ClickHouse/src/Storages/MergeTree/IMergeTreeDataPart.cpp

1802 lines
65 KiB
C++

#include "IMergeTreeDataPart.h"
#include <optional>
#include <boost/algorithm/string/join.hpp>
#include <string_view>
#include <Core/Defines.h>
#include <IO/HashingWriteBuffer.h>
#include <IO/HashingReadBuffer.h>
#include <IO/ReadBufferFromString.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Storages/MergeTree/MergeTreeData.h>
#include <Storages/MergeTree/localBackup.h>
#include <Storages/MergeTree/checkDataPart.h>
#include <Storages/StorageReplicatedMergeTree.h>
#include <Storages/MergeTree/PartMetadataManagerOrdinary.h>
#include <Storages/MergeTree/PartMetadataManagerWithCache.h>
#include <Common/StringUtils/StringUtils.h>
#include <Common/escapeForFileName.h>
#include <Common/CurrentMetrics.h>
#include <Common/FieldVisitorsAccurateComparison.h>
#include <Common/MemoryTrackerBlockerInThread.h>
#include <base/JSON.h>
#include <Common/logger_useful.h>
#include <Compression/getCompressionCodecForFile.h>
#include <Parsers/parseQuery.h>
#include <Parsers/queryToString.h>
#include <Parsers/ExpressionElementParsers.h>
#include <DataTypes/NestedUtils.h>
#include <DataTypes/DataTypeAggregateFunction.h>
#include <Interpreters/MergeTreeTransaction.h>
#include <Interpreters/TransactionLog.h>
namespace CurrentMetrics
{
extern const Metric PartsTemporary;
extern const Metric PartsPreCommitted;
extern const Metric PartsCommitted;
extern const Metric PartsPreActive;
extern const Metric PartsActive;
extern const Metric PartsOutdated;
extern const Metric PartsDeleting;
extern const Metric PartsDeleteOnDestroy;
extern const Metric PartsWide;
extern const Metric PartsCompact;
extern const Metric PartsInMemory;
}
namespace DB
{
namespace ErrorCodes
{
extern const int CANNOT_READ_ALL_DATA;
extern const int LOGICAL_ERROR;
extern const int NO_FILE_IN_DATA_PART;
extern const int EXPECTED_END_OF_FILE;
extern const int CORRUPTED_DATA;
extern const int NOT_FOUND_EXPECTED_DATA_PART;
extern const int BAD_SIZE_OF_FILE_IN_DATA_PART;
extern const int BAD_TTL_FILE;
extern const int NOT_IMPLEMENTED;
}
void IMergeTreeDataPart::MinMaxIndex::load(const MergeTreeData & data, const PartMetadataManagerPtr & manager)
{
auto metadata_snapshot = data.getInMemoryMetadataPtr();
const auto & partition_key = metadata_snapshot->getPartitionKey();
auto minmax_column_names = data.getMinMaxColumnsNames(partition_key);
auto minmax_column_types = data.getMinMaxColumnsTypes(partition_key);
size_t minmax_idx_size = minmax_column_types.size();
hyperrectangle.reserve(minmax_idx_size);
for (size_t i = 0; i < minmax_idx_size; ++i)
{
String file_name = "minmax_" + escapeForFileName(minmax_column_names[i]) + ".idx";
auto file = manager->read(file_name);
auto serialization = minmax_column_types[i]->getDefaultSerialization();
Field min_val;
serialization->deserializeBinary(min_val, *file);
Field max_val;
serialization->deserializeBinary(max_val, *file);
// NULL_LAST
if (min_val.isNull())
min_val = POSITIVE_INFINITY;
if (max_val.isNull())
max_val = POSITIVE_INFINITY;
hyperrectangle.emplace_back(min_val, true, max_val, true);
}
initialized = true;
}
IMergeTreeDataPart::MinMaxIndex::WrittenFiles IMergeTreeDataPart::MinMaxIndex::store(
const MergeTreeData & data, const DataPartStorageBuilderPtr & data_part_storage_builder, Checksums & out_checksums) const
{
auto metadata_snapshot = data.getInMemoryMetadataPtr();
const auto & partition_key = metadata_snapshot->getPartitionKey();
auto minmax_column_names = data.getMinMaxColumnsNames(partition_key);
auto minmax_column_types = data.getMinMaxColumnsTypes(partition_key);
return store(minmax_column_names, minmax_column_types, data_part_storage_builder, out_checksums);
}
IMergeTreeDataPart::MinMaxIndex::WrittenFiles IMergeTreeDataPart::MinMaxIndex::store(
const Names & column_names,
const DataTypes & data_types,
const DataPartStorageBuilderPtr & data_part_storage_builder,
Checksums & out_checksums) const
{
if (!initialized)
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Attempt to store uninitialized MinMax index for part {}. This is a bug",
data_part_storage_builder->getFullPath());
WrittenFiles written_files;
for (size_t i = 0; i < column_names.size(); ++i)
{
String file_name = "minmax_" + escapeForFileName(column_names[i]) + ".idx";
auto serialization = data_types.at(i)->getDefaultSerialization();
auto out = data_part_storage_builder->writeFile(file_name, DBMS_DEFAULT_BUFFER_SIZE, {});
HashingWriteBuffer out_hashing(*out);
serialization->serializeBinary(hyperrectangle[i].left, out_hashing);
serialization->serializeBinary(hyperrectangle[i].right, out_hashing);
out_hashing.next();
out_checksums.files[file_name].file_size = out_hashing.count();
out_checksums.files[file_name].file_hash = out_hashing.getHash();
out->preFinalize();
written_files.emplace_back(std::move(out));
}
return written_files;
}
void IMergeTreeDataPart::MinMaxIndex::update(const Block & block, const Names & column_names)
{
if (!initialized)
hyperrectangle.reserve(column_names.size());
for (size_t i = 0; i < column_names.size(); ++i)
{
FieldRef min_value;
FieldRef max_value;
const ColumnWithTypeAndName & column = block.getByName(column_names[i]);
if (const auto * column_nullable = typeid_cast<const ColumnNullable *>(column.column.get()))
column_nullable->getExtremesNullLast(min_value, max_value);
else
column.column->getExtremes(min_value, max_value);
if (!initialized)
hyperrectangle.emplace_back(min_value, true, max_value, true);
else
{
hyperrectangle[i].left
= applyVisitor(FieldVisitorAccurateLess(), hyperrectangle[i].left, min_value) ? hyperrectangle[i].left : min_value;
hyperrectangle[i].right
= applyVisitor(FieldVisitorAccurateLess(), hyperrectangle[i].right, max_value) ? max_value : hyperrectangle[i].right;
}
}
initialized = true;
}
void IMergeTreeDataPart::MinMaxIndex::merge(const MinMaxIndex & other)
{
if (!other.initialized)
return;
if (!initialized)
{
hyperrectangle = other.hyperrectangle;
initialized = true;
}
else
{
for (size_t i = 0; i < hyperrectangle.size(); ++i)
{
hyperrectangle[i].left = std::min(hyperrectangle[i].left, other.hyperrectangle[i].left);
hyperrectangle[i].right = std::max(hyperrectangle[i].right, other.hyperrectangle[i].right);
}
}
}
void IMergeTreeDataPart::MinMaxIndex::appendFiles(const MergeTreeData & data, Strings & files)
{
auto metadata_snapshot = data.getInMemoryMetadataPtr();
const auto & partition_key = metadata_snapshot->getPartitionKey();
auto minmax_column_names = data.getMinMaxColumnsNames(partition_key);
size_t minmax_idx_size = minmax_column_names.size();
for (size_t i = 0; i < minmax_idx_size; ++i)
{
String file_name = "minmax_" + escapeForFileName(minmax_column_names[i]) + ".idx";
files.push_back(file_name);
}
}
static void incrementStateMetric(IMergeTreeDataPart::State state)
{
switch (state)
{
case IMergeTreeDataPart::State::Temporary:
CurrentMetrics::add(CurrentMetrics::PartsTemporary);
return;
case IMergeTreeDataPart::State::PreActive:
CurrentMetrics::add(CurrentMetrics::PartsPreActive);
CurrentMetrics::add(CurrentMetrics::PartsPreCommitted);
return;
case IMergeTreeDataPart::State::Active:
CurrentMetrics::add(CurrentMetrics::PartsActive);
CurrentMetrics::add(CurrentMetrics::PartsCommitted);
return;
case IMergeTreeDataPart::State::Outdated:
CurrentMetrics::add(CurrentMetrics::PartsOutdated);
return;
case IMergeTreeDataPart::State::Deleting:
CurrentMetrics::add(CurrentMetrics::PartsDeleting);
return;
case IMergeTreeDataPart::State::DeleteOnDestroy:
CurrentMetrics::add(CurrentMetrics::PartsDeleteOnDestroy);
return;
}
}
static void decrementStateMetric(IMergeTreeDataPart::State state)
{
switch (state)
{
case IMergeTreeDataPart::State::Temporary:
CurrentMetrics::sub(CurrentMetrics::PartsTemporary);
return;
case IMergeTreeDataPart::State::PreActive:
CurrentMetrics::sub(CurrentMetrics::PartsPreActive);
CurrentMetrics::sub(CurrentMetrics::PartsPreCommitted);
return;
case IMergeTreeDataPart::State::Active:
CurrentMetrics::sub(CurrentMetrics::PartsActive);
CurrentMetrics::sub(CurrentMetrics::PartsCommitted);
return;
case IMergeTreeDataPart::State::Outdated:
CurrentMetrics::sub(CurrentMetrics::PartsOutdated);
return;
case IMergeTreeDataPart::State::Deleting:
CurrentMetrics::sub(CurrentMetrics::PartsDeleting);
return;
case IMergeTreeDataPart::State::DeleteOnDestroy:
CurrentMetrics::sub(CurrentMetrics::PartsDeleteOnDestroy);
return;
}
}
static void incrementTypeMetric(MergeTreeDataPartType type)
{
switch (type.getValue())
{
case MergeTreeDataPartType::Wide:
CurrentMetrics::add(CurrentMetrics::PartsWide);
return;
case MergeTreeDataPartType::Compact:
CurrentMetrics::add(CurrentMetrics::PartsCompact);
return;
case MergeTreeDataPartType::InMemory:
CurrentMetrics::add(CurrentMetrics::PartsInMemory);
return;
case MergeTreeDataPartType::Unknown:
return;
}
}
static void decrementTypeMetric(MergeTreeDataPartType type)
{
switch (type.getValue())
{
case MergeTreeDataPartType::Wide:
CurrentMetrics::sub(CurrentMetrics::PartsWide);
return;
case MergeTreeDataPartType::Compact:
CurrentMetrics::sub(CurrentMetrics::PartsCompact);
return;
case MergeTreeDataPartType::InMemory:
CurrentMetrics::sub(CurrentMetrics::PartsInMemory);
return;
case MergeTreeDataPartType::Unknown:
return;
}
}
IMergeTreeDataPart::IMergeTreeDataPart(
const MergeTreeData & storage_,
const String & name_,
const DataPartStoragePtr & data_part_storage_,
Type part_type_,
const IMergeTreeDataPart * parent_part_)
: storage(storage_)
, name(name_)
, info(MergeTreePartInfo::fromPartName(name_, storage.format_version))
, data_part_storage(parent_part_ ? parent_part_->data_part_storage : data_part_storage_)
, index_granularity_info(storage_, part_type_)
, part_type(part_type_)
, parent_part(parent_part_)
, use_metadata_cache(storage.use_metadata_cache)
{
if (parent_part)
state = State::Active;
incrementStateMetric(state);
incrementTypeMetric(part_type);
minmax_idx = std::make_shared<MinMaxIndex>();
initializePartMetadataManager();
}
IMergeTreeDataPart::IMergeTreeDataPart(
const MergeTreeData & storage_,
const String & name_,
const MergeTreePartInfo & info_,
const DataPartStoragePtr & data_part_storage_,
Type part_type_,
const IMergeTreeDataPart * parent_part_)
: storage(storage_)
, name(name_)
, info(info_)
, data_part_storage(data_part_storage_)
, index_granularity_info(storage_, part_type_)
, part_type(part_type_)
, parent_part(parent_part_)
, use_metadata_cache(storage.use_metadata_cache)
{
if (parent_part)
state = State::Active;
incrementStateMetric(state);
incrementTypeMetric(part_type);
minmax_idx = std::make_shared<MinMaxIndex>();
initializePartMetadataManager();
}
IMergeTreeDataPart::~IMergeTreeDataPart()
{
decrementStateMetric(state);
decrementTypeMetric(part_type);
}
String IMergeTreeDataPart::getNewName(const MergeTreePartInfo & new_part_info) const
{
if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING)
{
/// NOTE: getting min and max dates from the part name (instead of part data) because we want
/// the merged part name be determined only by source part names.
/// It is simpler this way when the real min and max dates for the block range can change
/// (e.g. after an ALTER DELETE command).
DayNum min_date;
DayNum max_date;
MergeTreePartInfo::parseMinMaxDatesFromPartName(name, min_date, max_date);
return new_part_info.getPartNameV0(min_date, max_date);
}
else
return new_part_info.getPartName();
}
std::optional<size_t> IMergeTreeDataPart::getColumnPosition(const String & column_name) const
{
auto it = column_name_to_position.find(column_name);
if (it == column_name_to_position.end())
return {};
return it->second;
}
void IMergeTreeDataPart::setState(IMergeTreeDataPart::State new_state) const
{
decrementStateMetric(state);
state = new_state;
incrementStateMetric(state);
}
IMergeTreeDataPart::State IMergeTreeDataPart::getState() const
{
return state;
}
std::pair<DayNum, DayNum> IMergeTreeDataPart::getMinMaxDate() const
{
if (storage.minmax_idx_date_column_pos != -1 && minmax_idx->initialized)
{
const auto & hyperrectangle = minmax_idx->hyperrectangle[storage.minmax_idx_date_column_pos];
return {DayNum(hyperrectangle.left.get<UInt64>()), DayNum(hyperrectangle.right.get<UInt64>())};
}
else
return {};
}
std::pair<time_t, time_t> IMergeTreeDataPart::getMinMaxTime() const
{
if (storage.minmax_idx_time_column_pos != -1 && minmax_idx->initialized)
{
const auto & hyperrectangle = minmax_idx->hyperrectangle[storage.minmax_idx_time_column_pos];
/// The case of DateTime
if (hyperrectangle.left.getType() == Field::Types::UInt64)
{
assert(hyperrectangle.right.getType() == Field::Types::UInt64);
return {hyperrectangle.left.get<UInt64>(), hyperrectangle.right.get<UInt64>()};
}
/// The case of DateTime64
else if (hyperrectangle.left.getType() == Field::Types::Decimal64)
{
assert(hyperrectangle.right.getType() == Field::Types::Decimal64);
auto left = hyperrectangle.left.get<DecimalField<Decimal64>>();
auto right = hyperrectangle.right.get<DecimalField<Decimal64>>();
assert(left.getScale() == right.getScale());
return { left.getValue() / left.getScaleMultiplier(), right.getValue() / right.getScaleMultiplier() };
}
else
throw Exception(ErrorCodes::LOGICAL_ERROR, "Part minmax index by time is neither DateTime or DateTime64");
}
else
return {};
}
void IMergeTreeDataPart::setColumns(const NamesAndTypesList & new_columns)
{
columns = new_columns;
column_name_to_position.clear();
column_name_to_position.reserve(new_columns.size());
size_t pos = 0;
for (const auto & column : columns)
column_name_to_position.emplace(column.name, pos++);
}
void IMergeTreeDataPart::setSerializationInfos(const SerializationInfoByName & new_infos)
{
serialization_infos = new_infos;
}
SerializationPtr IMergeTreeDataPart::getSerialization(const NameAndTypePair & column) const
{
auto it = serialization_infos.find(column.getNameInStorage());
return it == serialization_infos.end()
? IDataType::getSerialization(column)
: IDataType::getSerialization(column, *it->second);
}
void IMergeTreeDataPart::removeIfNeeded()
{
assert(assertHasValidVersionMetadata());
if (!is_temp && state != State::DeleteOnDestroy)
return;
try
{
auto path = data_part_storage->getRelativePath();
if (!data_part_storage->exists()) // path
return;
if (is_temp)
{
String file_name = fileName(data_part_storage->getPartDirectory());
if (file_name.empty())
throw Exception(ErrorCodes::LOGICAL_ERROR, "relative_path {} of part {} is invalid or not set", data_part_storage->getPartDirectory(), name);
if (!startsWith(file_name, "tmp") && !endsWith(file_name, ".tmp_proj"))
{
LOG_ERROR(
storage.log,
"~DataPart() should remove part {} but its name doesn't start with \"tmp\" or end with \".tmp_proj\". Too "
"suspicious, keeping the part.",
path);
return;
}
}
remove();
if (state == State::DeleteOnDestroy)
{
LOG_TRACE(storage.log, "Removed part from old location {}", path);
}
}
catch (...)
{
/// FIXME If part it temporary, then directory will not be removed for 1 day (temporary_directories_lifetime).
/// If it's tmp_merge_<part_name> or tmp_fetch_<part_name>,
/// then all future attempts to execute part producing operation will fail with "directory already exists".
/// Seems like it's especially important for remote disks, because removal may fail due to network issues.
tryLogCurrentException(__PRETTY_FUNCTION__);
assert(!is_temp);
assert(state != State::DeleteOnDestroy);
assert(state != State::Temporary);
}
}
UInt64 IMergeTreeDataPart::getIndexSizeInBytes() const
{
UInt64 res = 0;
for (const ColumnPtr & column : index)
res += column->byteSize();
return res;
}
UInt64 IMergeTreeDataPart::getIndexSizeInAllocatedBytes() const
{
UInt64 res = 0;
for (const ColumnPtr & column : index)
res += column->allocatedBytes();
return res;
}
void IMergeTreeDataPart::assertState(const std::initializer_list<IMergeTreeDataPart::State> & affordable_states) const
{
if (!checkState(affordable_states))
{
String states_str;
for (auto affordable_state : affordable_states)
{
states_str += stateString(affordable_state);
states_str += ' ';
}
throw Exception("Unexpected state of part " + getNameWithState() + ". Expected: " + states_str, ErrorCodes::NOT_FOUND_EXPECTED_DATA_PART);
}
}
void IMergeTreeDataPart::assertOnDisk() const
{
if (!isStoredOnDisk())
throw Exception("Data part '" + name + "' with type '"
+ getType().toString() + "' is not stored on disk", ErrorCodes::LOGICAL_ERROR);
}
UInt64 IMergeTreeDataPart::getMarksCount() const
{
return index_granularity.getMarksCount();
}
size_t IMergeTreeDataPart::getFileSizeOrZero(const String & file_name) const
{
auto checksum = checksums.files.find(file_name);
if (checksum == checksums.files.end())
return 0;
return checksum->second.file_size;
}
String IMergeTreeDataPart::getColumnNameWithMinimumCompressedSize(
const StorageSnapshotPtr & storage_snapshot, bool with_subcolumns) const
{
auto options = GetColumnsOptions(GetColumnsOptions::AllPhysical).withExtendedObjects();
if (with_subcolumns)
options.withSubcolumns();
auto storage_columns = storage_snapshot->getColumns(options);
MergeTreeData::AlterConversions alter_conversions;
if (!parent_part)
alter_conversions = storage.getAlterConversionsForPart(shared_from_this());
std::optional<std::string> minimum_size_column;
UInt64 minimum_size = std::numeric_limits<UInt64>::max();
for (const auto & column : storage_columns)
{
auto column_name = column.name;
auto column_type = column.type;
if (alter_conversions.isColumnRenamed(column.name))
column_name = alter_conversions.getColumnOldName(column.name);
if (!hasColumnFiles(column))
continue;
const auto size = getColumnSize(column_name).data_compressed;
if (size < minimum_size)
{
minimum_size = size;
minimum_size_column = column_name;
}
}
if (!minimum_size_column)
throw Exception("Could not find a column of minimum size in MergeTree, part " + data_part_storage->getFullPath(), ErrorCodes::LOGICAL_ERROR);
return *minimum_size_column;
}
// String IMergeTreeDataPart::getFullPath() const
// {
// if (relative_path.empty())
// throw Exception("Part relative_path cannot be empty. It's bug.", ErrorCodes::LOGICAL_ERROR);
// return fs::path(storage.getFullPathOnDisk(volume->getDisk())) / (parent_part ? parent_part->relative_path : "") / relative_path / "";
// }
// String IMergeTreeDataPart::getRelativePath() const
// {
// if (relative_path.empty())
// throw Exception("Part relative_path cannot be empty. It's bug.", ErrorCodes::LOGICAL_ERROR);
// return fs::path(storage.relative_data_path) / (parent_part ? parent_part->relative_path : "") / relative_path / "";
// }
void IMergeTreeDataPart::loadColumnsChecksumsIndexes(bool require_columns_checksums, bool check_consistency)
{
assertOnDisk();
/// Memory should not be limited during ATTACH TABLE query.
/// This is already true at the server startup but must be also ensured for manual table ATTACH.
/// Motivation: memory for index is shared between queries - not belong to the query itself.
MemoryTrackerBlockerInThread temporarily_disable_memory_tracker(VariableContext::Global);
try
{
loadUUID();
loadColumns(require_columns_checksums);
loadChecksums(require_columns_checksums);
loadIndexGranularity();
calculateColumnsAndSecondaryIndicesSizesOnDisk();
loadIndex(); /// Must be called after loadIndexGranularity as it uses the value of `index_granularity`
loadRowsCount(); /// Must be called after loadIndexGranularity() as it uses the value of `index_granularity`.
loadPartitionAndMinMaxIndex();
if (!parent_part)
{
loadTTLInfos();
loadProjections(require_columns_checksums, check_consistency);
}
if (check_consistency)
checkConsistency(require_columns_checksums);
loadDefaultCompressionCodec();
loadDeletedRowMask();
}
catch (...)
{
// There could be conditions that data part to be loaded is broken, but some of meta infos are already written
// into meta data before exception, need to clean them all.
metadata_manager->deleteAll(/*include_projection*/ true);
metadata_manager->assertAllDeleted(/*include_projection*/ true);
throw;
}
}
void IMergeTreeDataPart::appendFilesOfColumnsChecksumsIndexes(Strings & files, bool include_projection) const
{
if (isStoredOnDisk())
{
appendFilesOfUUID(files);
appendFilesOfColumns(files);
appendFilesOfChecksums(files);
appendFilesOfIndexGranularity(files);
appendFilesOfIndex(files);
appendFilesOfRowsCount(files);
appendFilesOfPartitionAndMinMaxIndex(files);
appendFilesOfTTLInfos(files);
appendFilesOfDefaultCompressionCodec(files);
}
if (!parent_part && include_projection)
{
for (const auto & [projection_name, projection_part] : projection_parts)
{
Strings projection_files;
projection_part->appendFilesOfColumnsChecksumsIndexes(projection_files, true);
for (const auto & projection_file : projection_files)
files.push_back(fs::path(projection_part->name + ".proj") / projection_file);
}
}
}
void IMergeTreeDataPart::loadProjections(bool require_columns_checksums, bool check_consistency)
{
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
for (const auto & projection : metadata_snapshot->projections)
{
String path = /*getRelativePath() + */ projection.name + ".proj";
if (data_part_storage->exists(path))
{
auto projection_part_storage = data_part_storage->getProjection(projection.name + ".proj");
auto part = storage.createPart(projection.name, {"all", 0, 0, 0}, projection_part_storage, this);
part->loadColumnsChecksumsIndexes(require_columns_checksums, check_consistency);
projection_parts.emplace(projection.name, std::move(part));
}
}
}
void IMergeTreeDataPart::loadIndexGranularity()
{
throw Exception("Method 'loadIndexGranularity' is not implemented for part with type " + getType().toString(), ErrorCodes::NOT_IMPLEMENTED);
}
/// Currently we don't cache mark files of part, because cache other meta files is enough to speed up loading.
void IMergeTreeDataPart::appendFilesOfIndexGranularity(Strings & /* files */) const
{
}
void IMergeTreeDataPart::loadIndex()
{
/// It can be empty in case of mutations
if (!index_granularity.isInitialized())
throw Exception("Index granularity is not loaded before index loading", ErrorCodes::LOGICAL_ERROR);
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.get(name).metadata;
const auto & primary_key = metadata_snapshot->getPrimaryKey();
size_t key_size = primary_key.column_names.size();
if (key_size)
{
MutableColumns loaded_index;
loaded_index.resize(key_size);
for (size_t i = 0; i < key_size; ++i)
{
loaded_index[i] = primary_key.data_types[i]->createColumn();
loaded_index[i]->reserve(index_granularity.getMarksCount());
}
String index_name = "primary.idx";
String index_path = fs::path(data_part_storage->getRelativePath()) / index_name;
auto index_file = metadata_manager->read(index_name);
size_t marks_count = index_granularity.getMarksCount();
Serializations key_serializations(key_size);
for (size_t j = 0; j < key_size; ++j)
key_serializations[j] = primary_key.data_types[j]->getDefaultSerialization();
for (size_t i = 0; i < marks_count; ++i) //-V756
for (size_t j = 0; j < key_size; ++j)
key_serializations[j]->deserializeBinary(*loaded_index[j], *index_file);
for (size_t i = 0; i < key_size; ++i)
{
loaded_index[i]->protect();
if (loaded_index[i]->size() != marks_count)
throw Exception("Cannot read all data from index file " + index_path
+ "(expected size: " + toString(marks_count) + ", read: " + toString(loaded_index[i]->size()) + ")",
ErrorCodes::CANNOT_READ_ALL_DATA);
}
if (!index_file->eof())
throw Exception("Index file " + index_path + " is unexpectedly long", ErrorCodes::EXPECTED_END_OF_FILE);
index.assign(std::make_move_iterator(loaded_index.begin()), std::make_move_iterator(loaded_index.end()));
}
}
void IMergeTreeDataPart::appendFilesOfIndex(Strings & files) const
{
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.has(name) ? metadata_snapshot->projections.get(name).metadata : nullptr;
if (!metadata_snapshot)
return;
if (metadata_snapshot->hasPrimaryKey())
files.push_back("primary.idx");
}
NameSet IMergeTreeDataPart::getFileNamesWithoutChecksums() const
{
if (!isStoredOnDisk())
return {};
NameSet result = {"checksums.txt", "columns.txt"};
if (data_part_storage->exists(DEFAULT_COMPRESSION_CODEC_FILE_NAME))
result.emplace(DEFAULT_COMPRESSION_CODEC_FILE_NAME);
if (data_part_storage->exists(TXN_VERSION_METADATA_FILE_NAME))
result.emplace(TXN_VERSION_METADATA_FILE_NAME);
return result;
}
void IMergeTreeDataPart::loadDefaultCompressionCodec()
{
/// In memory parts doesn't have any compression
if (!isStoredOnDisk())
{
default_codec = CompressionCodecFactory::instance().get("NONE", {});
return;
}
String path = fs::path(data_part_storage->getRelativePath()) / DEFAULT_COMPRESSION_CODEC_FILE_NAME;
bool exists = metadata_manager->exists(DEFAULT_COMPRESSION_CODEC_FILE_NAME);
if (!exists)
{
default_codec = detectDefaultCompressionCodec();
}
else
{
auto file_buf = metadata_manager->read(DEFAULT_COMPRESSION_CODEC_FILE_NAME);
String codec_line;
readEscapedStringUntilEOL(codec_line, *file_buf);
ReadBufferFromString buf(codec_line);
if (!checkString("CODEC", buf))
{
LOG_WARNING(
storage.log,
"Cannot parse default codec for part {} from file {}, content '{}'. Default compression codec will be deduced "
"automatically, from data on disk",
name,
path,
codec_line);
default_codec = detectDefaultCompressionCodec();
}
try
{
ParserCodec codec_parser;
auto codec_ast = parseQuery(codec_parser, codec_line.data() + buf.getPosition(), codec_line.data() + codec_line.length(), "codec parser", 0, DBMS_DEFAULT_MAX_PARSER_DEPTH);
default_codec = CompressionCodecFactory::instance().get(codec_ast, {});
}
catch (const DB::Exception & ex)
{
LOG_WARNING(storage.log, "Cannot parse default codec for part {} from file {}, content '{}', error '{}'. Default compression codec will be deduced automatically, from data on disk.", name, path, codec_line, ex.what());
default_codec = detectDefaultCompressionCodec();
}
}
}
void IMergeTreeDataPart::appendFilesOfDefaultCompressionCodec(Strings & files)
{
files.push_back(DEFAULT_COMPRESSION_CODEC_FILE_NAME);
}
CompressionCodecPtr IMergeTreeDataPart::detectDefaultCompressionCodec() const
{
/// In memory parts doesn't have any compression
if (!isStoredOnDisk())
return CompressionCodecFactory::instance().get("NONE", {});
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
const auto & storage_columns = metadata_snapshot->getColumns();
CompressionCodecPtr result = nullptr;
for (const auto & part_column : columns)
{
/// It was compressed with default codec and it's not empty
auto column_size = getColumnSize(part_column.name);
if (column_size.data_compressed != 0 && !storage_columns.hasCompressionCodec(part_column.name))
{
String path_to_data_file;
getSerialization(part_column)->enumerateStreams([&](const ISerialization::SubstreamPath & substream_path)
{
if (path_to_data_file.empty())
{
String candidate_path = /*fs::path(getRelativePath()) */ (ISerialization::getFileNameForStream(part_column, substream_path) + ".bin");
/// We can have existing, but empty .bin files. Example: LowCardinality(Nullable(...)) columns and column_name.dict.null.bin file.
if (data_part_storage->exists(candidate_path) && data_part_storage->getFileSize(candidate_path) != 0)
path_to_data_file = candidate_path;
}
});
if (path_to_data_file.empty())
{
LOG_WARNING(storage.log, "Part's {} column {} has non zero data compressed size, but all data files don't exist or empty", name, backQuoteIfNeed(part_column.name));
continue;
}
result = getCompressionCodecForFile(data_part_storage, path_to_data_file);
break;
}
}
if (!result)
result = CompressionCodecFactory::instance().getDefaultCodec();
return result;
}
void IMergeTreeDataPart::loadPartitionAndMinMaxIndex()
{
if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING && !parent_part)
{
DayNum min_date;
DayNum max_date;
MergeTreePartInfo::parseMinMaxDatesFromPartName(name, min_date, max_date);
const auto & date_lut = DateLUT::instance();
partition = MergeTreePartition(date_lut.toNumYYYYMM(min_date));
minmax_idx = std::make_shared<MinMaxIndex>(min_date, max_date);
}
else
{
//String path = getRelativePath();
if (!parent_part)
partition.load(storage, metadata_manager);
if (!isEmpty())
{
if (parent_part)
// projection parts don't have minmax_idx, and it's always initialized
minmax_idx->initialized = true;
else
minmax_idx->load(storage, metadata_manager);
}
if (parent_part)
return;
}
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
String calculated_partition_id = partition.getID(metadata_snapshot->getPartitionKey().sample_block);
if (calculated_partition_id != info.partition_id)
throw Exception(
"While loading part " + data_part_storage->getFullPath() + ": calculated partition ID: " + calculated_partition_id
+ " differs from partition ID in part name: " + info.partition_id,
ErrorCodes::CORRUPTED_DATA);
}
void IMergeTreeDataPart::appendFilesOfPartitionAndMinMaxIndex(Strings & files) const
{
if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING && !parent_part)
return;
if (!parent_part)
partition.appendFiles(storage, files);
if (!parent_part)
minmax_idx->appendFiles(storage, files);
}
void IMergeTreeDataPart::loadChecksums(bool require)
{
//const String path = fs::path(getRelativePath()) / "checksums.txt";
bool exists = metadata_manager->exists("checksums.txt");
if (exists)
{
auto buf = metadata_manager->read("checksums.txt");
if (checksums.read(*buf))
{
assertEOF(*buf);
bytes_on_disk = checksums.getTotalSizeOnDisk();
}
else
bytes_on_disk = data_part_storage->calculateTotalSizeOnDisk(); //calculateTotalSizeOnDisk(volume->getDisk(), getRelativePath());
}
else
{
if (require)
throw Exception(ErrorCodes::NO_FILE_IN_DATA_PART, "No checksums.txt in part {}", name);
/// If the checksums file is not present, calculate the checksums and write them to disk.
/// Check the data while we are at it.
LOG_WARNING(storage.log, "Checksums for part {} not found. Will calculate them from data on disk.", name);
checksums = checkDataPart(shared_from_this(), false);
data_part_storage->writeChecksums(checksums, {});
bytes_on_disk = checksums.getTotalSizeOnDisk();
}
}
void IMergeTreeDataPart::appendFilesOfChecksums(Strings & files)
{
files.push_back("checksums.txt");
}
void IMergeTreeDataPart::loadRowsCount()
{
//String path = fs::path(getRelativePath()) / "count.txt";
auto read_rows_count = [&]()
{
auto buf = metadata_manager->read("count.txt");
readIntText(rows_count, *buf);
assertEOF(*buf);
};
if (index_granularity.empty())
{
rows_count = 0;
}
else if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING || part_type == Type::Compact || parent_part)
{
bool exists = metadata_manager->exists("count.txt");
if (!exists)
throw Exception("No count.txt in part " + name, ErrorCodes::NO_FILE_IN_DATA_PART);
read_rows_count();
#ifndef NDEBUG
/// columns have to be loaded
for (const auto & column : getColumns())
{
/// Most trivial types
if (column.type->isValueRepresentedByNumber()
&& !column.type->haveSubtypes()
&& getSerialization(column)->getKind() == ISerialization::Kind::DEFAULT)
{
auto size = getColumnSize(column.name);
if (size.data_uncompressed == 0)
continue;
size_t rows_in_column = size.data_uncompressed / column.type->getSizeOfValueInMemory();
if (rows_in_column != rows_count)
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Column {} has rows count {} according to size in memory "
"and size of single value, but data part {} has {} rows", backQuote(column.name), rows_in_column, name, rows_count);
}
size_t last_possibly_incomplete_mark_rows = index_granularity.getLastNonFinalMarkRows();
/// All this rows have to be written in column
size_t index_granularity_without_last_mark = index_granularity.getTotalRows() - last_possibly_incomplete_mark_rows;
/// We have more rows in column than in index granularity without last possibly incomplete mark
if (rows_in_column < index_granularity_without_last_mark)
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Column {} has rows count {} according to size in memory "
"and size of single value, but index granularity in part {} without last mark has {} rows, which is more than in column",
backQuote(column.name), rows_in_column, name, index_granularity.getTotalRows());
}
/// In last mark we actually written less or equal rows than stored in last mark of index granularity
if (rows_in_column - index_granularity_without_last_mark > last_possibly_incomplete_mark_rows)
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Column {} has rows count {} in last mark according to size in memory "
"and size of single value, but index granularity in part {} in last mark has {} rows which is less than in column",
backQuote(column.name), rows_in_column - index_granularity_without_last_mark, name, last_possibly_incomplete_mark_rows);
}
}
}
#endif
}
else
{
if (data_part_storage->exists("count.txt"))
{
read_rows_count();
return;
}
for (const NameAndTypePair & column : columns)
{
ColumnPtr column_col = column.type->createColumn(*getSerialization(column));
if (!column_col->isFixedAndContiguous() || column_col->lowCardinality())
continue;
size_t column_size = getColumnSize(column.name).data_uncompressed;
if (!column_size)
continue;
size_t sizeof_field = column_col->sizeOfValueIfFixed();
rows_count = column_size / sizeof_field;
if (column_size % sizeof_field != 0)
{
throw Exception(
"Uncompressed size of column " + column.name + "(" + toString(column_size)
+ ") is not divisible by the size of value (" + toString(sizeof_field) + ")",
ErrorCodes::LOGICAL_ERROR);
}
size_t last_mark_index_granularity = index_granularity.getLastNonFinalMarkRows();
size_t rows_approx = index_granularity.getTotalRows();
if (!(rows_count <= rows_approx && rows_approx < rows_count + last_mark_index_granularity))
throw Exception(
"Unexpected size of column " + column.name + ": " + toString(rows_count) + " rows, expected "
+ toString(rows_approx) + "+-" + toString(last_mark_index_granularity) + " rows according to the index",
ErrorCodes::LOGICAL_ERROR);
return;
}
throw Exception("Data part doesn't contain fixed size column (even Date column)", ErrorCodes::LOGICAL_ERROR);
}
}
void IMergeTreeDataPart::appendFilesOfRowsCount(Strings & files)
{
files.push_back("count.txt");
}
void IMergeTreeDataPart::loadTTLInfos()
{
bool exists = metadata_manager->exists("ttl.txt");
if (exists)
{
auto in = metadata_manager->read("ttl.txt");
assertString("ttl format version: ", *in);
size_t format_version;
readText(format_version, *in);
assertChar('\n', *in);
if (format_version == 1)
{
try
{
ttl_infos.read(*in);
}
catch (const JSONException &)
{
throw Exception("Error while parsing file ttl.txt in part: " + name, ErrorCodes::BAD_TTL_FILE);
}
}
else
throw Exception("Unknown ttl format version: " + toString(format_version), ErrorCodes::BAD_TTL_FILE);
}
}
void IMergeTreeDataPart::appendFilesOfTTLInfos(Strings & files)
{
files.push_back("ttl.txt");
}
void IMergeTreeDataPart::loadUUID()
{
bool exists = metadata_manager->exists(UUID_FILE_NAME);
if (exists)
{
auto in = metadata_manager->read(UUID_FILE_NAME);
readText(uuid, *in);
if (uuid == UUIDHelpers::Nil)
throw Exception("Unexpected empty " + String(UUID_FILE_NAME) + " in part: " + name, ErrorCodes::LOGICAL_ERROR);
}
}
void IMergeTreeDataPart::appendFilesOfUUID(Strings & files)
{
files.push_back(UUID_FILE_NAME);
}
void IMergeTreeDataPart::loadColumns(bool require)
{
String path = fs::path(data_part_storage->getRelativePath()) / "columns.txt";
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.get(name).metadata;
NamesAndTypesList loaded_columns;
bool exists = metadata_manager->exists("columns.txt");
if (!exists)
{
/// We can get list of columns only from columns.txt in compact parts.
if (require || part_type == Type::Compact)
throw Exception("No columns.txt in part " + name + ", expected path " + path + " on drive " + data_part_storage->getDiskName(),
ErrorCodes::NO_FILE_IN_DATA_PART);
/// If there is no file with a list of columns, write it down.
for (const NameAndTypePair & column : metadata_snapshot->getColumns().getAllPhysical())
if (data_part_storage->exists(getFileNameForColumn(column) + ".bin"))
loaded_columns.push_back(column);
if (columns.empty())
throw Exception("No columns in part " + name, ErrorCodes::NO_FILE_IN_DATA_PART);
data_part_storage->writeColumns(loaded_columns, {});
}
else
{
auto in = metadata_manager->read("columns.txt");
loaded_columns.readText(*in);
for (const auto & column : loaded_columns)
{
const auto * aggregate_function_data_type = typeid_cast<const DataTypeAggregateFunction *>(column.type.get());
if (aggregate_function_data_type && aggregate_function_data_type->isVersioned())
aggregate_function_data_type->setVersion(0, /* if_empty */true);
}
}
SerializationInfo::Settings settings =
{
.ratio_of_defaults_for_sparse = storage.getSettings()->ratio_of_defaults_for_sparse_serialization,
.choose_kind = false,
};
SerializationInfoByName infos(loaded_columns, settings);
exists = metadata_manager->exists(SERIALIZATION_FILE_NAME);
if (exists)
{
auto in = metadata_manager->read(SERIALIZATION_FILE_NAME);
infos.readJSON(*in);
}
setColumns(loaded_columns);
setSerializationInfos(infos);
}
void IMergeTreeDataPart::loadDeletedRowMask()
{
if (part_type == Type::Compact)
return;
auto path = fs::path(getFullRelativePath()) / DELETED_ROW_MARK_FILE_NAME;
if (volume->getDisk()->exists(path))
{
has_lightweight_delete = true;
auto in = openForReading(volume->getDisk(), path);
readString(deleted_rows_mask, *in);
}
}
void IMergeTreeDataPart::writeLightWeightDeletedMask(String bitmap) const
{
if (bitmap.empty())
return;
auto disk = volume->getDisk();
String file_name = fs::path(getFullRelativePath()) / DELETED_ROW_MARK_FILE_NAME;
/// write Non-Empty merged bitmap
auto out = disk->writeFile(file_name);
DB::writeText(bitmap, *out);
}
void IMergeTreeDataPart::assertHasVersionMetadata(MergeTreeTransaction * txn) const
{
TransactionID expected_tid = txn ? txn->tid : Tx::PrehistoricTID;
if (version.creation_tid != expected_tid)
throw Exception(ErrorCodes::LOGICAL_ERROR,
"CreationTID of part {} (table {}) is set to unexpected value {}, it's a bug. Current transaction: {}",
name, storage.getStorageID().getNameForLogs(), version.creation_tid, txn ? txn->dumpDescription() : "<none>");
assert(!txn || storage.supportsTransactions());
assert(!txn || data_part_storage->exists(TXN_VERSION_METADATA_FILE_NAME));
}
void IMergeTreeDataPart::storeVersionMetadata() const
{
if (!wasInvolvedInTransaction())
return;
LOG_TEST(storage.log, "Writing version for {} (creation: {}, removal {})", name, version.creation_tid, version.removal_tid);
assert(storage.supportsTransactions());
if (!isStoredOnDisk())
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Transactions are not supported for in-memory parts (table: {}, part: {})",
storage.getStorageID().getNameForLogs(), name);
data_part_storage->writeVersionMetadata(version, storage.getSettings()->fsync_part_directory);
}
void IMergeTreeDataPart::appendCSNToVersionMetadata(VersionMetadata::WhichCSN which_csn) const
{
chassert(!version.creation_tid.isEmpty());
chassert(!(which_csn == VersionMetadata::WhichCSN::CREATION && version.creation_tid.isPrehistoric()));
chassert(!(which_csn == VersionMetadata::WhichCSN::CREATION && version.creation_csn == 0));
chassert(!(which_csn == VersionMetadata::WhichCSN::REMOVAL && (version.removal_tid.isPrehistoric() || version.removal_tid.isEmpty())));
chassert(!(which_csn == VersionMetadata::WhichCSN::REMOVAL && version.removal_csn == 0));
chassert(isStoredOnDisk());
data_part_storage->appendCSNToVersionMetadata(version, which_csn);
}
void IMergeTreeDataPart::appendRemovalTIDToVersionMetadata(bool clear) const
{
chassert(!version.creation_tid.isEmpty());
chassert(version.removal_csn == 0);
chassert(!version.removal_tid.isEmpty());
chassert(isStoredOnDisk());
if (version.creation_tid.isPrehistoric() && !clear)
{
/// Metadata file probably does not exist, because it was not written on part creation, because it was created without a transaction.
/// Let's create it (if needed). Concurrent writes are not possible, because creation_csn is prehistoric and we own removal_tid_lock.
storeVersionMetadata();
return;
}
if (clear)
LOG_TEST(storage.log, "Clearing removal TID for {} (creation: {}, removal {})", name, version.creation_tid, version.removal_tid);
else
LOG_TEST(storage.log, "Appending removal TID for {} (creation: {}, removal {})", name, version.creation_tid, version.removal_tid);
data_part_storage->appendRemovalTIDToVersionMetadata(version, clear);
}
void IMergeTreeDataPart::loadVersionMetadata() const
try
{
data_part_storage->loadVersionMetadata(version, storage.log);
}
catch (Exception & e)
{
e.addMessage("While loading version metadata from table {} part {}", storage.getStorageID().getNameForLogs(), name);
throw;
}
bool IMergeTreeDataPart::wasInvolvedInTransaction() const
{
assert(!version.creation_tid.isEmpty() || (state == State::Temporary /* && std::uncaught_exceptions() */));
bool created_by_transaction = !version.creation_tid.isPrehistoric();
bool removed_by_transaction = version.isRemovalTIDLocked() && version.removal_tid_lock != Tx::PrehistoricTID.getHash();
return created_by_transaction || removed_by_transaction;
}
bool IMergeTreeDataPart::assertHasValidVersionMetadata() const
{
/// We don't have many tests with server restarts and it's really inconvenient to write such tests.
/// So we use debug assertions to ensure that part version is written correctly.
/// This method is not supposed to be called in release builds.
if (isProjectionPart())
return true;
if (!wasInvolvedInTransaction())
return true;
if (!isStoredOnDisk())
return false;
if (part_is_probably_removed_from_disk)
return true;
if (state == State::Temporary)
return true;
if (!data_part_storage->exists())
return true;
String content;
String version_file_name = TXN_VERSION_METADATA_FILE_NAME;
try
{
size_t file_size = data_part_storage->getFileSize(TXN_VERSION_METADATA_FILE_NAME);
auto buf = data_part_storage->readFile(TXN_VERSION_METADATA_FILE_NAME, ReadSettings().adjustBufferSize(file_size), file_size, std::nullopt);
readStringUntilEOF(content, *buf);
ReadBufferFromString str_buf{content};
VersionMetadata file;
file.read(str_buf);
bool valid_creation_tid = version.creation_tid == file.creation_tid;
bool valid_removal_tid = version.removal_tid == file.removal_tid || version.removal_tid == Tx::PrehistoricTID;
bool valid_creation_csn = version.creation_csn == file.creation_csn || version.creation_csn == Tx::RolledBackCSN;
bool valid_removal_csn = version.removal_csn == file.removal_csn || version.removal_csn == Tx::PrehistoricCSN;
bool valid_removal_tid_lock = (version.removal_tid.isEmpty() && version.removal_tid_lock == 0)
|| (version.removal_tid_lock == version.removal_tid.getHash());
if (!valid_creation_tid || !valid_removal_tid || !valid_creation_csn || !valid_removal_csn || !valid_removal_tid_lock)
throw Exception(ErrorCodes::CORRUPTED_DATA, "Invalid version metadata file");
return true;
}
catch (...)
{
WriteBufferFromOwnString expected;
version.write(expected);
tryLogCurrentException(storage.log, fmt::format("File {} contains:\n{}\nexpected:\n{}\nlock: {}",
version_file_name, content, expected.str(), version.removal_tid_lock));
return false;
}
}
void IMergeTreeDataPart::appendFilesOfColumns(Strings & files)
{
files.push_back("columns.txt");
files.push_back(SERIALIZATION_FILE_NAME);
}
bool IMergeTreeDataPart::shallParticipateInMerges(const StoragePolicyPtr & storage_policy) const
{
return data_part_storage->shallParticipateInMerges(*storage_policy);
}
void IMergeTreeDataPart::renameTo(const String & new_relative_path, bool remove_new_dir_if_exists, DataPartStorageBuilderPtr builder) const
try
{
assertOnDisk();
std::string relative_path = storage.relative_data_path;
bool fsync_dir = storage.getSettings()->fsync_part_directory;
if (parent_part)
{
/// For projections, move is only possible inside parent part dir.
relative_path = parent_part->data_part_storage->getRelativePath();
}
String from = data_part_storage->getRelativePath();
auto to = fs::path(relative_path) / new_relative_path;
metadata_manager->deleteAll(true);
metadata_manager->assertAllDeleted(true);
builder->rename(to.parent_path(), to.filename(), storage.log, remove_new_dir_if_exists, fsync_dir);
data_part_storage->onRename(to.parent_path(), to.filename());
metadata_manager->updateAll(true);
for (const auto & [p_name, part] : projection_parts)
{
part->data_part_storage = data_part_storage->getProjection(p_name + ".proj");
}
}
catch (...)
{
if (startsWith(new_relative_path, "detached/"))
{
// Don't throw when the destination is to the detached folder. It might be able to
// recover in some cases, such as fetching parts into multi-disks while some of the
// disks are broken.
tryLogCurrentException(__PRETTY_FUNCTION__);
}
else
throw;
}
std::pair<bool, NameSet> IMergeTreeDataPart::canRemovePart() const
{
/// NOTE: It's needed for zero-copy replication
if (force_keep_shared_data)
return std::make_pair(false, NameSet{});
return storage.unlockSharedData(*this);
}
void IMergeTreeDataPart::initializePartMetadataManager()
{
#if USE_ROCKSDB
if (use_metadata_cache)
metadata_manager = std::make_shared<PartMetadataManagerWithCache>(this, storage.getContext()->getMergeTreeMetadataCache());
else
metadata_manager = std::make_shared<PartMetadataManagerOrdinary>(this);
#else
metadata_manager = std::make_shared<PartMetadataManagerOrdinary>(this);
#endif
}
void IMergeTreeDataPart::remove() const
{
assert(assertHasValidVersionMetadata());
part_is_probably_removed_from_disk = true;
auto [can_remove, files_not_to_remove] = canRemovePart();
if (!isStoredOnDisk())
return;
if (isProjectionPart())
LOG_WARNING(storage.log, "Projection part {} should be removed by its parent {}.", name, parent_part->name);
metadata_manager->deleteAll(false);
metadata_manager->assertAllDeleted(false);
std::list<IDataPartStorage::ProjectionChecksums> projection_checksums;
for (const auto & [p_name, projection_part] : projection_parts)
{
projection_part->metadata_manager->deleteAll(false);
projection_part->metadata_manager->assertAllDeleted(false);
projection_checksums.emplace_back(IDataPartStorage::ProjectionChecksums{.name = p_name, .checksums = projection_part->checksums});
}
data_part_storage->remove(can_remove, files_not_to_remove, checksums, projection_checksums, storage.log);
}
String IMergeTreeDataPart::getRelativePathForPrefix(const String & prefix, bool detached) const
{
String res;
/** If you need to detach a part, and directory into which we want to rename it already exists,
* we will rename to the directory with the name to which the suffix is added in the form of "_tryN".
* This is done only in the case of `to_detached`, because it is assumed that in this case the exact name does not matter.
* No more than 10 attempts are made so that there are not too many junk directories left.
*/
if (detached && parent_part)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot detach projection");
return data_part_storage->getRelativePathForPrefix(storage.log, prefix, detached);
}
String IMergeTreeDataPart::getRelativePathForDetachedPart(const String & prefix) const
{
/// Do not allow underscores in the prefix because they are used as separators.
assert(prefix.find_first_of('_') == String::npos);
assert(prefix.empty() || std::find(DetachedPartInfo::DETACH_REASONS.begin(),
DetachedPartInfo::DETACH_REASONS.end(),
prefix) != DetachedPartInfo::DETACH_REASONS.end());
return "detached/" + getRelativePathForPrefix(prefix, /* detached */ true);
}
void IMergeTreeDataPart::renameToDetached(const String & prefix, DataPartStorageBuilderPtr builder) const
{
renameTo(getRelativePathForDetachedPart(prefix), true, builder);
part_is_probably_removed_from_disk = true;
}
void IMergeTreeDataPart::makeCloneInDetached(const String & prefix, const StorageMetadataPtr & /*metadata_snapshot*/) const
{
data_part_storage->freeze(
storage.relative_data_path,
getRelativePathForDetachedPart(prefix),
/*make_source_readonly*/ true,
{},
/*copy_instead_of_hardlink*/ false);
}
DataPartStoragePtr IMergeTreeDataPart::makeCloneOnDisk(const DiskPtr & disk, const String & directory_name) const
{
assertOnDisk();
if (disk->getName() == data_part_storage->getDiskName())
throw Exception("Can not clone data part " + name + " to same disk " + data_part_storage->getDiskName(), ErrorCodes::LOGICAL_ERROR);
if (directory_name.empty())
throw Exception("Can not clone data part " + name + " to empty directory.", ErrorCodes::LOGICAL_ERROR);
String path_to_clone = fs::path(storage.relative_data_path) / directory_name / "";
return data_part_storage->clone(path_to_clone, data_part_storage->getPartDirectory(), disk, storage.log);
}
void IMergeTreeDataPart::checkConsistencyBase() const
{
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.get(name).metadata;
else
{
// No need to check projections here because we already did consistent checking when loading projections if necessary.
}
const auto & pk = metadata_snapshot->getPrimaryKey();
const auto & partition_key = metadata_snapshot->getPartitionKey();
if (!checksums.empty())
{
if (!pk.column_names.empty() && !checksums.files.contains("primary.idx"))
throw Exception("No checksum for primary.idx", ErrorCodes::NO_FILE_IN_DATA_PART);
if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING)
{
if (!checksums.files.contains("count.txt"))
throw Exception("No checksum for count.txt", ErrorCodes::NO_FILE_IN_DATA_PART);
if (metadata_snapshot->hasPartitionKey() && !checksums.files.contains("partition.dat"))
throw Exception("No checksum for partition.dat", ErrorCodes::NO_FILE_IN_DATA_PART);
if (!isEmpty() && !parent_part)
{
for (const String & col_name : storage.getMinMaxColumnsNames(partition_key))
{
if (!checksums.files.contains("minmax_" + escapeForFileName(col_name) + ".idx"))
throw Exception("No minmax idx file checksum for column " + col_name, ErrorCodes::NO_FILE_IN_DATA_PART);
}
}
}
data_part_storage->checkConsistency(checksums);
}
else
{
auto check_file_not_empty = [this](const String & file_path)
{
UInt64 file_size;
if (!data_part_storage->exists(file_path) || (file_size = data_part_storage->getFileSize(file_path)) == 0)
throw Exception(
ErrorCodes::BAD_SIZE_OF_FILE_IN_DATA_PART,
"Part {} is broken: {} is empty",
data_part_storage->getFullPath(),
std::string(fs::path(data_part_storage->getFullPath()) / file_path));
return file_size;
};
/// Check that the primary key index is not empty.
if (!pk.column_names.empty())
check_file_not_empty("primary.idx");
if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING)
{
check_file_not_empty("count.txt");
if (metadata_snapshot->hasPartitionKey())
check_file_not_empty("partition.dat");
if (!parent_part)
{
for (const String & col_name : storage.getMinMaxColumnsNames(partition_key))
check_file_not_empty("minmax_" + escapeForFileName(col_name) + ".idx");
}
}
}
}
void IMergeTreeDataPart::checkConsistency(bool /* require_part_metadata */) const
{
throw Exception("Method 'checkConsistency' is not implemented for part with type " + getType().toString(), ErrorCodes::NOT_IMPLEMENTED);
}
void IMergeTreeDataPart::calculateColumnsAndSecondaryIndicesSizesOnDisk()
{
calculateColumnsSizesOnDisk();
calculateSecondaryIndicesSizesOnDisk();
}
void IMergeTreeDataPart::calculateColumnsSizesOnDisk()
{
if (getColumns().empty() || checksums.empty())
throw Exception("Cannot calculate columns sizes when columns or checksums are not initialized", ErrorCodes::LOGICAL_ERROR);
calculateEachColumnSizes(columns_sizes, total_columns_size);
}
void IMergeTreeDataPart::calculateSecondaryIndicesSizesOnDisk()
{
if (checksums.empty())
throw Exception("Cannot calculate secondary indexes sizes when columns or checksums are not initialized", ErrorCodes::LOGICAL_ERROR);
auto secondary_indices_descriptions = storage.getInMemoryMetadataPtr()->secondary_indices;
for (auto & index_description : secondary_indices_descriptions)
{
ColumnSize index_size;
auto index_ptr = MergeTreeIndexFactory::instance().get(index_description);
auto index_name = index_ptr->getFileName();
auto index_name_escaped = escapeForFileName(index_name);
auto index_file_name = index_name_escaped + index_ptr->getSerializedFileExtension();
auto index_marks_file_name = index_name_escaped + index_granularity_info.marks_file_extension;
/// If part does not contain index
auto bin_checksum = checksums.files.find(index_file_name);
if (bin_checksum != checksums.files.end())
{
index_size.data_compressed = bin_checksum->second.file_size;
index_size.data_uncompressed = bin_checksum->second.uncompressed_size;
}
auto mrk_checksum = checksums.files.find(index_marks_file_name);
if (mrk_checksum != checksums.files.end())
index_size.marks = mrk_checksum->second.file_size;
total_secondary_indices_size.add(index_size);
secondary_index_sizes[index_description.name] = index_size;
}
}
ColumnSize IMergeTreeDataPart::getColumnSize(const String & column_name) const
{
/// For some types of parts columns_size maybe not calculated
auto it = columns_sizes.find(column_name);
if (it != columns_sizes.end())
return it->second;
return ColumnSize{};
}
IndexSize IMergeTreeDataPart::getSecondaryIndexSize(const String & secondary_index_name) const
{
auto it = secondary_index_sizes.find(secondary_index_name);
if (it != secondary_index_sizes.end())
return it->second;
return ColumnSize{};
}
void IMergeTreeDataPart::accumulateColumnSizes(ColumnToSize & column_to_size) const
{
for (const auto & [column_name, size] : columns_sizes)
column_to_size[column_name] = size.data_compressed;
}
bool IMergeTreeDataPart::checkAllTTLCalculated(const StorageMetadataPtr & metadata_snapshot) const
{
if (!metadata_snapshot->hasAnyTTL())
return false;
if (metadata_snapshot->hasRowsTTL())
{
if (isEmpty()) /// All rows were finally deleted and we don't store TTL
return true;
else if (ttl_infos.table_ttl.min == 0)
return false;
}
for (const auto & [column, desc] : metadata_snapshot->getColumnTTLs())
{
/// Part has this column, but we don't calculated TTL for it
if (!ttl_infos.columns_ttl.contains(column) && getColumns().contains(column))
return false;
}
for (const auto & move_desc : metadata_snapshot->getMoveTTLs())
{
/// Move TTL is not calculated
if (!ttl_infos.moves_ttl.contains(move_desc.result_column))
return false;
}
for (const auto & group_by_desc : metadata_snapshot->getGroupByTTLs())
{
if (!ttl_infos.group_by_ttl.contains(group_by_desc.result_column))
return false;
}
for (const auto & rows_where_desc : metadata_snapshot->getRowsWhereTTLs())
{
if (!ttl_infos.rows_where_ttl.contains(rows_where_desc.result_column))
return false;
}
return true;
}
String IMergeTreeDataPart::getUniqueId() const
{
return data_part_storage->getUniqueId();
}
String IMergeTreeDataPart::getZeroLevelPartBlockID(std::string_view token) const
{
if (info.level != 0)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Trying to get block id for non zero level part {}", name);
SipHash hash;
if (token.empty())
{
checksums.computeTotalChecksumDataOnly(hash);
}
else
{
hash.update(token.data(), token.size());
}
union
{
char bytes[16];
UInt64 words[2];
} hash_value;
hash.get128(hash_value.bytes);
return info.partition_id + "_" + toString(hash_value.words[0]) + "_" + toString(hash_value.words[1]);
}
IMergeTreeDataPart::uint128 IMergeTreeDataPart::getActualChecksumByFile(const String & file_name) const
{
assert(use_metadata_cache);
const auto filenames_without_checksums = getFileNamesWithoutChecksums();
auto it = checksums.files.find(file_name);
if (!filenames_without_checksums.contains(file_name) && it != checksums.files.end())
{
return it->second.file_hash;
}
if (!data_part_storage->exists(file_name))
{
return {};
}
std::unique_ptr<ReadBufferFromFileBase> in_file = data_part_storage->readFile(file_name, {}, std::nullopt, std::nullopt);
HashingReadBuffer in_hash(*in_file);
String value;
readStringUntilEOF(value, in_hash);
return in_hash.getHash();
}
std::unordered_map<String, IMergeTreeDataPart::uint128> IMergeTreeDataPart::checkMetadata() const
{
return metadata_manager->check();
}
bool isCompactPart(const MergeTreeDataPartPtr & data_part)
{
return (data_part && data_part->getType() == MergeTreeDataPartType::Compact);
}
bool isWidePart(const MergeTreeDataPartPtr & data_part)
{
return (data_part && data_part->getType() == MergeTreeDataPartType::Wide);
}
bool isInMemoryPart(const MergeTreeDataPartPtr & data_part)
{
return (data_part && data_part->getType() == MergeTreeDataPartType::InMemory);
}
}