ClickHouse/dbms/include/DB/Columns/IColumn.h

283 lines
12 KiB
C++

#pragma once
#include <memory>
#include <DB/Common/PODArray.h>
#include <DB/Common/typeid_cast.h>
#include <DB/Core/Field.h>
#include <DB/Common/Exception.h>
#include <DB/Core/StringRef.h>
class SipHash;
namespace DB
{
namespace ErrorCodes
{
extern const int CANNOT_GET_SIZE_OF_FIELD;
extern const int NOT_IMPLEMENTED;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
}
class IColumn;
using ColumnPtr = std::shared_ptr<IColumn>;
using Columns = std::vector<ColumnPtr>;
using ColumnPlainPtrs = std::vector<IColumn *>;
using ConstColumnPlainPtrs = std::vector<const IColumn *>;
class Arena;
/// Declares interface to store columns in memory.
class IColumn : private boost::noncopyable
{
public:
/// Name of a Column. It is used in info messages.
virtual std::string getName() const = 0;
/// Column is vector of numbers or numeric constant.
virtual bool isNumeric() const { return false; }
/// Is this column numeric and not nullable?
virtual bool isNumericNotNullable() const { return isNumeric(); }
/// Column stores a constant value.
virtual bool isConst() const { return false; }
/// Is this column a container for nullable values?
virtual bool isNullable() const { return false; }
/// Is this a null column?
virtual bool isNull() const { return false; }
/** If column isn't constant, returns nullptr (or itself).
* If column is constant, transforms constant to full column (if column type allows such tranform) and return it.
* Special case:
* If column is composed from several other columns (tuple for example), and contains both constant and full columns,
* then each constant column is transformed, and final result is returned.
*/
virtual ColumnPtr convertToFullColumnIfConst() const { return {}; }
/// Values in column have equal size in memory.
virtual bool isFixed() const { return false; }
/// If column isFixed(), returns size of value.
virtual size_t sizeOfField() const { throw Exception("Cannot get sizeOfField() for column " + getName(), ErrorCodes::CANNOT_GET_SIZE_OF_FIELD); }
/// Creates the same column with the same data.
virtual ColumnPtr clone() const { return cut(0, size()); }
/// Creates empty column with the same type.
virtual ColumnPtr cloneEmpty() const { return cloneResized(0); }
/// Creates column with the same type and specified size.
/// If size is less current size, then data is cut.
/// If size is greater, than default values are appended.
virtual ColumnPtr cloneResized(size_t size) const { throw Exception("Cannot cloneResized() column " + getName(), ErrorCodes::NOT_IMPLEMENTED); }
/// Returns number of values in column.
virtual size_t size() const = 0;
/// There are no values in columns.
bool empty() const { return size() == 0; }
/// Returns value of n-th element in universal Field representation.
/// Is used in rare cases, since creation of Field instance is expensive usually.
virtual Field operator[](size_t n) const = 0;
/// Like the previous one, but avoids extra copying if Field is in a container, for example.
virtual void get(size_t n, Field & res) const = 0;
/// If possible, returns pointer to memory chunk which contains n-th element (if it isn't possible, throws an exception)
/// Is used to optimize some computations (in aggregation, for example).
virtual StringRef getDataAt(size_t n) const = 0;
/// Like getData, but has special behavior for columns that contain variable-length strings.
/// Returns zero-ending memory chunk (i.e. its size is 1 byte longer).
virtual StringRef getDataAtWithTerminatingZero(size_t n) const
{
return getDataAt(n);
}
/// If column stores integers, it returns n-th element transformed to UInt64 using static_cast.
/// If column stores floting point numbers, bits of n-th elements are copied to lower bits of UInt64, the remaining bits are zeros.
/// Is used to optimize some computations (in aggregation, for example).
virtual UInt64 get64(size_t n) const
{
throw Exception("Method get64 is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED);
}
/// Removes all elements outside of specified range.
/// Is used in LIMIT operation, for example.
virtual ColumnPtr cut(size_t start, size_t length) const
{
ColumnPtr res = cloneEmpty();
res.get()->insertRangeFrom(*this, start, length);
return res;
}
/// Appends new value at the end of column (column's size is increased by 1).
/// Is used to transform raw strings to Blocks (for example, inside input format parsers)
virtual void insert(const Field & x) = 0;
/// Appends n-th element from other column with the same type.
/// Is used in merge-sort and merges. It could be implemented in inherited classes more optimally than default implementation.
virtual void insertFrom(const IColumn & src, size_t n) { insert(src[n]); }
/// Appends range of elements from other column.
/// Could be used to concatenate columns.
virtual void insertRangeFrom(const IColumn & src, size_t start, size_t length) = 0;
/// Appends data located in specified memory chunk if it is possible (throws an exception if it cannot be implemented).
/// Is used to optimize some computations (in aggregation, for example).
/// Parameter length could be ignored if column isFixed().
virtual void insertData(const char * pos, size_t length) = 0;
/// Like getData, but has special behavior for columns that contain variable-length strings.
/// In this special case inserting data should be zero-ending (i.e. length is 1 byte greater than real string size).
virtual void insertDataWithTerminatingZero(const char * pos, size_t length)
{
insertData(pos, length);
}
/// Appends "default value".
/// Is used when there are need to increase column size, but inserting value doesn't make sense.
/// For example, ColumnNullable(Nested) absolutely ignores values of nested column if it is marked as NULL.
virtual void insertDefault() = 0;
/** Removes last n elements.
* Is used to support exeption-safety of several operations.
* For example, sometimes insertion should be reverted if we catch an exception during operation processing.
* If column has less than n elements or n == 0 - undefined behavior.
*/
virtual void popBack(size_t n) = 0;
/** Serializes n-th element. Serialized element should be placed continuously inside Arena's memory.
* Serialized value can be deserialized to reconstruct original object. Is used in aggregation.
* The method is similar to getDataAt(), but can work when element's value cannot be mapped to existing continuous memory chunk,
* For example, to obtain unambiguous representation of Array of strings, strings data should be interleaved with their sizes.
* Parameter begin should be used with Arena::allocContinue.
*/
virtual StringRef serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const = 0;
/// Deserializes a value that was serialized using IColumn::serializeValueIntoArena method.
/// Returns pointer to the position after the read data.
virtual const char * deserializeAndInsertFromArena(const char * pos) = 0;
/// Update state of hash function with value of n-th element.
/// On subsequent calls of this method for sequence of column values of arbitary types,
/// passed bytes to hash must identify sequence of values unambiguously.
virtual void updateHashWithValue(size_t n, SipHash & hash) const = 0;
/** Removes elements that don't match the filter.
* Is used in WHERE and HAVING operations.
* If result_size_hint > 0, then makes advance reserve(result_size_hint) for the result column;
* if 0, then don't makes reserve(),
* otherwise (i.e. < 0), makes reserve() using size of source column.
*/
using Filter = PaddedPODArray<UInt8>;
virtual ColumnPtr filter(const Filter & filt, ssize_t result_size_hint) const = 0;
/// Permutes elements using specified permutation. Is used in sortings.
/// limit - if it isn't 0, puts only first limit elements in the result.
using Permutation = PaddedPODArray<size_t>;
virtual ColumnPtr permute(const Permutation & perm, size_t limit) const = 0;
/** Compares (*this)[n] and rhs[m].
* Returns negative number, 0, or positive number (*this)[n] is less, equal, greater than rhs[m] respectively.
* Is used in sortings.
*
* If one of element's value is NaN, then:
* - if nan_direction_hint == -1, NaN is considered as least number;
* - if nan_direction_hint == 1, NaN is considered as greatest number.
* In fact, if nan_direction_hint == -1 is used by descending sorting, NaNs will be at the end.
*
* nan_direction_hint is ignored for non floating point values.
*/
virtual int compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const = 0;
/** Returns a permutation that sorts elements of this column,
* i.e. perm[i]-th element of source column should be i-th element of sorted column.
* reverse - reverse ordering (acsending).
* limit - if isn't 0, then only first limit elements of the result column could be sorted.
* Regardless of the ordering, NaNs should be at the end.
*/
virtual void getPermutation(bool reverse, size_t limit, Permutation & res) const = 0;
/** Copies each element according offsets parameter.
* (i-th element should be copied offsets[i] - offsets[i - 1] times.)
* It is necessary in ARRAY JOIN operation.
*/
using Offset_t = UInt64;
using Offsets_t = PaddedPODArray<Offset_t>;
virtual ColumnPtr replicate(const Offsets_t & offsets) const = 0;
/** Split column to smaller columns. Each value goes to column index, selected by corresponding element of 'selector'.
* Selector must contain values from 0 to num_columns - 1.
* For default implementation, see scatterImpl.
*/
using ColumnIndex = UInt64;
using Selector = PaddedPODArray<ColumnIndex>;
virtual Columns scatter(ColumnIndex num_columns, const Selector & selector) const = 0;
/** Computes minimum and maximum element of the column.
* In addition to numeric types, the funtion is completely implemented for Date and DateTime.
* For strings and arrays function should retrurn default value.
* (except for constant columns; they should return value of the constant).
* If column is empty function should return default value.
*/
virtual void getExtremes(Field & min, Field & max) const = 0;
/// Reserves memory for specified amount of elements. If reservation isn't possible, does nothing.
/// It affects performance only (not correctness).
virtual void reserve(size_t n) {};
/// Size of column data in memory (may be approximate) - for profiling. Zero, if could not be determined.
virtual size_t byteSize() const = 0;
/// Size of memory, allocated for column.
/// This is greater or equals to byteSize due to memory reservation in containers.
/// Zero, if could be determined.
virtual size_t allocatedSize() const = 0;
virtual ~IColumn() {}
protected:
/// Template is to devirtualize calls to insertFrom method.
/// In derived classes (that use final keyword), implement scatter method as call to scatterImpl.
template <typename Derived>
Columns scatterImpl(ColumnIndex num_columns, const Selector & selector) const
{
size_t num_rows = size();
if (num_rows != selector.size())
throw Exception("Size of selector doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
Columns columns(num_columns);
for (auto & column : columns)
column = cloneEmpty();
{
size_t reserve_size = num_rows / num_columns * 1.1; /// 1.1 is just a guess. Better to use n-sigma rule.
if (reserve_size > 1)
for (auto & column : columns)
column->reserve(reserve_size);
}
for (size_t i = 0; i < num_rows; ++i)
static_cast<Derived &>(*columns[selector[i]]).insertFrom(*this, i);
return columns;
}
};
}