ClickHouse/src/Storages/StorageBuffer.cpp
Alexander Tokmakov 70d1adfe4b
Better formatting for exception messages (#45449)
* save format string for NetException

* format exceptions

* format exceptions 2

* format exceptions 3

* format exceptions 4

* format exceptions 5

* format exceptions 6

* fix

* format exceptions 7

* format exceptions 8

* Update MergeTreeIndexGin.cpp

* Update AggregateFunctionMap.cpp

* Update AggregateFunctionMap.cpp

* fix
2023-01-24 00:13:58 +03:00

1157 lines
44 KiB
C++

#include <boost/range/algorithm_ext/erase.hpp>
#include <Interpreters/InterpreterSelectQuery.h>
#include <Interpreters/InterpreterInsertQuery.h>
#include <Interpreters/InterpreterAlterQuery.h>
#include <Interpreters/castColumn.h>
#include <Interpreters/evaluateConstantExpression.h>
#include <Interpreters/addMissingDefaults.h>
#include <Interpreters/getColumnFromBlock.h>
#include <Storages/StorageBuffer.h>
#include <Storages/StorageFactory.h>
#include <Storages/AlterCommands.h>
#include <Storages/checkAndGetLiteralArgument.h>
#include <Parsers/ASTInsertQuery.h>
#include <Parsers/ASTIdentifier.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTExpressionList.h>
#include <Common/CurrentMetrics.h>
#include <Common/MemoryTrackerBlockerInThread.h>
#include <Common/FieldVisitorConvertToNumber.h>
#include <Common/quoteString.h>
#include <Common/typeid_cast.h>
#include <Common/ProfileEvents.h>
#include <Common/logger_useful.h>
#include <base/getThreadId.h>
#include <base/range.h>
#include <Processors/QueryPlan/ExpressionStep.h>
#include <Processors/Transforms/FilterTransform.h>
#include <Processors/Transforms/ExpressionTransform.h>
#include <Processors/Transforms/ReverseTransform.h>
#include <Processors/Transforms/PartialSortingTransform.h>
#include <Processors/Sinks/SinkToStorage.h>
#include <Processors/ISource.h>
#include <Processors/QueryPlan/QueryPlan.h>
#include <Processors/QueryPlan/ReadFromPreparedSource.h>
#include <Processors/QueryPlan/UnionStep.h>
#include <Processors/QueryPlan/Optimizations/QueryPlanOptimizationSettings.h>
#include <Processors/QueryPlan/BuildQueryPipelineSettings.h>
#include <Processors/Executors/PushingPipelineExecutor.h>
namespace ProfileEvents
{
extern const Event StorageBufferFlush;
extern const Event StorageBufferErrorOnFlush;
extern const Event StorageBufferPassedAllMinThresholds;
extern const Event StorageBufferPassedTimeMaxThreshold;
extern const Event StorageBufferPassedRowsMaxThreshold;
extern const Event StorageBufferPassedBytesMaxThreshold;
extern const Event StorageBufferPassedTimeFlushThreshold;
extern const Event StorageBufferPassedRowsFlushThreshold;
extern const Event StorageBufferPassedBytesFlushThreshold;
extern const Event StorageBufferLayerLockReadersWaitMilliseconds;
extern const Event StorageBufferLayerLockWritersWaitMilliseconds;
}
namespace CurrentMetrics
{
extern const Metric StorageBufferRows;
extern const Metric StorageBufferBytes;
}
namespace DB
{
namespace ErrorCodes
{
extern const int BAD_ARGUMENTS;
extern const int NOT_IMPLEMENTED;
extern const int LOGICAL_ERROR;
extern const int INFINITE_LOOP;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ALTER_OF_COLUMN_IS_FORBIDDEN;
}
std::unique_lock<std::mutex> StorageBuffer::Buffer::lockForReading() const
{
return lockImpl(/* read= */true);
}
std::unique_lock<std::mutex> StorageBuffer::Buffer::lockForWriting() const
{
return lockImpl(/* read= */false);
}
std::unique_lock<std::mutex> StorageBuffer::Buffer::tryLock() const
{
std::unique_lock lock(mutex, std::try_to_lock);
return lock;
}
std::unique_lock<std::mutex> StorageBuffer::Buffer::lockImpl(bool read) const
{
std::unique_lock lock(mutex, std::defer_lock);
Stopwatch watch(CLOCK_MONOTONIC_COARSE);
lock.lock();
UInt64 elapsed = watch.elapsedMilliseconds();
if (read)
ProfileEvents::increment(ProfileEvents::StorageBufferLayerLockReadersWaitMilliseconds, elapsed);
else
ProfileEvents::increment(ProfileEvents::StorageBufferLayerLockWritersWaitMilliseconds, elapsed);
return lock;
}
StoragePtr StorageBuffer::getDestinationTable() const
{
if (!destination_id)
return {};
auto destination = DatabaseCatalog::instance().tryGetTable(destination_id, getContext());
if (destination.get() == this)
throw Exception(ErrorCodes::INFINITE_LOOP, "Destination table is myself. Will lead to infinite loop.");
return destination;
}
StorageBuffer::StorageBuffer(
const StorageID & table_id_,
const ColumnsDescription & columns_,
const ConstraintsDescription & constraints_,
const String & comment,
ContextPtr context_,
size_t num_shards_,
const Thresholds & min_thresholds_,
const Thresholds & max_thresholds_,
const Thresholds & flush_thresholds_,
const StorageID & destination_id_,
bool allow_materialized_)
: IStorage(table_id_)
, WithContext(context_->getBufferContext())
, num_shards(num_shards_)
, buffers(num_shards_)
, min_thresholds(min_thresholds_)
, max_thresholds(max_thresholds_)
, flush_thresholds(flush_thresholds_)
, destination_id(destination_id_)
, allow_materialized(allow_materialized_)
, log(&Poco::Logger::get("StorageBuffer (" + table_id_.getFullTableName() + ")"))
, bg_pool(getContext()->getBufferFlushSchedulePool())
{
StorageInMemoryMetadata storage_metadata;
if (columns_.empty())
{
auto dest_table = DatabaseCatalog::instance().getTable(destination_id, context_);
storage_metadata.setColumns(dest_table->getInMemoryMetadataPtr()->getColumns());
}
else
storage_metadata.setColumns(columns_);
storage_metadata.setConstraints(constraints_);
storage_metadata.setComment(comment);
setInMemoryMetadata(storage_metadata);
flush_handle = bg_pool.createTask(log->name() + "/Bg", [this]{ backgroundFlush(); });
}
/// Reads from one buffer (from one block) under its mutex.
class BufferSource : public ISource
{
public:
BufferSource(const Names & column_names_, StorageBuffer::Buffer & buffer_, const StorageSnapshotPtr & storage_snapshot)
: ISource(storage_snapshot->getSampleBlockForColumns(column_names_))
, column_names_and_types(storage_snapshot->getColumnsByNames(
GetColumnsOptions(GetColumnsOptions::All).withSubcolumns(), column_names_))
, buffer(buffer_) {}
String getName() const override { return "Buffer"; }
protected:
Chunk generate() override
{
Chunk res;
if (has_been_read)
return res;
has_been_read = true;
std::unique_lock lock(buffer.lockForReading());
if (!buffer.data.rows())
return res;
Columns columns;
columns.reserve(column_names_and_types.size());
for (const auto & elem : column_names_and_types)
columns.emplace_back(getColumnFromBlock(buffer.data, elem));
UInt64 size = columns.at(0)->size();
res.setColumns(std::move(columns), size);
return res;
}
private:
NamesAndTypesList column_names_and_types;
StorageBuffer::Buffer & buffer;
bool has_been_read = false;
};
QueryProcessingStage::Enum StorageBuffer::getQueryProcessingStage(
ContextPtr local_context,
QueryProcessingStage::Enum to_stage,
const StorageSnapshotPtr &,
SelectQueryInfo & query_info) const
{
if (auto destination = getDestinationTable())
{
/// TODO: Find a way to support projections for StorageBuffer
query_info.ignore_projections = true;
const auto & destination_metadata = destination->getInMemoryMetadataPtr();
return destination->getQueryProcessingStage(local_context, to_stage, destination->getStorageSnapshot(destination_metadata, local_context), query_info);
}
return QueryProcessingStage::FetchColumns;
}
void StorageBuffer::read(
QueryPlan & query_plan,
const Names & column_names,
const StorageSnapshotPtr & storage_snapshot,
SelectQueryInfo & query_info,
ContextPtr local_context,
QueryProcessingStage::Enum processed_stage,
size_t max_block_size,
size_t num_streams)
{
const auto & metadata_snapshot = storage_snapshot->metadata;
if (auto destination = getDestinationTable())
{
auto destination_lock = destination->lockForShare(local_context->getCurrentQueryId(), local_context->getSettingsRef().lock_acquire_timeout);
auto destination_metadata_snapshot = destination->getInMemoryMetadataPtr();
auto destination_snapshot = destination->getStorageSnapshot(destination_metadata_snapshot, local_context);
const bool dst_has_same_structure = std::all_of(column_names.begin(), column_names.end(), [metadata_snapshot, destination_metadata_snapshot](const String& column_name)
{
const auto & dest_columns = destination_metadata_snapshot->getColumns();
const auto & our_columns = metadata_snapshot->getColumns();
auto dest_columm = dest_columns.tryGetColumnOrSubcolumn(GetColumnsOptions::AllPhysical, column_name);
return dest_columm && dest_columm->type->equals(*our_columns.getColumnOrSubcolumn(GetColumnsOptions::AllPhysical, column_name).type);
});
if (dst_has_same_structure)
{
if (query_info.order_optimizer)
query_info.input_order_info = query_info.order_optimizer->getInputOrder(destination_metadata_snapshot, local_context);
/// The destination table has the same structure of the requested columns and we can simply read blocks from there.
destination->read(
query_plan, column_names, destination_snapshot, query_info,
local_context, processed_stage, max_block_size, num_streams);
}
else
{
/// There is a struct mismatch and we need to convert read blocks from the destination table.
const Block header = metadata_snapshot->getSampleBlock();
Names columns_intersection = column_names;
Block header_after_adding_defaults = header;
const auto & dest_columns = destination_metadata_snapshot->getColumns();
const auto & our_columns = metadata_snapshot->getColumns();
for (const String & column_name : column_names)
{
if (!dest_columns.hasPhysical(column_name))
{
LOG_WARNING(log, "Destination table {} doesn't have column {}. The default values are used.", destination_id.getNameForLogs(), backQuoteIfNeed(column_name));
boost::range::remove_erase(columns_intersection, column_name);
continue;
}
const auto & dst_col = dest_columns.getPhysical(column_name);
const auto & col = our_columns.getPhysical(column_name);
if (!dst_col.type->equals(*col.type))
{
LOG_WARNING(log, "Destination table {} has different type of column {} ({} != {}). Data from destination table are converted.", destination_id.getNameForLogs(), backQuoteIfNeed(column_name), dst_col.type->getName(), col.type->getName());
header_after_adding_defaults.getByName(column_name) = ColumnWithTypeAndName(dst_col.type, column_name);
}
}
if (columns_intersection.empty())
{
LOG_WARNING(log, "Destination table {} has no common columns with block in buffer. Block of data is skipped.", destination_id.getNameForLogs());
}
else
{
destination->read(
query_plan, columns_intersection, destination_snapshot, query_info,
local_context, processed_stage, max_block_size, num_streams);
if (query_plan.isInitialized())
{
auto actions = addMissingDefaults(
query_plan.getCurrentDataStream().header,
header_after_adding_defaults.getNamesAndTypesList(),
metadata_snapshot->getColumns(),
local_context);
auto adding_missed = std::make_unique<ExpressionStep>(
query_plan.getCurrentDataStream(),
std::move(actions));
adding_missed->setStepDescription("Add columns missing in destination table");
query_plan.addStep(std::move(adding_missed));
auto actions_dag = ActionsDAG::makeConvertingActions(
query_plan.getCurrentDataStream().header.getColumnsWithTypeAndName(),
header.getColumnsWithTypeAndName(),
ActionsDAG::MatchColumnsMode::Name);
auto converting = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), actions_dag);
converting->setStepDescription("Convert destination table columns to Buffer table structure");
query_plan.addStep(std::move(converting));
}
}
}
if (query_plan.isInitialized())
{
query_plan.addStorageHolder(destination);
query_plan.addTableLock(std::move(destination_lock));
}
}
Pipe pipe_from_buffers;
{
Pipes pipes_from_buffers;
pipes_from_buffers.reserve(num_shards);
for (auto & buf : buffers)
pipes_from_buffers.emplace_back(std::make_shared<BufferSource>(column_names, buf, storage_snapshot));
pipe_from_buffers = Pipe::unitePipes(std::move(pipes_from_buffers));
if (query_info.getInputOrderInfo())
{
/// Each buffer has one block, and it not guaranteed that rows in each block are sorted by order keys
pipe_from_buffers.addSimpleTransform([&](const Block & header)
{
return std::make_shared<PartialSortingTransform>(header, query_info.getInputOrderInfo()->sort_description_for_merging, 0);
});
}
}
if (pipe_from_buffers.empty())
return;
QueryPlan buffers_plan;
/** If the sources from the table were processed before some non-initial stage of query execution,
* then sources from the buffers must also be wrapped in the processing pipeline before the same stage.
*/
if (processed_stage > QueryProcessingStage::FetchColumns)
{
/// TODO: Find a way to support projections for StorageBuffer
auto interpreter = InterpreterSelectQuery(
query_info.query, local_context, std::move(pipe_from_buffers),
SelectQueryOptions(processed_stage).ignoreProjections());
interpreter.addStorageLimits(*query_info.storage_limits);
interpreter.buildQueryPlan(buffers_plan);
}
else
{
if (query_info.prewhere_info)
{
auto actions_settings = ExpressionActionsSettings::fromContext(local_context);
if (query_info.prewhere_info->row_level_filter)
{
pipe_from_buffers.addSimpleTransform([&](const Block & header)
{
return std::make_shared<FilterTransform>(
header,
std::make_shared<ExpressionActions>(query_info.prewhere_info->row_level_filter, actions_settings),
query_info.prewhere_info->row_level_column_name,
false);
});
}
pipe_from_buffers.addSimpleTransform([&](const Block & header)
{
return std::make_shared<FilterTransform>(
header,
std::make_shared<ExpressionActions>(query_info.prewhere_info->prewhere_actions, actions_settings),
query_info.prewhere_info->prewhere_column_name,
query_info.prewhere_info->remove_prewhere_column);
});
}
for (const auto & processor : pipe_from_buffers.getProcessors())
processor->setStorageLimits(query_info.storage_limits);
auto read_from_buffers = std::make_unique<ReadFromPreparedSource>(std::move(pipe_from_buffers));
read_from_buffers->setStepDescription("Read from buffers of Buffer table");
buffers_plan.addStep(std::move(read_from_buffers));
}
if (!query_plan.isInitialized())
{
query_plan = std::move(buffers_plan);
return;
}
auto result_header = buffers_plan.getCurrentDataStream().header;
/// Convert structure from table to structure from buffer.
if (!blocksHaveEqualStructure(query_plan.getCurrentDataStream().header, result_header))
{
auto convert_actions_dag = ActionsDAG::makeConvertingActions(
query_plan.getCurrentDataStream().header.getColumnsWithTypeAndName(),
result_header.getColumnsWithTypeAndName(),
ActionsDAG::MatchColumnsMode::Name);
auto converting = std::make_unique<ExpressionStep>(query_plan.getCurrentDataStream(), convert_actions_dag);
query_plan.addStep(std::move(converting));
}
DataStreams input_streams;
input_streams.emplace_back(query_plan.getCurrentDataStream());
input_streams.emplace_back(buffers_plan.getCurrentDataStream());
std::vector<std::unique_ptr<QueryPlan>> plans;
plans.emplace_back(std::make_unique<QueryPlan>(std::move(query_plan)));
plans.emplace_back(std::make_unique<QueryPlan>(std::move(buffers_plan)));
query_plan = QueryPlan();
auto union_step = std::make_unique<UnionStep>(std::move(input_streams));
union_step->setStepDescription("Unite sources from Buffer table");
query_plan.unitePlans(std::move(union_step), std::move(plans));
}
static void appendBlock(Poco::Logger * log, const Block & from, Block & to)
{
size_t rows = from.rows();
size_t old_rows = to.rows();
size_t old_bytes = to.bytes();
if (!to)
to = from.cloneEmpty();
assertBlocksHaveEqualStructure(from, to, "Buffer");
from.checkNumberOfRows();
to.checkNumberOfRows();
MutableColumnPtr last_col;
try
{
MemoryTrackerBlockerInThread temporarily_disable_memory_tracker;
for (size_t column_no = 0, columns = to.columns(); column_no < columns; ++column_no)
{
const IColumn & col_from = *from.getByPosition(column_no).column.get();
{
/// Usually IColumn::mutate() here will simply move pointers,
/// however in case of parallel reading from it via SELECT, it
/// is possible for the full IColumn::clone() here, and in this
/// case it may fail due to MEMORY_LIMIT_EXCEEDED, and this
/// breaks the rollback, since the column got lost, it is
/// neither in last_col nor in "to" block.
///
/// The safest option here, is to do a full clone every time,
/// however, it is overhead. And it looks like the only
/// exception that is possible here is MEMORY_LIMIT_EXCEEDED,
/// and it is better to simply suppress it, to avoid overhead
/// for every INSERT into Buffer (Anyway we have a
/// LOGICAL_ERROR in rollback that will bail if something else
/// will happens here).
LockMemoryExceptionInThread temporarily_ignore_any_memory_limits(VariableContext::Global);
last_col = IColumn::mutate(std::move(to.getByPosition(column_no).column));
}
/// In case of ColumnAggregateFunction aggregate states will
/// be allocated from the query context but can be destroyed from the
/// server context (in case of background flush), and thus memory
/// will be leaked from the query, but only tracked memory, not
/// memory itself.
///
/// To avoid this, prohibit sharing the aggregate states.
last_col->ensureOwnership();
last_col->insertRangeFrom(col_from, 0, rows);
{
DENY_ALLOCATIONS_IN_SCOPE;
to.getByPosition(column_no).column = std::move(last_col);
}
}
CurrentMetrics::add(CurrentMetrics::StorageBufferRows, rows);
CurrentMetrics::add(CurrentMetrics::StorageBufferBytes, to.bytes() - old_bytes);
}
catch (...)
{
/// Rollback changes.
/// In case of rollback, it is better to ignore memory limits instead of abnormal server termination.
/// So ignore any memory limits, even global (since memory tracking has drift).
LockMemoryExceptionInThread temporarily_ignore_any_memory_limits(VariableContext::Global);
/// But first log exception to get more details in case of LOGICAL_ERROR
tryLogCurrentException(log, "Caught exception while adding data to buffer, rolling back...");
try
{
for (size_t column_no = 0, columns = to.columns(); column_no < columns; ++column_no)
{
ColumnPtr & col_to = to.getByPosition(column_no).column;
/// If there is no column, then the exception was thrown in the middle of append, in the insertRangeFrom()
if (!col_to)
{
col_to = std::move(last_col);
/// Suppress clang-tidy [bugprone-use-after-move]
last_col = {};
}
/// But if there is still nothing, abort
if (!col_to)
throw Exception(ErrorCodes::LOGICAL_ERROR, "No column to rollback");
if (col_to->size() != old_rows)
col_to = col_to->cut(0, old_rows);
}
}
catch (...)
{
/// In case when we cannot rollback, do not leave incorrect state in memory.
std::terminate();
}
throw;
}
}
class BufferSink : public SinkToStorage
{
public:
explicit BufferSink(
StorageBuffer & storage_,
const StorageMetadataPtr & metadata_snapshot_)
: SinkToStorage(metadata_snapshot_->getSampleBlock())
, storage(storage_)
, metadata_snapshot(metadata_snapshot_)
{
// Check table structure.
metadata_snapshot->check(getHeader(), true);
}
String getName() const override { return "BufferSink"; }
void consume(Chunk chunk) override
{
size_t rows = chunk.getNumRows();
if (!rows)
return;
auto block = getHeader().cloneWithColumns(chunk.getColumns());
StoragePtr destination = storage.getDestinationTable();
if (destination)
{
destination = DatabaseCatalog::instance().tryGetTable(storage.destination_id, storage.getContext());
if (destination.get() == &storage)
throw Exception(ErrorCodes::INFINITE_LOOP, "Destination table is myself. Write will cause infinite loop.");
}
size_t bytes = block.bytes();
storage.lifetime_writes.rows += rows;
storage.lifetime_writes.bytes += bytes;
/// If the block already exceeds the maximum limit, then we skip the buffer.
if (rows > storage.max_thresholds.rows || bytes > storage.max_thresholds.bytes)
{
if (destination)
{
LOG_DEBUG(storage.log, "Writing block with {} rows, {} bytes directly.", rows, bytes);
storage.writeBlockToDestination(block, destination);
}
return;
}
/// We distribute the load on the shards by the stream number.
const auto start_shard_num = getThreadId() % storage.num_shards;
/// We loop through the buffers, trying to lock mutex. No more than one lap.
auto shard_num = start_shard_num;
StorageBuffer::Buffer * least_busy_buffer = nullptr;
std::unique_lock<std::mutex> least_busy_lock;
size_t least_busy_shard_rows = 0;
for (size_t try_no = 0; try_no < storage.num_shards; ++try_no)
{
std::unique_lock lock(storage.buffers[shard_num].tryLock());
if (lock.owns_lock())
{
size_t num_rows = storage.buffers[shard_num].data.rows();
if (!least_busy_buffer || num_rows < least_busy_shard_rows)
{
least_busy_buffer = &storage.buffers[shard_num];
least_busy_lock = std::move(lock);
least_busy_shard_rows = num_rows;
}
}
shard_num = (shard_num + 1) % storage.num_shards;
}
/// If you still can not lock anything at once, then we'll wait on mutex.
if (!least_busy_buffer)
{
least_busy_buffer = &storage.buffers[start_shard_num];
least_busy_lock = least_busy_buffer->lockForWriting();
}
insertIntoBuffer(block, *least_busy_buffer);
least_busy_lock.unlock();
storage.reschedule();
}
private:
StorageBuffer & storage;
StorageMetadataPtr metadata_snapshot;
void insertIntoBuffer(const Block & block, StorageBuffer::Buffer & buffer)
{
time_t current_time = time(nullptr);
/// Sort the columns in the block. This is necessary to make it easier to concatenate the blocks later.
Block sorted_block = block.sortColumns();
if (storage.checkThresholds(buffer, /* direct= */true, current_time, sorted_block.rows(), sorted_block.bytes()))
{
/** If, after inserting the buffer, the constraints are exceeded, then we will reset the buffer.
* This also protects against unlimited consumption of RAM, since if it is impossible to write to the table,
* an exception will be thrown, and new data will not be added to the buffer.
*/
storage.flushBuffer(buffer, false /* check_thresholds */, true /* locked */);
}
if (!buffer.first_write_time)
buffer.first_write_time = current_time;
size_t old_rows = buffer.data.rows();
size_t old_bytes = buffer.data.allocatedBytes();
appendBlock(storage.log, sorted_block, buffer.data);
storage.total_writes.rows += (buffer.data.rows() - old_rows);
storage.total_writes.bytes += (buffer.data.allocatedBytes() - old_bytes);
}
};
SinkToStoragePtr StorageBuffer::write(const ASTPtr & /*query*/, const StorageMetadataPtr & metadata_snapshot, ContextPtr /*context*/)
{
return std::make_shared<BufferSink>(*this, metadata_snapshot);
}
bool StorageBuffer::mayBenefitFromIndexForIn(
const ASTPtr & left_in_operand, ContextPtr query_context, const StorageMetadataPtr & /*metadata_snapshot*/) const
{
if (auto destination = getDestinationTable())
return destination->mayBenefitFromIndexForIn(left_in_operand, query_context, destination->getInMemoryMetadataPtr());
return false;
}
void StorageBuffer::startup()
{
if (getContext()->getSettingsRef().readonly)
{
LOG_WARNING(log, "Storage {} is run with readonly settings, it will not be able to insert data. Set appropriate buffer_profile to fix this.", getName());
}
flush_handle->activateAndSchedule();
}
void StorageBuffer::flush()
{
if (!flush_handle)
return;
flush_handle->deactivate();
try
{
optimize(nullptr /*query*/, getInMemoryMetadataPtr(), {} /*partition*/, false /*final*/, false /*deduplicate*/, {}, getContext());
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
/** NOTE If you do OPTIMIZE after insertion,
* it does not guarantee, that all data will be in destination table at the time of next SELECT just after OPTIMIZE.
*
* Because in case if there was already running flushBuffer method,
* then call to flushBuffer inside OPTIMIZE will see empty buffer and return quickly,
* but at the same time, the already running flushBuffer method possibly is not finished,
* so next SELECT will observe missing data.
*
* This kind of race condition make very hard to implement proper tests.
*/
bool StorageBuffer::optimize(
const ASTPtr & /*query*/,
const StorageMetadataPtr & /*metadata_snapshot*/,
const ASTPtr & partition,
bool final,
bool deduplicate,
const Names & /* deduplicate_by_columns */,
ContextPtr /*context*/)
{
if (partition)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Partition cannot be specified when optimizing table of type Buffer");
if (final)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "FINAL cannot be specified when optimizing table of type Buffer");
if (deduplicate)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "DEDUPLICATE cannot be specified when optimizing table of type Buffer");
flushAllBuffers(false);
return true;
}
bool StorageBuffer::supportsPrewhere() const
{
if (auto destination = getDestinationTable())
return destination->supportsPrewhere();
return false;
}
bool StorageBuffer::checkThresholds(const Buffer & buffer, bool direct, time_t current_time, size_t additional_rows, size_t additional_bytes) const
{
time_t time_passed = 0;
if (buffer.first_write_time)
time_passed = current_time - buffer.first_write_time;
size_t rows = buffer.data.rows() + additional_rows;
size_t bytes = buffer.data.bytes() + additional_bytes;
return checkThresholdsImpl(direct, rows, bytes, time_passed);
}
bool StorageBuffer::checkThresholdsImpl(bool direct, size_t rows, size_t bytes, time_t time_passed) const
{
if (time_passed > min_thresholds.time && rows > min_thresholds.rows && bytes > min_thresholds.bytes)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedAllMinThresholds);
return true;
}
if (time_passed > max_thresholds.time)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedTimeMaxThreshold);
return true;
}
if (rows > max_thresholds.rows)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedRowsMaxThreshold);
return true;
}
if (bytes > max_thresholds.bytes)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedBytesMaxThreshold);
return true;
}
if (!direct)
{
if (flush_thresholds.time && time_passed > flush_thresholds.time)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedTimeFlushThreshold);
return true;
}
if (flush_thresholds.rows && rows > flush_thresholds.rows)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedRowsFlushThreshold);
return true;
}
if (flush_thresholds.bytes && bytes > flush_thresholds.bytes)
{
ProfileEvents::increment(ProfileEvents::StorageBufferPassedBytesFlushThreshold);
return true;
}
}
return false;
}
void StorageBuffer::flushAllBuffers(bool check_thresholds)
{
for (auto & buf : buffers)
flushBuffer(buf, check_thresholds, false);
}
bool StorageBuffer::flushBuffer(Buffer & buffer, bool check_thresholds, bool locked)
{
Block block_to_write;
time_t current_time = time(nullptr);
std::optional<std::unique_lock<std::mutex>> lock;
if (!locked)
lock.emplace(buffer.lockForReading());
time_t time_passed = 0;
size_t rows = buffer.data.rows();
size_t bytes = buffer.data.bytes();
if (buffer.first_write_time)
time_passed = current_time - buffer.first_write_time;
if (check_thresholds)
{
if (!checkThresholdsImpl(/* direct= */false, rows, bytes, time_passed))
return false;
}
buffer.data.swap(block_to_write);
buffer.first_write_time = 0;
size_t block_rows = block_to_write.rows();
size_t block_bytes = block_to_write.bytes();
size_t block_allocated_bytes_delta = block_to_write.allocatedBytes() - buffer.data.allocatedBytes();
CurrentMetrics::sub(CurrentMetrics::StorageBufferRows, block_rows);
CurrentMetrics::sub(CurrentMetrics::StorageBufferBytes, block_bytes);
ProfileEvents::increment(ProfileEvents::StorageBufferFlush);
if (!destination_id)
{
total_writes.rows -= block_rows;
total_writes.bytes -= block_allocated_bytes_delta;
LOG_DEBUG(log, "Flushing buffer with {} rows (discarded), {} bytes, age {} seconds {}.", rows, bytes, time_passed, (check_thresholds ? "(bg)" : "(direct)"));
return true;
}
/** For simplicity, buffer is locked during write.
* We could unlock buffer temporary, but it would lead to too many difficulties:
* - data, that is written, will not be visible for SELECTs;
* - new data could be appended to buffer, and in case of exception, we must merge it with old data, that has not been written;
* - this could lead to infinite memory growth.
*/
Stopwatch watch;
try
{
writeBlockToDestination(block_to_write, getDestinationTable());
}
catch (...)
{
ProfileEvents::increment(ProfileEvents::StorageBufferErrorOnFlush);
/// Return the block to its place in the buffer.
CurrentMetrics::add(CurrentMetrics::StorageBufferRows, block_to_write.rows());
CurrentMetrics::add(CurrentMetrics::StorageBufferBytes, block_to_write.bytes());
buffer.data.swap(block_to_write);
if (!buffer.first_write_time) // -V547
buffer.first_write_time = current_time;
/// After a while, the next write attempt will happen.
throw;
}
total_writes.rows -= block_rows;
total_writes.bytes -= block_allocated_bytes_delta;
UInt64 milliseconds = watch.elapsedMilliseconds();
LOG_DEBUG(log, "Flushing buffer with {} rows, {} bytes, age {} seconds, took {} ms {}.", rows, bytes, time_passed, milliseconds, (check_thresholds ? "(bg)" : "(direct)"));
return true;
}
void StorageBuffer::writeBlockToDestination(const Block & block, StoragePtr table)
{
if (!destination_id || !block)
return;
if (!table)
{
LOG_ERROR(log, "Destination table {} doesn't exist. Block of data is discarded.", destination_id.getNameForLogs());
return;
}
auto destination_metadata_snapshot = table->getInMemoryMetadataPtr();
MemoryTrackerBlockerInThread temporarily_disable_memory_tracker;
auto insert = std::make_shared<ASTInsertQuery>();
insert->table_id = destination_id;
/** We will insert columns that are the intersection set of columns of the buffer table and the subordinate table.
* This will support some of the cases (but not all) when the table structure does not match.
*/
Block structure_of_destination_table = allow_materialized ? destination_metadata_snapshot->getSampleBlock()
: destination_metadata_snapshot->getSampleBlockNonMaterialized();
Block block_to_write;
for (size_t i : collections::range(0, structure_of_destination_table.columns()))
{
auto dst_col = structure_of_destination_table.getByPosition(i);
if (block.has(dst_col.name))
{
auto column = block.getByName(dst_col.name);
if (!column.type->equals(*dst_col.type))
{
LOG_WARNING(log, "Destination table {} have different type of column {} ({} != {}). Block of data is converted.", destination_id.getNameForLogs(), backQuoteIfNeed(column.name), dst_col.type->getName(), column.type->getName());
column.column = castColumn(column, dst_col.type);
column.type = dst_col.type;
}
block_to_write.insert(column);
}
}
if (block_to_write.columns() == 0)
{
LOG_ERROR(log, "Destination table {} have no common columns with block in buffer. Block of data is discarded.", destination_id.getNameForLogs());
return;
}
if (block_to_write.columns() != block.columns())
LOG_WARNING(log, "Not all columns from block in buffer exist in destination table {}. Some columns are discarded.", destination_id.getNameForLogs());
auto list_of_columns = std::make_shared<ASTExpressionList>();
insert->columns = list_of_columns;
list_of_columns->children.reserve(block_to_write.columns());
for (const auto & column : block_to_write)
list_of_columns->children.push_back(std::make_shared<ASTIdentifier>(column.name));
auto insert_context = Context::createCopy(getContext());
insert_context->makeQueryContext();
InterpreterInsertQuery interpreter{insert, insert_context, allow_materialized};
auto block_io = interpreter.execute();
PushingPipelineExecutor executor(block_io.pipeline);
executor.start();
executor.push(std::move(block_to_write));
executor.finish();
}
void StorageBuffer::backgroundFlush()
{
try
{
flushAllBuffers(true);
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
reschedule();
}
void StorageBuffer::reschedule()
{
time_t min_first_write_time = std::numeric_limits<time_t>::max();
time_t rows = 0;
for (auto & buffer : buffers)
{
/// try_to_lock here to avoid waiting for other layers flushing to be finished,
/// since the buffer table may:
/// - push to Distributed table, that may take too much time,
/// - push to table with materialized views attached,
/// this is also may take some time.
///
/// try_to_lock is also ok for background flush, since if there is
/// INSERT contended, then the reschedule will be done after
/// INSERT will be done.
std::unique_lock lock(buffer.tryLock());
if (lock.owns_lock())
{
min_first_write_time = buffer.first_write_time;
rows += buffer.data.rows();
}
}
/// will be rescheduled via INSERT
if (!rows)
return;
time_t current_time = time(nullptr);
time_t time_passed = current_time - min_first_write_time;
size_t min = std::max<ssize_t>(min_thresholds.time - time_passed, 1);
size_t max = std::max<ssize_t>(max_thresholds.time - time_passed, 1);
size_t flush = std::max<ssize_t>(flush_thresholds.time - time_passed, 1);
flush_handle->scheduleAfter(std::min({min, max, flush}) * 1000);
}
void StorageBuffer::checkAlterIsPossible(const AlterCommands & commands, ContextPtr local_context) const
{
auto name_deps = getDependentViewsByColumn(local_context);
for (const auto & command : commands)
{
if (command.type != AlterCommand::Type::ADD_COLUMN && command.type != AlterCommand::Type::MODIFY_COLUMN
&& command.type != AlterCommand::Type::DROP_COLUMN && command.type != AlterCommand::Type::COMMENT_COLUMN
&& command.type != AlterCommand::Type::COMMENT_TABLE)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Alter of type '{}' is not supported by storage {}",
command.type, getName());
if (command.type == AlterCommand::Type::DROP_COLUMN && !command.clear)
{
const auto & deps_mv = name_deps[command.column_name];
if (!deps_mv.empty())
{
throw Exception(ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN,
"Trying to ALTER DROP column {} which is referenced by materialized view {}",
backQuoteIfNeed(command.column_name), toString(deps_mv));
}
}
}
}
std::optional<UInt64> StorageBuffer::totalRows(const Settings & settings) const
{
std::optional<UInt64> underlying_rows;
if (auto destination = getDestinationTable())
underlying_rows = destination->totalRows(settings);
return total_writes.rows + underlying_rows.value_or(0);
}
std::optional<UInt64> StorageBuffer::totalBytes(const Settings & /*settings*/) const
{
return total_writes.bytes;
}
void StorageBuffer::alter(const AlterCommands & params, ContextPtr local_context, AlterLockHolder &)
{
auto table_id = getStorageID();
checkAlterIsPossible(params, local_context);
auto metadata_snapshot = getInMemoryMetadataPtr();
/// Flush all buffers to storages, so that no non-empty blocks of the old
/// structure remain. Structure of empty blocks will be updated during first
/// insert.
optimize({} /*query*/, metadata_snapshot, {} /*partition_id*/, false /*final*/, false /*deduplicate*/, {}, local_context);
StorageInMemoryMetadata new_metadata = *metadata_snapshot;
params.apply(new_metadata, local_context);
DatabaseCatalog::instance().getDatabase(table_id.database_name)->alterTable(local_context, table_id, new_metadata);
setInMemoryMetadata(new_metadata);
}
void registerStorageBuffer(StorageFactory & factory)
{
/** Buffer(db, table, num_buckets, min_time, max_time, min_rows, max_rows, min_bytes, max_bytes)
*
* db, table - in which table to put data from buffer.
* num_buckets - level of parallelism.
* min_time, max_time, min_rows, max_rows, min_bytes, max_bytes - conditions for flushing the buffer,
* flush_time, flush_rows, flush_bytes - conditions for flushing.
*/
factory.registerStorage("Buffer", [](const StorageFactory::Arguments & args)
{
ASTs & engine_args = args.engine_args;
if (engine_args.size() < 9 || engine_args.size() > 12)
throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH,
"Storage Buffer requires from 9 to 12 parameters: "
" destination_database, destination_table, num_buckets, min_time, max_time, min_rows, "
"max_rows, min_bytes, max_bytes[, flush_time, flush_rows, flush_bytes].");
// Table and database name arguments accept expressions, evaluate them.
engine_args[0] = evaluateConstantExpressionForDatabaseName(engine_args[0], args.getLocalContext());
engine_args[1] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[1], args.getLocalContext());
// After we evaluated all expressions, check that all arguments are
// literals.
for (size_t i = 0; i < engine_args.size(); ++i)
{
if (!typeid_cast<ASTLiteral *>(engine_args[i].get()))
{
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"Storage Buffer expects a literal as an argument #{}, got '{}'"
" instead", i, engine_args[i]->formatForErrorMessage());
}
}
size_t i = 0;
String destination_database = checkAndGetLiteralArgument<String>(engine_args[i++], "destination_database");
String destination_table = checkAndGetLiteralArgument<String>(engine_args[i++], "destination_table");
UInt64 num_buckets = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
StorageBuffer::Thresholds min;
StorageBuffer::Thresholds max;
StorageBuffer::Thresholds flush;
min.time = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
max.time = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
min.rows = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
max.rows = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
min.bytes = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
max.bytes = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
if (engine_args.size() > i)
flush.time = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
if (engine_args.size() > i)
flush.rows = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
if (engine_args.size() > i)
flush.bytes = applyVisitor(FieldVisitorConvertToNumber<UInt64>(), engine_args[i++]->as<ASTLiteral &>().value);
/// If destination_id is not set, do not write data from the buffer, but simply empty the buffer.
StorageID destination_id = StorageID::createEmpty();
if (!destination_table.empty())
{
destination_id.database_name = args.getContext()->resolveDatabase(destination_database);
destination_id.table_name = destination_table;
}
return std::make_shared<StorageBuffer>(
args.table_id,
args.columns,
args.constraints,
args.comment,
args.getContext(),
num_buckets,
min,
max,
flush,
destination_id,
static_cast<bool>(args.getLocalContext()->getSettingsRef().insert_allow_materialized_columns));
},
{
.supports_parallel_insert = true,
.supports_schema_inference = true,
});
}
}