeOrder(QueryPlan & query_plan, InputOrderInfoPtr input_sorting_info)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
SortDescription output_order_descr = getSortDescription(query, context);
|
|
UInt64 limit = getLimitForSorting(query, context);
|
|
|
|
if (input_sorting_info)
|
|
{
|
|
/* Case of sorting with optimization using sorting key.
|
|
* We have several threads, each of them reads batch of parts in direct
|
|
* or reverse order of sorting key using one input stream per part
|
|
* and then merge them into one sorted stream.
|
|
* At this stage we merge per-thread streams into one.
|
|
*/
|
|
executeOrderOptimized(query_plan, input_sorting_info, limit, output_order_descr);
|
|
return;
|
|
}
|
|
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
SortingStep::Settings sort_settings(*context);
|
|
|
|
/// Merge the sorted blocks.
|
|
auto sorting_step = std::make_unique<SortingStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
output_order_descr,
|
|
limit,
|
|
sort_settings,
|
|
settings.optimize_sorting_by_input_stream_properties);
|
|
|
|
sorting_step->setStepDescription("Sorting for ORDER BY");
|
|
query_plan.addStep(std::move(sorting_step));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeMergeSorted(QueryPlan & query_plan, const std::string & description)
|
|
{
|
|
const auto & query = getSelectQuery();
|
|
SortDescription sort_description = getSortDescription(query, context);
|
|
const UInt64 limit = getLimitForSorting(query, context);
|
|
const auto max_block_size = context->getSettingsRef().max_block_size;
|
|
const auto exact_rows_before_limit = context->getSettingsRef().exact_rows_before_limit;
|
|
|
|
auto merging_sorted = std::make_unique<SortingStep>(
|
|
query_plan.getCurrentDataStream(), std::move(sort_description), max_block_size, limit, exact_rows_before_limit);
|
|
merging_sorted->setStepDescription("Merge sorted streams " + description);
|
|
query_plan.addStep(std::move(merging_sorted));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeProjection(QueryPlan & query_plan, const ActionsDAGPtr & expression)
|
|
{
|
|
auto projection_step = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), expression);
|
|
projection_step->setStepDescription("Projection");
|
|
query_plan.addStep(std::move(projection_step));
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeDistinct(QueryPlan & query_plan, bool before_order, Names columns, bool pre_distinct)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (query.distinct)
|
|
{
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
UInt64 limit_for_distinct = 0;
|
|
|
|
/// If after this stage of DISTINCT,
|
|
/// (1) ORDER BY is not executed
|
|
/// (2) there is no LIMIT BY (todo: we can check if DISTINCT and LIMIT BY expressions are match)
|
|
/// then you can get no more than limit_length + limit_offset of different rows.
|
|
if ((!query.orderBy() || !before_order) && !query.limitBy())
|
|
{
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
if (limit_length <= std::numeric_limits<UInt64>::max() - limit_offset)
|
|
limit_for_distinct = limit_length + limit_offset;
|
|
}
|
|
|
|
SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode);
|
|
|
|
auto distinct_step = std::make_unique<DistinctStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
limits,
|
|
limit_for_distinct,
|
|
columns,
|
|
pre_distinct,
|
|
settings.optimize_distinct_in_order);
|
|
|
|
if (pre_distinct)
|
|
distinct_step->setStepDescription("Preliminary DISTINCT");
|
|
|
|
query_plan.addStep(std::move(distinct_step));
|
|
}
|
|
}
|
|
|
|
|
|
/// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined.
|
|
void InterpreterSelectQuery::executePreLimit(QueryPlan & query_plan, bool do_not_skip_offset)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is LIMIT
|
|
if (query.limitLength())
|
|
{
|
|
auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context);
|
|
|
|
if (do_not_skip_offset)
|
|
{
|
|
if (limit_length > std::numeric_limits<UInt64>::max() - limit_offset)
|
|
return;
|
|
|
|
limit_length += limit_offset;
|
|
limit_offset = 0;
|
|
}
|
|
|
|
const Settings & settings = context->getSettingsRef();
|
|
|
|
auto limit = std::make_unique<LimitStep>(query_plan.getCurrentDataStream(), limit_length, limit_offset, settings.exact_rows_before_limit);
|
|
if (do_not_skip_offset)
|
|
limit->setStepDescription("preliminary LIMIT (with OFFSET)");
|
|
else
|
|
limit->setStepDescription("preliminary LIMIT (without OFFSET)");
|
|
|
|
query_plan.addStep(std::move(limit));
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeLimitBy(QueryPlan & query_plan)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (!query.limitByLength() || !query.limitBy())
|
|
return;
|
|
|
|
Names columns;
|
|
for (const auto & elem : query.limitBy()->children)
|
|
columns.emplace_back(elem->getColumnName());
|
|
|
|
UInt64 length = getLimitUIntValue(query.limitByLength(), context, "LIMIT");
|
|
UInt64 offset = (query.limitByOffset() ? getLimitUIntValue(query.limitByOffset(), context, "OFFSET") : 0);
|
|
|
|
auto limit_by = std::make_unique<LimitByStep>(query_plan.getCurrentDataStream(), length, offset, columns);
|
|
query_plan.addStep(std::move(limit_by));
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeWithFill(QueryPlan & query_plan)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (query.orderBy())
|
|
{
|
|
SortDescription sort_description = getSortDescription(query, context);
|
|
SortDescription fill_description;
|
|
for (auto & desc : sort_description)
|
|
{
|
|
if (desc.with_fill)
|
|
fill_description.push_back(desc);
|
|
}
|
|
|
|
if (fill_description.empty())
|
|
return;
|
|
|
|
InterpolateDescriptionPtr interpolate_descr =
|
|
getInterpolateDescription(query, source_header, result_header, syntax_analyzer_result->aliases, context);
|
|
|
|
const Settings & settings = context->getSettingsRef();
|
|
auto filling_step = std::make_unique<FillingStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
std::move(sort_description),
|
|
std::move(fill_description),
|
|
interpolate_descr,
|
|
settings.use_with_fill_by_sorting_prefix);
|
|
query_plan.addStep(std::move(filling_step));
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeLimit(QueryPlan & query_plan)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is LIMIT
|
|
if (query.limitLength())
|
|
{
|
|
/** Rare case:
|
|
* if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels,
|
|
* then when using LIMIT, you should read the data to the end, rather than cancel the query earlier,
|
|
* because if you cancel the query, we will not get `totals` data from the remote server.
|
|
*
|
|
* Another case:
|
|
* if there is WITH TOTALS and there is no ORDER BY, then read the data to the end,
|
|
* otherwise TOTALS is counted according to incomplete data.
|
|
*/
|
|
const Settings & settings = context->getSettingsRef();
|
|
bool always_read_till_end = settings.exact_rows_before_limit;
|
|
|
|
if (query.group_by_with_totals && !query.orderBy())
|
|
always_read_till_end = true;
|
|
|
|
if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query))
|
|
always_read_till_end = true;
|
|
|
|
UInt64 limit_length;
|
|
UInt64 limit_offset;
|
|
std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context);
|
|
|
|
SortDescription order_descr;
|
|
if (query.limit_with_ties)
|
|
{
|
|
if (!query.orderBy())
|
|
throw Exception(ErrorCodes::LOGICAL_ERROR, "LIMIT WITH TIES without ORDER BY");
|
|
order_descr = getSortDescription(query, context);
|
|
}
|
|
|
|
auto limit = std::make_unique<LimitStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
limit_length, limit_offset, always_read_till_end, query.limit_with_ties, order_descr);
|
|
|
|
if (query.limit_with_ties)
|
|
limit->setStepDescription("LIMIT WITH TIES");
|
|
|
|
query_plan.addStep(std::move(limit));
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::executeOffset(QueryPlan & query_plan)
|
|
{
|
|
auto & query = getSelectQuery();
|
|
/// If there is not a LIMIT but an offset
|
|
if (!query.limitLength() && query.limitOffset())
|
|
{
|
|
UInt64 limit_length;
|
|
UInt64 limit_offset;
|
|
std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context);
|
|
|
|
auto offsets_step = std::make_unique<OffsetStep>(query_plan.getCurrentDataStream(), limit_offset);
|
|
query_plan.addStep(std::move(offsets_step));
|
|
}
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeExtremes(QueryPlan & query_plan)
|
|
{
|
|
if (!context->getSettingsRef().extremes)
|
|
return;
|
|
|
|
auto extremes_step = std::make_unique<ExtremesStep>(query_plan.getCurrentDataStream());
|
|
query_plan.addStep(std::move(extremes_step));
|
|
}
|
|
|
|
void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(QueryPlan & query_plan)
|
|
{
|
|
auto subqueries = prepared_sets->getSubqueries();
|
|
|
|
if (!subqueries.empty())
|
|
{
|
|
auto step = std::make_unique<DelayedCreatingSetsStep>(
|
|
query_plan.getCurrentDataStream(),
|
|
std::move(subqueries),
|
|
context);
|
|
|
|
query_plan.addStep(std::move(step));
|
|
}
|
|
}
|
|
|
|
|
|
void InterpreterSelectQuery::ignoreWithTotals()
|
|
{
|
|
getSelectQuery().group_by_with_totals = false;
|
|
}
|
|
|
|
bool InterpreterSelectQuery::autoFinalOnQuery(ASTSelectQuery & query)
|
|
{
|
|
// query.tables() is required because not all queries have tables in it, it could be a function.
|
|
bool is_auto_final_setting_on = context->getSettingsRef().final;
|
|
bool is_final_supported = storage && storage->supportsFinal() && !storage->isRemote() && query.tables();
|
|
bool is_query_already_final = query.final();
|
|
|
|
return is_auto_final_setting_on && !is_query_already_final && is_final_supported;
|
|
}
|
|
|
|
void InterpreterSelectQuery::initSettings()
|
|
{
|
|
auto & query = getSelectQuery();
|
|
if (query.settings())
|
|
InterpreterSetQuery(query.settings(), context).executeForCurrentContext(options.ignore_setting_constraints);
|
|
|
|
const auto & client_info = context->getClientInfo();
|
|
auto min_major = DBMS_MIN_MAJOR_VERSION_WITH_CURRENT_AGGREGATION_VARIANT_SELECTION_METHOD;
|
|
auto min_minor = DBMS_MIN_MINOR_VERSION_WITH_CURRENT_AGGREGATION_VARIANT_SELECTION_METHOD;
|
|
|
|
if (client_info.query_kind == ClientInfo::QueryKind::SECONDARY_QUERY &&
|
|
std::forward_as_tuple(client_info.connection_client_version_major, client_info.connection_client_version_minor) < std::forward_as_tuple(min_major, min_minor))
|
|
{
|
|
/// Disable two-level aggregation due to version incompatibility.
|
|
context->setSetting("group_by_two_level_threshold", Field(0));
|
|
context->setSetting("group_by_two_level_threshold_bytes", Field(0));
|
|
|
|
}
|
|
}
|
|
|
|
bool InterpreterSelectQuery::isQueryWithFinal(const SelectQueryInfo & info)
|
|
{
|
|
bool result = info.query->as<ASTSelectQuery &>().final();
|
|
if (info.table_expression_modifiers)
|
|
result |= info.table_expression_modifiers->hasFinal();
|
|
|
|
return result;
|
|
}
|
|
|
|
void registerInterpreterSelectQuery(InterpreterFactory & factory)
|
|
{
|
|
auto create_fn = [] (const InterpreterFactory::Arguments & args)
|
|
{
|
|
return std::make_unique<InterpreterSelectQuery>(args.query, args.context, args.options);
|
|
};
|
|
factory.registerInterpreter("InterpreterSelectQuery", create_fn);
|
|
}
|
|
|
|
}
|