mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-27 18:12:02 +00:00
1996 lines
66 KiB
C++
1996 lines
66 KiB
C++
/**************************** vectormath_exp.h ******************************
|
|
* Author: Agner Fog
|
|
* Date created: 2014-04-18
|
|
* Last modified: 2014-10-22
|
|
* Version: 1.16
|
|
* Project: vector classes
|
|
* Description:
|
|
* Header file containing inline vector functions of logarithms, exponential
|
|
* and power functions:
|
|
* exp exponential function
|
|
* exmp1 exponential function minus 1
|
|
* log natural logarithm
|
|
* log1p natural logarithm of 1+x
|
|
* cbrt cube root
|
|
* pow raise vector elements to power
|
|
* pow_ratio raise vector elements to rational power
|
|
*
|
|
* Theory, methods and inspiration based partially on these sources:
|
|
* > Moshier, Stephen Lloyd Baluk: Methods and programs for mathematical functions.
|
|
* Ellis Horwood, 1989.
|
|
* > VDT library developed on CERN by Danilo Piparo, Thomas Hauth and
|
|
* Vincenzo Innocente, 2012, https://svnweb.cern.ch/trac/vdt
|
|
* > Cephes math library by Stephen L. Moshier 1992,
|
|
* http://www.netlib.org/cephes/
|
|
*
|
|
* For detailed instructions, see vectormath_common.h and VectorClass.pdf
|
|
*
|
|
* (c) Copyright 2014 GNU General Public License http://www.gnu.org/licenses
|
|
******************************************************************************/
|
|
|
|
#ifndef VECTORMATH_EXP_H
|
|
#define VECTORMATH_EXP_H 1
|
|
|
|
#include "vectormath_common.h"
|
|
|
|
|
|
/******************************************************************************
|
|
* Exponential functions
|
|
******************************************************************************/
|
|
|
|
// Helper functions, used internally:
|
|
|
|
// This function calculates pow(2,n) where n must be an integer. Does not check for overflow or underflow
|
|
static inline Vec2d vm_pow2n (Vec2d const & n) {
|
|
const double pow2_52 = 4503599627370496.0; // 2^52
|
|
const double bias = 1023.0; // bias in exponent
|
|
Vec2d a = n + (bias + pow2_52); // put n + bias in least significant bits
|
|
Vec2q b = reinterpret_i(a); // bit-cast to integer
|
|
Vec2q c = b << 52; // shift left 52 places to get into exponent field
|
|
Vec2d d = reinterpret_d(c); // bit-cast back to double
|
|
return d;
|
|
}
|
|
|
|
static inline Vec4f vm_pow2n (Vec4f const & n) {
|
|
const float pow2_23 = 8388608.0; // 2^23
|
|
const float bias = 127.0; // bias in exponent
|
|
Vec4f a = n + (bias + pow2_23); // put n + bias in least significant bits
|
|
Vec4i b = reinterpret_i(a); // bit-cast to integer
|
|
Vec4i c = b << 23; // shift left 23 places to get into exponent field
|
|
Vec4f d = reinterpret_f(c); // bit-cast back to float
|
|
return d;
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec4d vm_pow2n (Vec4d const & n) {
|
|
const double pow2_52 = 4503599627370496.0; // 2^52
|
|
const double bias = 1023.0; // bias in exponent
|
|
Vec4d a = n + (bias + pow2_52); // put n + bias in least significant bits
|
|
Vec4q b = reinterpret_i(a); // bit-cast to integer
|
|
Vec4q c = b << 52; // shift left 52 places to get value into exponent field
|
|
Vec4d d = reinterpret_d(c); // bit-cast back to double
|
|
return d;
|
|
}
|
|
|
|
static inline Vec8f vm_pow2n (Vec8f const & n) {
|
|
const float pow2_23 = 8388608.0; // 2^23
|
|
const float bias = 127.0; // bias in exponent
|
|
Vec8f a = n + (bias + pow2_23); // put n + bias in least significant bits
|
|
Vec8i b = reinterpret_i(a); // bit-cast to integer
|
|
Vec8i c = b << 23; // shift left 23 places to get into exponent field
|
|
Vec8f d = reinterpret_f(c); // bit-cast back to float
|
|
return d;
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec8d vm_pow2n (Vec8d const & n) {
|
|
const double pow2_52 = 4503599627370496.0; // 2^52
|
|
const double bias = 1023.0; // bias in exponent
|
|
Vec8d a = n + (bias + pow2_52); // put n + bias in least significant bits
|
|
Vec8q b = Vec8q(reinterpret_i(a)); // bit-cast to integer
|
|
Vec8q c = b << 52; // shift left 52 places to get value into exponent field
|
|
Vec8d d = Vec8d(reinterpret_d(c)); // bit-cast back to double
|
|
return d;
|
|
}
|
|
|
|
static inline Vec16f vm_pow2n (Vec16f const & n) {
|
|
const float pow2_23 = 8388608.0; // 2^23
|
|
const float bias = 127.0; // bias in exponent
|
|
Vec16f a = n + (bias + pow2_23); // put n + bias in least significant bits
|
|
Vec16i b = Vec16i(reinterpret_i(a)); // bit-cast to integer
|
|
Vec16i c = b << 23; // shift left 23 places to get into exponent field
|
|
Vec16f d = Vec16f(reinterpret_f(c)); // bit-cast back to float
|
|
return d;
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
// Template for exp function, double precision
|
|
// The limit of abs(x) is defined by max_x below
|
|
// This function does not produce denormals
|
|
// Template parameters:
|
|
// VTYPE: double vector type
|
|
// BTYPE: boolean vector type
|
|
// M1: 0 for exp, 1 for expm1
|
|
// BA: 0 for exp, 1 for 0.5*exp, 2 for pow(2,x), 10 for pow(10,x)
|
|
|
|
#if 1 // choose method
|
|
|
|
// Taylor expansion
|
|
template<class VTYPE, class BTYPE, int M1, int BA>
|
|
static inline VTYPE exp_d(VTYPE const & initial_x) {
|
|
|
|
// Taylor coefficients, 1/n!
|
|
// Not using minimax approximation because we prioritize precision close to x = 0
|
|
const double p2 = 1./2.;
|
|
const double p3 = 1./6.;
|
|
const double p4 = 1./24.;
|
|
const double p5 = 1./120.;
|
|
const double p6 = 1./720.;
|
|
const double p7 = 1./5040.;
|
|
const double p8 = 1./40320.;
|
|
const double p9 = 1./362880.;
|
|
const double p10 = 1./3628800.;
|
|
const double p11 = 1./39916800.;
|
|
const double p12 = 1./479001600.;
|
|
const double p13 = 1./6227020800.;
|
|
|
|
// maximum abs(x), value depends on BA, defined below
|
|
// The lower limit of x is slightly more restrictive than the upper limit.
|
|
// We are specifying the lower limit, except for BA = 1 because it is not used for negative x
|
|
double max_x;
|
|
|
|
// data vectors
|
|
VTYPE x, r, z, n2;
|
|
BTYPE inrange; // boolean vector
|
|
|
|
if (BA <= 1) { // exp(x)
|
|
max_x = BA == 0 ? 708.39 : 709.7; // lower limit for 0.5*exp(x) is -707.6, but we are using 0.5*exp(x) only for positive x in hyperbolic functions
|
|
const double ln2d_hi = 0.693145751953125;
|
|
const double ln2d_lo = 1.42860682030941723212E-6;
|
|
x = initial_x;
|
|
r = round(initial_x*VM_LOG2E);
|
|
// subtraction in two steps for higher precision
|
|
x = nmul_add(r, ln2d_hi, x); // x -= r * ln2d_hi;
|
|
x = nmul_add(r, ln2d_lo, x); // x -= r * ln2d_lo;
|
|
}
|
|
else if (BA == 2) { // pow(2,x)
|
|
max_x = 1022.0;
|
|
r = round(initial_x);
|
|
x = initial_x - r;
|
|
x *= VM_LN2;
|
|
}
|
|
else if (BA == 10) { // pow(10,x)
|
|
max_x = 307.65;
|
|
const double log10_2_hi = 0.30102999554947019; // log10(2) in two parts
|
|
const double log10_2_lo = 1.1451100899212592E-10;
|
|
x = initial_x;
|
|
r = round(initial_x*(VM_LOG2E*VM_LN10));
|
|
// subtraction in two steps for higher precision
|
|
x = nmul_add(r, log10_2_hi, x); // x -= r * log10_2_hi;
|
|
x = nmul_add(r, log10_2_lo, x); // x -= r * log10_2_lo;
|
|
x *= VM_LN10;
|
|
}
|
|
else { // undefined value of BA
|
|
return 0.;
|
|
}
|
|
|
|
z = polynomial_13m(x, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13);
|
|
|
|
if (BA == 1) r--; // 0.5 * exp(x)
|
|
|
|
// multiply by power of 2
|
|
n2 = vm_pow2n(r);
|
|
|
|
if (M1 == 0) {
|
|
// exp
|
|
z = (z + 1.0) * n2;
|
|
}
|
|
else {
|
|
// expm1
|
|
z = mul_add(z, n2, n2 - 1.0); // z = z * n2 + (n2 - 1.0);
|
|
}
|
|
|
|
// check for overflow
|
|
inrange = abs(initial_x) < max_x;
|
|
// check for INF and NAN
|
|
inrange &= is_finite(initial_x);
|
|
|
|
if (horizontal_and(inrange)) {
|
|
// fast normal path
|
|
return z;
|
|
}
|
|
else {
|
|
// overflow, underflow and NAN
|
|
r = select(sign_bit(initial_x), 0.-M1, infinite_vec<VTYPE>()); // value in case of +/- overflow or INF
|
|
z = select(inrange, z, r); // +/- underflow
|
|
z = select(is_nan(initial_x), initial_x, z); // NAN goes through
|
|
return z;
|
|
}
|
|
}
|
|
|
|
#else
|
|
|
|
// Pade expansion uses less code and fewer registers, but is slower
|
|
template<class VTYPE, class BTYPE, int M1, int BA>
|
|
static inline VTYPE exp_d(VTYPE const & initial_x) {
|
|
|
|
// define constants
|
|
const double ln2p1 = 0.693145751953125;
|
|
const double ln2p2 = 1.42860682030941723212E-6;
|
|
const double log2e = VM_LOG2E;
|
|
const double max_exp = 708.39;
|
|
// coefficients of pade polynomials
|
|
const double P0exp = 9.99999999999999999910E-1;
|
|
const double P1exp = 3.02994407707441961300E-2;
|
|
const double P2exp = 1.26177193074810590878E-4;
|
|
const double Q0exp = 2.00000000000000000009E0;
|
|
const double Q1exp = 2.27265548208155028766E-1;
|
|
const double Q2exp = 2.52448340349684104192E-3;
|
|
const double Q3exp = 3.00198505138664455042E-6;
|
|
|
|
VTYPE x, r, xx, px, qx, y, n2; // data vectors
|
|
BTYPE inrange; // boolean vector
|
|
|
|
x = initial_x;
|
|
r = round(initial_x*log2e);
|
|
|
|
// subtraction in one step would gives loss of precision
|
|
x -= r * ln2p1;
|
|
x -= r * ln2p2;
|
|
|
|
xx = x * x;
|
|
|
|
// px = x * P(x^2).
|
|
px = polynomial_2(xx, P0exp, P1exp, P2exp) * x;
|
|
|
|
// Evaluate Q(x^2).
|
|
qx = polynomial_3(xx, Q0exp, Q1exp, Q2exp, Q3exp);
|
|
|
|
// e^x = 1 + 2*P(x^2)/( Q(x^2) - P(x^2) )
|
|
y = (2.0 * px) / (qx - px);
|
|
|
|
// Get 2^n in double.
|
|
// n = round_to_int64_limited(r);
|
|
// n2 = exp2(n);
|
|
n2 = vm_pow2n(r); // this is faster
|
|
|
|
if (M1 == 0) {
|
|
// exp
|
|
y = (y + 1.0) * n2;
|
|
}
|
|
else {
|
|
// expm1
|
|
y = y * n2 + (n2 - 1.0);
|
|
}
|
|
|
|
// overflow
|
|
inrange = abs(initial_x) < max_exp;
|
|
// check for INF and NAN
|
|
inrange &= is_finite(initial_x);
|
|
|
|
if (horizontal_and(inrange)) {
|
|
// fast normal path
|
|
return y;
|
|
}
|
|
else {
|
|
// overflow, underflow and NAN
|
|
r = select(sign_bit(initial_x), 0.-M1, infinite_vec<VTYPE>()); // value in case of overflow or INF
|
|
y = select(inrange, y, r); // +/- overflow
|
|
y = select(is_nan(initial_x), initial_x, y); // NAN goes through
|
|
return y;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
// instances of exp_d template
|
|
static inline Vec2d exp(Vec2d const & x) {
|
|
return exp_d<Vec2d, Vec2db, 0, 0>(x);
|
|
}
|
|
|
|
static inline Vec2d expm1(Vec2d const & x) {
|
|
return exp_d<Vec2d, Vec2db, 1, 0>(x);
|
|
}
|
|
|
|
static inline Vec2d exp2(Vec2d const & x) {
|
|
return exp_d<Vec2d, Vec2db, 0, 2>(x);
|
|
}
|
|
|
|
static inline Vec2d exp10(Vec2d const & x) {
|
|
return exp_d<Vec2d, Vec2db, 0, 10>(x);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec4d exp(Vec4d const & x) {
|
|
return exp_d<Vec4d, Vec4db, 0, 0>(x);
|
|
}
|
|
|
|
static inline Vec4d expm1(Vec4d const & x) {
|
|
return exp_d<Vec4d, Vec4db, 1, 0>(x);
|
|
}
|
|
|
|
static inline Vec4d exp2(Vec4d const & x) {
|
|
return exp_d<Vec4d, Vec4db, 0, 2>(x);
|
|
}
|
|
|
|
static inline Vec4d exp10(Vec4d const & x) {
|
|
return exp_d<Vec4d, Vec4db, 0, 10>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec8d exp(Vec8d const & x) {
|
|
return exp_d<Vec8d, Vec8db, 0, 0>(x);
|
|
}
|
|
|
|
static inline Vec8d expm1(Vec8d const & x) {
|
|
return exp_d<Vec8d, Vec8db, 1, 0>(x);
|
|
}
|
|
|
|
static inline Vec8d exp2(Vec8d const & x) {
|
|
return exp_d<Vec8d, Vec8db, 0, 2>(x);
|
|
}
|
|
|
|
static inline Vec8d exp10(Vec8d const & x) {
|
|
return exp_d<Vec8d, Vec8db, 0, 10>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
// Template for exp function, single precision
|
|
// The limit of abs(x) is defined by max_x below
|
|
// This function does not produce denormals
|
|
// Template parameters:
|
|
// VTYPE: float vector type
|
|
// BTYPE: boolean vector type
|
|
// M1: 0 for exp, 1 for expm1
|
|
// BA: 0 for exp, 1 for 0.5*exp, 2 for pow(2,x), 10 for pow(10,x)
|
|
|
|
template<class VTYPE, class BTYPE, int M1, int BA>
|
|
static inline VTYPE exp_f(VTYPE const & initial_x) {
|
|
|
|
// Taylor coefficients
|
|
const float P0expf = 1.f/2.f;
|
|
const float P1expf = 1.f/6.f;
|
|
const float P2expf = 1.f/24.f;
|
|
const float P3expf = 1.f/120.f;
|
|
const float P4expf = 1.f/720.f;
|
|
const float P5expf = 1.f/5040.f;
|
|
|
|
VTYPE x, r, x2, z, n2; // data vectors
|
|
BTYPE inrange; // boolean vector
|
|
|
|
// maximum abs(x), value depends on BA, defined below
|
|
// The lower limit of x is slightly more restrictive than the upper limit.
|
|
// We are specifying the lower limit, except for BA = 1 because it is not used for negative x
|
|
float max_x;
|
|
|
|
if (BA <= 1) { // exp(x)
|
|
const float ln2f_hi = 0.693359375f;
|
|
const float ln2f_lo = -2.12194440e-4f;
|
|
max_x = (BA == 0) ? 87.3f : 89.0f;
|
|
|
|
x = initial_x;
|
|
r = round(initial_x*float(VM_LOG2E));
|
|
x = nmul_add(r, VTYPE(ln2f_hi), x); // x -= r * ln2f_hi;
|
|
x = nmul_add(r, VTYPE(ln2f_lo), x); // x -= r * ln2f_lo;
|
|
}
|
|
else if (BA == 2) { // pow(2,x)
|
|
max_x = 126.f;
|
|
r = round(initial_x);
|
|
x = initial_x - r;
|
|
x = x * (float)VM_LN2;
|
|
}
|
|
else if (BA == 10) { // pow(10,x)
|
|
max_x = 37.9f;
|
|
const float log10_2_hi = 0.301025391f; // log10(2) in two parts
|
|
const float log10_2_lo = 4.60503907E-6f;
|
|
x = initial_x;
|
|
r = round(initial_x*float(VM_LOG2E*VM_LN10));
|
|
x = nmul_add(r, VTYPE(log10_2_hi), x); // x -= r * log10_2_hi;
|
|
x = nmul_add(r, VTYPE(log10_2_lo), x); // x -= r * log10_2_lo;
|
|
x = x * (float)VM_LN10;
|
|
}
|
|
else { // undefined value of BA
|
|
return 0.;
|
|
}
|
|
|
|
x2 = x * x;
|
|
z = polynomial_5(x,P0expf,P1expf,P2expf,P3expf,P4expf,P5expf);
|
|
z = mul_add(z, x2, x); // z *= x2; z += x;
|
|
|
|
if (BA == 1) r--; // 0.5 * exp(x)
|
|
|
|
// multiply by power of 2
|
|
n2 = vm_pow2n(r);
|
|
|
|
if (M1 == 0) {
|
|
// exp
|
|
z = (z + 1.0f) * n2;
|
|
}
|
|
else {
|
|
// expm1
|
|
z = mul_add(z, n2, n2 - 1.0f); // z = z * n2 + (n2 - 1.0f);
|
|
}
|
|
|
|
// check for overflow
|
|
inrange = abs(initial_x) < max_x;
|
|
// check for INF and NAN
|
|
inrange &= is_finite(initial_x);
|
|
|
|
if (horizontal_and(inrange)) {
|
|
// fast normal path
|
|
return z;
|
|
}
|
|
else {
|
|
// overflow, underflow and NAN
|
|
r = select(sign_bit(initial_x), 0.f-M1, infinite_vec<VTYPE>()); // value in case of +/- overflow or INF
|
|
z = select(inrange, z, r); // +/- underflow
|
|
z = select(is_nan(initial_x), initial_x, z); // NAN goes through
|
|
return z;
|
|
}
|
|
}
|
|
|
|
// instances of exp_f template
|
|
static inline Vec4f exp(Vec4f const & x) {
|
|
return exp_f<Vec4f, Vec4fb, 0, 0>(x);
|
|
}
|
|
|
|
static inline Vec4f expm1(Vec4f const & x) {
|
|
return exp_f<Vec4f, Vec4fb, 1, 0>(x);
|
|
}
|
|
|
|
static inline Vec4f exp2(Vec4f const & x) {
|
|
return exp_f<Vec4f, Vec4fb, 0, 2>(x);
|
|
}
|
|
|
|
static inline Vec4f exp10(Vec4f const & x) {
|
|
return exp_f<Vec4f, Vec4fb, 0, 10>(x);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec8f exp(Vec8f const & x) {
|
|
return exp_f<Vec8f, Vec8fb, 0, 0>(x);
|
|
}
|
|
|
|
static inline Vec8f expm1(Vec8f const & x) {
|
|
return exp_f<Vec8f, Vec8fb, 1, 0>(x);
|
|
}
|
|
|
|
static inline Vec8f exp2(Vec8f const & x) {
|
|
return exp_f<Vec8f, Vec8fb, 0, 2>(x);
|
|
}
|
|
|
|
static inline Vec8f exp10(Vec8f const & x) {
|
|
return exp_f<Vec8f, Vec8fb, 0, 10>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec16f exp(Vec16f const & x) {
|
|
return exp_f<Vec16f, Vec16fb, 0, 0>(x);
|
|
}
|
|
|
|
static inline Vec16f expm1(Vec16f const & x) {
|
|
return exp_f<Vec16f, Vec16fb, 1, 0>(x);
|
|
}
|
|
|
|
static inline Vec16f exp2(Vec16f const & x) {
|
|
return exp_f<Vec16f, Vec16fb, 0, 2>(x);
|
|
}
|
|
|
|
static inline Vec16f exp10(Vec16f const & x) {
|
|
return exp_f<Vec16f, Vec16fb, 0, 10>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
/******************************************************************************
|
|
* Logarithm functions
|
|
******************************************************************************/
|
|
|
|
// Helper functions: fraction_2(x) = fraction(x)*0.5
|
|
|
|
// Modified fraction function:
|
|
// Extract the fraction part of a floating point number, and divide by 2
|
|
// The fraction function is defined in vectorf128.h etc.
|
|
// fraction_2(x) = fraction(x)*0.5
|
|
// This version gives half the fraction without extra delay
|
|
// Does not work for x = 0
|
|
static inline Vec4f fraction_2(Vec4f const & a) {
|
|
Vec4ui t1 = _mm_castps_si128(a); // reinterpret as 32-bit integer
|
|
Vec4ui t2 = Vec4ui((t1 & 0x007FFFFF) | 0x3F000000); // set exponent to 0 + bias
|
|
return _mm_castsi128_ps(t2);
|
|
}
|
|
|
|
static inline Vec2d fraction_2(Vec2d const & a) {
|
|
Vec2uq t1 = _mm_castpd_si128(a); // reinterpret as 64-bit integer
|
|
Vec2uq t2 = Vec2uq((t1 & 0x000FFFFFFFFFFFFFll) | 0x3FE0000000000000ll); // set exponent to 0 + bias
|
|
return _mm_castsi128_pd(t2);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec8f fraction_2(Vec8f const & a) {
|
|
#if defined (VECTORI256_H) && VECTORI256_H > 2 // 256 bit integer vectors are available, AVX2
|
|
Vec8ui t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer
|
|
Vec8ui t2 = (t1 & 0x007FFFFF) | 0x3F000000; // set exponent to 0 + bias
|
|
return _mm256_castsi256_ps(t2);
|
|
#else
|
|
return Vec8f(fraction_2(a.get_low()), fraction_2(a.get_high()));
|
|
#endif
|
|
}
|
|
|
|
static inline Vec4d fraction_2(Vec4d const & a) {
|
|
#if VECTORI256_H > 1 // AVX2
|
|
Vec4uq t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer
|
|
Vec4uq t2 = Vec4uq((t1 & 0x000FFFFFFFFFFFFFll) | 0x3FE0000000000000ll); // set exponent to 0 + bias
|
|
return _mm256_castsi256_pd(t2);
|
|
#else
|
|
return Vec4d(fraction_2(a.get_low()), fraction_2(a.get_high()));
|
|
#endif
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec16f fraction_2(Vec16f const & a) {
|
|
#if INSTRSET >= 9 // 512 bit integer vectors are available, AVX512
|
|
return _mm512_getmant_ps(a, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_zero);
|
|
//return Vec16f(_mm512_getmant_ps(a, _MM_MANT_NORM_1_2, _MM_MANT_SIGN_zero)) * 0.5f;
|
|
#else
|
|
return Vec16f(fraction_2(a.get_low()), fraction_2(a.get_high()));
|
|
#endif
|
|
}
|
|
|
|
static inline Vec8d fraction_2(Vec8d const & a) {
|
|
#if INSTRSET >= 9 // 512 bit integer vectors are available, AVX512
|
|
return _mm512_getmant_pd(a, _MM_MANT_NORM_p5_1, _MM_MANT_SIGN_zero);
|
|
//return Vec8d(_mm512_getmant_pd(a, _MM_MANT_NORM_1_2, _MM_MANT_SIGN_zero)) * 0.5;
|
|
#else
|
|
return Vec8d(fraction_2(a.get_low()), fraction_2(a.get_high()));
|
|
#endif
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
// Helper functions: exponent_f(x) = exponent(x) as floating point number
|
|
|
|
union vm_ufi {
|
|
float f;
|
|
uint32_t i;
|
|
};
|
|
|
|
union vm_udi {
|
|
double d;
|
|
uint64_t i;
|
|
};
|
|
|
|
// extract exponent of a positive number x as a floating point number
|
|
static inline Vec4f exponent_f(Vec4f const & x) {
|
|
const float pow2_23 = 8388608.0f; // 2^23
|
|
const float bias = 127.f; // bias in exponent
|
|
const vm_ufi upow2_23 = {pow2_23};
|
|
Vec4ui a = reinterpret_i(x); // bit-cast x to integer
|
|
Vec4ui b = a >> 23; // shift down exponent to low bits
|
|
Vec4ui c = b | Vec4ui(upow2_23.i); // insert new exponent
|
|
Vec4f d = reinterpret_f(c); // bit-cast back to double
|
|
Vec4f e = d - (pow2_23 + bias); // subtract magic number and bias
|
|
return e;
|
|
}
|
|
|
|
static inline Vec2d exponent_f(Vec2d const & x) {
|
|
const double pow2_52 = 4503599627370496.0; // 2^52
|
|
const double bias = 1023.0; // bias in exponent
|
|
const vm_udi upow2_52 = {pow2_52};
|
|
|
|
Vec2uq a = reinterpret_i(x); // bit-cast x to integer
|
|
Vec2uq b = a >> 52; // shift down exponent to low bits
|
|
Vec2uq c = b | Vec2uq(upow2_52.i); // insert new exponent
|
|
Vec2d d = reinterpret_d(c); // bit-cast back to double
|
|
Vec2d e = d - (pow2_52 + bias); // subtract magic number and bias
|
|
return e;
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec8f exponent_f(Vec8f const & x) {
|
|
const float pow2_23 = 8388608.0f; // 2^23
|
|
const float bias = 127.f; // bias in exponent
|
|
const vm_ufi upow2_23 = {pow2_23};
|
|
Vec8ui a = reinterpret_i(x); // bit-cast x to integer
|
|
Vec8ui b = a >> 23; // shift down exponent to low bits
|
|
Vec8ui c = b | Vec8ui(upow2_23.i); // insert new exponent
|
|
Vec8f d = reinterpret_f(c); // bit-cast back to double
|
|
Vec8f e = d - (pow2_23 + bias); // subtract magic number and bias
|
|
return e;
|
|
}
|
|
|
|
// extract exponent of a positive number x as a floating point number
|
|
static inline Vec4d exponent_f(Vec4d const & x) {
|
|
const double pow2_52 = 4503599627370496.0; // 2^52
|
|
const double bias = 1023.0; // bias in exponent
|
|
const vm_udi upow2_52 = {pow2_52};
|
|
|
|
Vec4uq a = reinterpret_i(x); // bit-cast x to integer
|
|
Vec4uq b = a >> 52; // shift down exponent to low bits
|
|
Vec4uq c = b | Vec4uq(upow2_52.i); // insert new exponent
|
|
Vec4d d = reinterpret_d(c); // bit-cast back to double
|
|
Vec4d e = d - (pow2_52 + bias); // subtract magic number and bias
|
|
return e;
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec16f exponent_f(Vec16f const & x) {
|
|
#if INSTRSET >= 9 // AVX512
|
|
return _mm512_getexp_ps(x);
|
|
#else
|
|
return Vec16f(exponent_f(x.get_low()), exponent_f(x.get_high()));
|
|
#endif
|
|
}
|
|
|
|
// extract exponent of a positive number x as a floating point number
|
|
static inline Vec8d exponent_f(Vec8d const & x) {
|
|
#if INSTRSET >= 9 // AVX512
|
|
return _mm512_getexp_pd(x);
|
|
#else
|
|
return Vec8d(exponent_f(x.get_low()), exponent_f(x.get_high()));
|
|
#endif
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
// log function, double precision
|
|
// template parameters:
|
|
// VTYPE: f.p. vector type
|
|
// BTYPE: boolean vector type
|
|
// M1: 0 for log, 1 for log1p
|
|
template<class VTYPE, class BTYPE, int M1>
|
|
static inline VTYPE log_d(VTYPE const & initial_x) {
|
|
|
|
// define constants
|
|
const double ln2_hi = 0.693359375;
|
|
const double ln2_lo = -2.121944400546905827679E-4;
|
|
const double P0log = 7.70838733755885391666E0;
|
|
const double P1log = 1.79368678507819816313E1;
|
|
const double P2log = 1.44989225341610930846E1;
|
|
const double P3log = 4.70579119878881725854E0;
|
|
const double P4log = 4.97494994976747001425E-1;
|
|
const double P5log = 1.01875663804580931796E-4;
|
|
const double Q0log = 2.31251620126765340583E1;
|
|
const double Q1log = 7.11544750618563894466E1;
|
|
const double Q2log = 8.29875266912776603211E1;
|
|
const double Q3log = 4.52279145837532221105E1;
|
|
const double Q4log = 1.12873587189167450590E1;
|
|
|
|
VTYPE x1, x, x2, px, qx, res, fe; // data vectors
|
|
BTYPE blend, overflow, underflow; // boolean vectors
|
|
|
|
if (M1 == 0) {
|
|
x1 = initial_x; // log(x)
|
|
}
|
|
else {
|
|
x1 = initial_x + 1.0; // log(x+1)
|
|
}
|
|
// separate mantissa from exponent
|
|
// VTYPE x = fraction(x1) * 0.5;
|
|
x = fraction_2(x1);
|
|
fe = exponent_f(x1);
|
|
|
|
blend = x > VM_SQRT2*0.5;
|
|
x = if_add(!blend, x, x); // conditional add
|
|
fe = if_add(blend, fe, 1.); // conditional add
|
|
|
|
if (M1 == 0) {
|
|
// log(x). Expand around 1.0
|
|
x -= 1.0;
|
|
}
|
|
else {
|
|
// log(x+1). Avoid loss of precision when adding 1 and later subtracting 1 if exponent = 0
|
|
x = select(fe==0., initial_x, x - 1.0);
|
|
}
|
|
|
|
// rational form
|
|
px = polynomial_5 (x, P0log, P1log, P2log, P3log, P4log, P5log);
|
|
x2 = x * x;
|
|
px *= x * x2;
|
|
qx = polynomial_5n(x, Q0log, Q1log, Q2log, Q3log, Q4log);
|
|
res = px / qx ;
|
|
|
|
// add exponent
|
|
res = mul_add(fe, ln2_lo, res); // res += fe * ln2_lo;
|
|
res += nmul_add(x2, 0.5, x); // res += x - 0.5 * x2;
|
|
res = mul_add(fe, ln2_hi, res); // res += fe * ln2_hi;
|
|
|
|
overflow = !is_finite(x1);
|
|
underflow = x1 < VM_SMALLEST_NORMAL; // denormals not supported by this functions
|
|
|
|
if (!horizontal_or(overflow | underflow)) {
|
|
// normal path
|
|
return res;
|
|
}
|
|
else {
|
|
// overflow and underflow
|
|
res = select(underflow, nan_vec<VTYPE>(NAN_LOG), res); // x1 < 0 gives NAN
|
|
res = select(x1 == 0. || is_subnormal(x1), -infinite_vec<VTYPE>(), res); // x1 == 0 gives -INF
|
|
res = select(overflow, x1, res); // INF or NAN goes through
|
|
res = select(is_inf(x1)&sign_bit(x1), nan_vec<VTYPE>(NAN_LOG), res); // -INF gives NAN
|
|
return res;
|
|
}
|
|
}
|
|
|
|
|
|
static inline Vec2d log(Vec2d const & x) {
|
|
return log_d<Vec2d, Vec2db, 0>(x);
|
|
}
|
|
|
|
static inline Vec2d log1p(Vec2d const & x) {
|
|
return log_d<Vec2d, Vec2db, 1>(x);
|
|
}
|
|
|
|
static inline Vec2d log2(Vec2d const & x) {
|
|
return VM_LOG2E * log_d<Vec2d, Vec2db, 0>(x);
|
|
}
|
|
|
|
static inline Vec2d log10(Vec2d const & x) {
|
|
return VM_LOG10E * log_d<Vec2d, Vec2db, 0>(x);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec4d log(Vec4d const & x) {
|
|
return log_d<Vec4d, Vec4db, 0>(x);
|
|
}
|
|
|
|
static inline Vec4d log1p(Vec4d const & x) {
|
|
return log_d<Vec4d, Vec4db, 1>(x);
|
|
}
|
|
|
|
static inline Vec4d log2(Vec4d const & x) {
|
|
return VM_LOG2E * log_d<Vec4d, Vec4db, 0>(x);
|
|
}
|
|
|
|
static inline Vec4d log10(Vec4d const & x) {
|
|
return VM_LOG10E * log_d<Vec4d, Vec4db, 0>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec8d log(Vec8d const & x) {
|
|
return log_d<Vec8d, Vec8db, 0>(x);
|
|
}
|
|
|
|
static inline Vec8d log1p(Vec8d const & x) {
|
|
return log_d<Vec8d, Vec8db, 1>(x);
|
|
}
|
|
|
|
static inline Vec8d log2(Vec8d const & x) {
|
|
return VM_LOG2E * log_d<Vec8d, Vec8db, 0>(x);
|
|
}
|
|
|
|
static inline Vec8d log10(Vec8d const & x) {
|
|
return VM_LOG10E * log_d<Vec8d, Vec8db, 0>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
|
|
// log function, single precision
|
|
// template parameters:
|
|
// VTYPE: f.p. vector type
|
|
// ITYPE: integer vector type with same element size
|
|
// BTYPE: boolean vector type
|
|
// BTYPEI: boolean vector type for ITYPE
|
|
// M1: 0 for log, 1 for log1p
|
|
template<class VTYPE, class ITYPE, class BTYPE, class BTYPEI, int M1>
|
|
static inline VTYPE log_f(VTYPE const & initial_x) {
|
|
|
|
// define constants
|
|
const float ln2f_hi = 0.693359375f;
|
|
const float ln2f_lo = -2.12194440E-4f;
|
|
const float P0logf = 3.3333331174E-1f;
|
|
const float P1logf = -2.4999993993E-1f;
|
|
const float P2logf = 2.0000714765E-1f;
|
|
const float P3logf = -1.6668057665E-1f;
|
|
const float P4logf = 1.4249322787E-1f;
|
|
const float P5logf = -1.2420140846E-1f;
|
|
const float P6logf = 1.1676998740E-1f;
|
|
const float P7logf = -1.1514610310E-1f;
|
|
const float P8logf = 7.0376836292E-2f;
|
|
|
|
VTYPE x1, x, res, x2, fe; // data vectors
|
|
ITYPE e; // integer vector
|
|
BTYPE blend, overflow, underflow; // boolean vectors
|
|
|
|
if (M1 == 0) {
|
|
x1 = initial_x; // log(x)
|
|
}
|
|
else {
|
|
x1 = initial_x + 1.0f; // log(x+1)
|
|
}
|
|
|
|
// separate mantissa from exponent
|
|
x = fraction_2(x1);
|
|
e = exponent(x1);
|
|
|
|
blend = x > float(VM_SQRT2*0.5);
|
|
x = if_add(!blend, x, x); // conditional add
|
|
e = if_add(BTYPEI(blend), e, ITYPE(1)); // conditional add
|
|
fe = to_float(e);
|
|
|
|
if (M1 == 0) {
|
|
// log(x). Expand around 1.0
|
|
x -= 1.0f;
|
|
}
|
|
else {
|
|
// log(x+1). Avoid loss of precision when adding 1 and later subtracting 1 if exponent = 0
|
|
x = select(BTYPE(e==0), initial_x, x - 1.0f);
|
|
}
|
|
|
|
// Taylor expansion
|
|
res = polynomial_8(x, P0logf, P1logf, P2logf, P3logf, P4logf, P5logf, P6logf, P7logf, P8logf);
|
|
x2 = x*x;
|
|
res *= x2*x;
|
|
|
|
// add exponent
|
|
res = mul_add(fe, ln2f_lo, res); // res += ln2f_lo * fe;
|
|
res += nmul_add(x2, 0.5f, x); // res += x - 0.5f * x2;
|
|
res = mul_add(fe, ln2f_hi, res); // res += ln2f_hi * fe;
|
|
|
|
overflow = !is_finite(x1);
|
|
underflow = x1 < VM_SMALLEST_NORMALF; // denormals not supported by this functions
|
|
|
|
if (!horizontal_or(overflow | underflow)) {
|
|
// normal path
|
|
return res;
|
|
}
|
|
else {
|
|
// overflow and underflow
|
|
res = select(underflow, nan_vec<VTYPE>(NAN_LOG), res); // x1 < 0 gives NAN
|
|
res = select(x1 == 0.f || is_subnormal(x1), -infinite_vec<VTYPE>(), res); // x1 == 0 or denormal gives -INF
|
|
res = select(overflow, x1, res); // INF or NAN goes through
|
|
res = select(is_inf(x1)&sign_bit(x1), nan_vec<VTYPE>(NAN_LOG), res); // -INF gives NAN
|
|
return res;
|
|
}
|
|
}
|
|
|
|
static inline Vec4f log(Vec4f const & x) {
|
|
return log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 0>(x);
|
|
}
|
|
|
|
static inline Vec4f log1p(Vec4f const & x) {
|
|
return log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 1>(x);
|
|
}
|
|
|
|
static inline Vec4f log2(Vec4f const & x) {
|
|
return float(VM_LOG2E) * log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 0>(x);
|
|
}
|
|
|
|
static inline Vec4f log10(Vec4f const & x) {
|
|
return float(VM_LOG10E) * log_f<Vec4f, Vec4i, Vec4fb, Vec4ib, 0>(x);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec8f log(Vec8f const & x) {
|
|
return log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 0>(x);
|
|
}
|
|
|
|
static inline Vec8f log1p(Vec8f const & x) {
|
|
return log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 1>(x);
|
|
}
|
|
|
|
static inline Vec8f log2(Vec8f const & x) {
|
|
return float(VM_LOG2E) * log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 0>(x);
|
|
}
|
|
|
|
static inline Vec8f log10(Vec8f const & x) {
|
|
return float(VM_LOG10E) * log_f<Vec8f, Vec8i, Vec8fb, Vec8ib, 0>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec16f log(Vec16f const & x) {
|
|
return log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 0>(x);
|
|
}
|
|
|
|
static inline Vec16f log1p(Vec16f const & x) {
|
|
return log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 1>(x);
|
|
}
|
|
|
|
static inline Vec16f log2(Vec16f const & x) {
|
|
return float(VM_LOG2E) * log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 0>(x);
|
|
}
|
|
|
|
static inline Vec16f log10(Vec16f const & x) {
|
|
return float(VM_LOG10E) * log_f<Vec16f, Vec16i, Vec16fb, Vec16ib, 0>(x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
/******************************************************************************
|
|
* Cube root and reciprocal cube root
|
|
******************************************************************************/
|
|
|
|
// cube root template, double precision
|
|
// template parameters:
|
|
// VTYPE: f.p. vector type
|
|
// ITYPE: uint32_t integer vector type with same total number of bits
|
|
// ITYPE2: uint64_t integer vector type with same total number of bits
|
|
// BTYPE: boolean vector type
|
|
// CR: -1 for reciprocal cube root, 1 for cube root, 2 for cube root squared
|
|
template<class VTYPE, class ITYPE, class ITYPE2, class BTYPE, int CR>
|
|
static inline VTYPE cbrt_d(VTYPE const & x) {
|
|
const int iter = 7; // iteration count of x^(-1/3) loop
|
|
int i;
|
|
VTYPE xa, xa3, a, a2;
|
|
ITYPE m1, m2;
|
|
BTYPE underflow;
|
|
ITYPE2 q1(0x5540000000000000ULL); // exponent bias
|
|
ITYPE2 q2(0x0005555500000000ULL); // exponent multiplier for 1/3
|
|
ITYPE2 q3(0x0010000000000000ULL); // denormal limit
|
|
const double one_third = 1./3.;
|
|
const double four_third = 4./3.;
|
|
|
|
xa = abs(x);
|
|
xa3 = one_third*xa;
|
|
|
|
// multiply exponent by -1/3
|
|
m1 = reinterpret_i(xa);
|
|
m2 = ITYPE(q1) - (m1 >> 20) * ITYPE(q2);
|
|
a = reinterpret_d(m2);
|
|
underflow = BTYPE(ITYPE2(m1) < q3); // true if denormal or zero
|
|
|
|
// Newton Raphson iteration
|
|
for (i = 0; i < iter-1; i++) {
|
|
a2 = a * a;
|
|
a = nmul_add(xa3, a2*a2, four_third*a); // a = four_third*a - xa3*a2*a2;
|
|
}
|
|
// last iteration with better precision
|
|
a2 = a * a;
|
|
a = mul_add(one_third, nmul_add(xa, a2*a2, a), a); // a = a + one_third*(a - xa*a2*a2);
|
|
|
|
if (CR == -1) { // reciprocal cube root
|
|
// (note: gives wrong sign when input is INF)
|
|
// generate INF if underflow
|
|
a = select(underflow, infinite_vec<VTYPE>(), a);
|
|
// get sign
|
|
a = sign_combine(a, x);
|
|
}
|
|
else if (CR == 1) { // cube root
|
|
a = a * a * x;
|
|
// generate 0 if underflow
|
|
a = select(underflow, 0., a);
|
|
}
|
|
else if (CR == 2) { // cube root squared
|
|
// (note: gives wrong sign when input is INF)
|
|
a = a * xa;
|
|
// generate 0 if underflow
|
|
a = select(underflow, 0., a);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
// template instances for cbrt and reciprocal_cbrt
|
|
|
|
// cube root
|
|
static inline Vec2d cbrt(Vec2d const & x) {
|
|
return cbrt_d<Vec2d, Vec4ui, Vec2uq, Vec2db, 1> (x);
|
|
}
|
|
|
|
// reciprocal cube root
|
|
static inline Vec2d reciprocal_cbrt(Vec2d const & x) {
|
|
return cbrt_d<Vec2d, Vec4ui, Vec2uq, Vec2db, -1> (x);
|
|
}
|
|
|
|
// square cube root
|
|
static inline Vec2d square_cbrt(Vec2d const & x) {
|
|
return cbrt_d<Vec2d, Vec4ui, Vec2uq, Vec2db, 2> (x);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec4d cbrt(Vec4d const & x) {
|
|
return cbrt_d<Vec4d, Vec8ui, Vec4uq, Vec4db, 1> (x);
|
|
}
|
|
|
|
static inline Vec4d reciprocal_cbrt(Vec4d const & x) {
|
|
return cbrt_d<Vec4d, Vec8ui, Vec4uq, Vec4db, -1> (x);
|
|
}
|
|
|
|
static inline Vec4d square_cbrt(Vec4d const & x) {
|
|
return cbrt_d<Vec4d, Vec8ui, Vec4uq, Vec4db, 2> (x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec8d cbrt(Vec8d const & x) {
|
|
return cbrt_d<Vec8d, Vec16ui, Vec8uq, Vec8db, 1> (x);
|
|
}
|
|
|
|
static inline Vec8d reciprocal_cbrt(Vec8d const & x) {
|
|
return cbrt_d<Vec8d, Vec16ui, Vec8uq, Vec8db, -1> (x);
|
|
}
|
|
|
|
static inline Vec8d square_cbrt(Vec8d const & x) {
|
|
return cbrt_d<Vec8d, Vec16ui, Vec8uq, Vec8db, 2> (x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
// cube root template, single precision
|
|
// template parameters:
|
|
// VTYPE: f.p. vector type
|
|
// ITYPE: uint32_t integer vector type
|
|
// BTYPE: boolean vector type
|
|
// CR: -1 for reciprocal cube root, 1 for cube root, 2 for cube root squared
|
|
template<class VTYPE, class ITYPE, class BTYPE, int CR>
|
|
static inline VTYPE cbrt_f(VTYPE const & x) {
|
|
|
|
const int iter = 6; // iteration count of x^(-1/3) loop
|
|
int i;
|
|
VTYPE xa, xa3, a, a2;
|
|
ITYPE m1, m2;
|
|
BTYPE underflow;
|
|
ITYPE q1(0x54800000U); // exponent bias
|
|
ITYPE q2(0x002AAAAAU); // exponent multiplier for 1/3
|
|
ITYPE q3(0x00800000U); // denormal limit
|
|
const float one_third = float(1./3.);
|
|
const float four_third = float(4./3.);
|
|
|
|
xa = abs(x);
|
|
xa3 = one_third*xa;
|
|
|
|
// multiply exponent by -1/3
|
|
m1 = reinterpret_i(xa);
|
|
m2 = q1 - (m1 >> 23) * q2;
|
|
a = reinterpret_f(m2);
|
|
|
|
underflow = BTYPE(m1 < q3); // true if denormal or zero
|
|
|
|
// Newton Raphson iteration
|
|
for (i = 0; i < iter-1; i++) {
|
|
a2 = a*a;
|
|
a = nmul_add(xa3, a2*a2, four_third*a); // a = four_third*a - xa3*a2*a2;
|
|
}
|
|
// last iteration with better precision
|
|
a2 = a*a;
|
|
a = mul_add(one_third, nmul_add(xa, a2*a2, a), a); //a = a + one_third*(a - xa*a2*a2);
|
|
|
|
if (CR == -1) { // reciprocal cube root
|
|
// generate INF if underflow
|
|
a = select(underflow, infinite_vec<VTYPE>(), a);
|
|
// get sign
|
|
a = sign_combine(a, x);
|
|
}
|
|
else if (CR == 1) { // cube root
|
|
a = a * a * x;
|
|
// generate 0 if underflow
|
|
a = select(underflow, 0., a);
|
|
}
|
|
else if (CR == 2) { // cube root squared
|
|
a = a * xa;
|
|
// generate 0 if underflow
|
|
a = select(underflow, 0., a);
|
|
}
|
|
return a;
|
|
}
|
|
|
|
// template instances for cbrt and reciprocal_cbrt
|
|
|
|
// cube root
|
|
static inline Vec4f cbrt(Vec4f const & x) {
|
|
return cbrt_f<Vec4f, Vec4ui, Vec4fb, 1> (x);
|
|
}
|
|
|
|
// reciprocal cube root
|
|
static inline Vec4f reciprocal_cbrt(Vec4f const & x) {
|
|
return cbrt_f<Vec4f, Vec4ui, Vec4fb, -1> (x);
|
|
}
|
|
|
|
// square cube root
|
|
static inline Vec4f square_cbrt(Vec4f const & x) {
|
|
return cbrt_f<Vec4f, Vec4ui, Vec4fb, 2> (x);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
static inline Vec8f cbrt(Vec8f const & x) {
|
|
return cbrt_f<Vec8f, Vec8ui, Vec8fb, 1> (x);
|
|
}
|
|
|
|
static inline Vec8f reciprocal_cbrt(Vec8f const & x) {
|
|
return cbrt_f<Vec8f, Vec8ui, Vec8fb, -1> (x);
|
|
}
|
|
|
|
static inline Vec8f square_cbrt(Vec8f const & x) {
|
|
return cbrt_f<Vec8f, Vec8ui, Vec8fb, 2> (x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
static inline Vec16f cbrt(Vec16f const & x) {
|
|
return cbrt_f<Vec16f, Vec16ui, Vec16fb, 1> (x);
|
|
}
|
|
|
|
static inline Vec16f reciprocal_cbrt(Vec16f const & x) {
|
|
return cbrt_f<Vec16f, Vec16ui, Vec16fb, -1> (x);
|
|
}
|
|
|
|
static inline Vec16f square_cbrt(Vec16f const & x) {
|
|
return cbrt_f<Vec16f, Vec16ui, Vec16fb, 2> (x);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
// ****************************************************************************
|
|
// pow template, double precision
|
|
// ****************************************************************************
|
|
// Calculate x to the power of y.
|
|
|
|
// Precision is important here because rounding errors get multiplied by y.
|
|
// The logarithm is calculated with extra precision, and the exponent is
|
|
// calculated separately.
|
|
// The logarithm is calculated by Pad\E9 approximation with 6'th degree
|
|
// polynomials. A 7'th degree would be preferred for best precision by high y.
|
|
// The alternative method: log(x) = z + z^3*R(z)/S(z), where z = 2(x-1)/(x+1)
|
|
// did not give better precision.
|
|
|
|
// Template parameters:
|
|
// VTYPE: data vector type
|
|
// ITYPE: signed integer vector type
|
|
// BTYPE: boolean vector type
|
|
template <class VTYPE, class ITYPE, class BTYPE>
|
|
static inline VTYPE pow_template_d(VTYPE const & x0, VTYPE const & y) {
|
|
|
|
// define constants
|
|
const double ln2d_hi = 0.693145751953125; // log(2) in extra precision, high bits
|
|
const double ln2d_lo = 1.42860682030941723212E-6; // low bits of log(2)
|
|
const double log2e = VM_LOG2E; // 1/log(2)
|
|
const double pow2_52 = 4503599627370496.0; // 2^52
|
|
|
|
// coefficients for Pad\E9 polynomials
|
|
const double P0logl = 2.0039553499201281259648E1;
|
|
const double P1logl = 5.7112963590585538103336E1;
|
|
const double P2logl = 6.0949667980987787057556E1;
|
|
const double P3logl = 2.9911919328553073277375E1;
|
|
const double P4logl = 6.5787325942061044846969E0;
|
|
const double P5logl = 4.9854102823193375972212E-1;
|
|
const double P6logl = 4.5270000862445199635215E-5;
|
|
const double Q0logl = 6.0118660497603843919306E1;
|
|
const double Q1logl = 2.1642788614495947685003E2;
|
|
const double Q2logl = 3.0909872225312059774938E2;
|
|
const double Q3logl = 2.2176239823732856465394E2;
|
|
const double Q4logl = 8.3047565967967209469434E1;
|
|
const double Q5logl = 1.5062909083469192043167E1;
|
|
|
|
// Taylor coefficients for exp function, 1/n!
|
|
const double p2 = 1./2.;
|
|
const double p3 = 1./6.;
|
|
const double p4 = 1./24.;
|
|
const double p5 = 1./120.;
|
|
const double p6 = 1./720.;
|
|
const double p7 = 1./5040.;
|
|
const double p8 = 1./40320.;
|
|
const double p9 = 1./362880.;
|
|
const double p10 = 1./3628800.;
|
|
const double p11 = 1./39916800.;
|
|
const double p12 = 1./479001600.;
|
|
const double p13 = 1./6227020800.;
|
|
|
|
// data vectors
|
|
VTYPE x, x1, x2;
|
|
VTYPE px, qx, ef, yr, v, z, z1;
|
|
VTYPE lg, lg1, lg2;
|
|
VTYPE lgerr, x2err;
|
|
VTYPE e1, e2, e3, ee;
|
|
// integer vectors
|
|
ITYPE ei, ej, yodd;
|
|
// boolean vectors
|
|
BTYPE blend, xzero, xnegative;
|
|
BTYPE overflow, underflow, xfinite, yfinite, efinite;
|
|
|
|
// remove sign
|
|
x1 = abs(x0);
|
|
|
|
// Separate mantissa from exponent
|
|
// This gives the mantissa * 0.5
|
|
x = fraction_2(x1);
|
|
|
|
// reduce range of x = +/- sqrt(2)/2
|
|
blend = x > VM_SQRT2*0.5;
|
|
x = if_add(!blend, x, x); // conditional add
|
|
|
|
// Pade approximation
|
|
// Higher precision than in log function. Still higher precision wanted
|
|
x -= 1.0;
|
|
x2 = x*x;
|
|
px = polynomial_6 (x, P0logl, P1logl, P2logl, P3logl, P4logl, P5logl, P6logl);
|
|
px *= x * x2;
|
|
qx = polynomial_6n (x, Q0logl, Q1logl, Q2logl, Q3logl, Q4logl, Q5logl);
|
|
lg1 = px / qx;
|
|
|
|
// extract exponent
|
|
ef = exponent_f(x1);
|
|
ef = if_add(blend, ef, 1.); // conditional add
|
|
|
|
// multiply exponent by y
|
|
// nearest integer e1 goes into exponent of result, remainder yr is added to log
|
|
e1 = round(ef * y);
|
|
yr = mul_sub_x(ef, y, e1); // calculate remainder yr. precision very important here
|
|
|
|
// add initial terms to Pade expansion
|
|
lg = nmul_add(0.5, x2, x) + lg1; // lg = (x - 0.5 * x2) + lg1;
|
|
// calculate rounding errors in lg
|
|
// rounding error in multiplication 0.5*x*x
|
|
x2err = mul_sub_x(0.5*x, x, 0.5*x2);
|
|
// rounding error in additions and subtractions
|
|
lgerr = mul_add(0.5, x2, lg - x) - lg1; // lgerr = ((lg - x) + 0.5 * x2) - lg1;
|
|
|
|
// extract something for the exponent
|
|
e2 = round(lg * y * VM_LOG2E);
|
|
// subtract this from lg, with extra precision
|
|
v = mul_sub_x(lg, y, e2 * ln2d_hi);
|
|
v = nmul_add(e2, ln2d_lo, v); // v -= e2 * ln2d_lo;
|
|
|
|
// add remainder from ef * y
|
|
v = mul_add(yr, VM_LN2, v); // v += yr * VM_LN2;
|
|
|
|
// correct for previous rounding errors
|
|
v = nmul_add(lgerr + x2err, y, v); // v -= (lgerr + x2err) * y;
|
|
|
|
// exp function
|
|
|
|
// extract something for the exponent if possible
|
|
x = v;
|
|
e3 = round(x*log2e);
|
|
// high precision multiplication not needed here because abs(e3) <= 1
|
|
x = nmul_add(e3, VM_LN2, x); // x -= e3 * VM_LN2;
|
|
|
|
z = polynomial_13m(x, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11, p12, p13);
|
|
z = z + 1.0;
|
|
|
|
// contributions to exponent
|
|
ee = e1 + e2 + e3;
|
|
ei = round_to_int64_limited(ee);
|
|
// biased exponent of result:
|
|
ej = ei + (ITYPE(reinterpret_i(z)) >> 52);
|
|
// check exponent for overflow and underflow
|
|
overflow = BTYPE(ej >= 0x07FF) | (ee > 3000.);
|
|
underflow = BTYPE(ej <= 0x0000) | (ee < -3000.);
|
|
|
|
// add exponent by integer addition
|
|
z = reinterpret_d(ITYPE(reinterpret_i(z)) + (ei << 52));
|
|
|
|
// check for special cases
|
|
xfinite = is_finite(x0);
|
|
yfinite = is_finite(y);
|
|
efinite = is_finite(ee);
|
|
xzero = is_zero_or_subnormal(x0);
|
|
xnegative = x0 < 0.;
|
|
|
|
// check for overflow and underflow
|
|
if (horizontal_or(overflow | underflow)) {
|
|
// handle errors
|
|
z = select(underflow, VTYPE(0.), z);
|
|
z = select(overflow, infinite_vec<VTYPE>(), z);
|
|
}
|
|
|
|
// check for x == 0
|
|
z = select(xzero, select(y < 0., infinite_vec<VTYPE>(), select(y == 0., VTYPE(1.), VTYPE(0.))), z);
|
|
|
|
// check for x < 0. y must be integer
|
|
if (horizontal_or(xnegative)) {
|
|
// test if y odd
|
|
yodd = ITYPE(reinterpret_i(abs(y) + pow2_52)) << 63; // convert y to integer and shift bit 0 to position of sign bit
|
|
z1 = z | (x0 & VTYPE(reinterpret_d(yodd))); // apply sign if y odd
|
|
z1 = select(y == round(y), z1, nan_vec<VTYPE>(NAN_POW)); // NAN if y not integer
|
|
z = select(xnegative, z1, z);
|
|
}
|
|
|
|
// check for range errors
|
|
if (horizontal_and(xfinite & yfinite & efinite)) {
|
|
// fast return if no special cases
|
|
return z;
|
|
}
|
|
// handle special error cases
|
|
z = select(yfinite & efinite, z, select(x1 == 1., VTYPE(1.), select((x1 > 1.) ^ sign_bit(y), infinite_vec<VTYPE>(), 0.)));
|
|
yodd = ITYPE(reinterpret_i(abs(y) + pow2_52)) << 63; // same as above
|
|
z = select(xfinite, z, select(y == 0., VTYPE(1.), select(y < 0., VTYPE(0.), infinite_vec<VTYPE>() | ( VTYPE(reinterpret_d(yodd)) & x0))));
|
|
z = select(is_nan(x0), select(is_nan(y), x0 | y, x0), select(is_nan(y), y, z));
|
|
return z;
|
|
};
|
|
|
|
|
|
//This template is in vectorf128.h to prevent implicit conversion of float y to int when float version is not defined:
|
|
//template <typename TT> static Vec2d pow(Vec2d const & a, TT n);
|
|
|
|
// instantiations of pow_template_d:
|
|
template <>
|
|
inline Vec2d pow<Vec2d const &>(Vec2d const & x, Vec2d const & y) {
|
|
return pow_template_d<Vec2d, Vec2q, Vec2db>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec2d pow<double>(Vec2d const & x, double y) {
|
|
return pow_template_d<Vec2d, Vec2q, Vec2db>(x, y);
|
|
}
|
|
template <>
|
|
inline Vec2d pow<float>(Vec2d const & x, float y) {
|
|
return pow_template_d<Vec2d, Vec2q, Vec2db>(x, (double)y);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
template <>
|
|
inline Vec4d pow<Vec4d const &>(Vec4d const & x, Vec4d const & y) {
|
|
return pow_template_d<Vec4d, Vec4q, Vec4db>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec4d pow<double>(Vec4d const & x, double y) {
|
|
return pow_template_d<Vec4d, Vec4q, Vec4db>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec4d pow<float>(Vec4d const & x, float y) {
|
|
return pow_template_d<Vec4d, Vec4q, Vec4db>(x, (double)y);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
template <>
|
|
inline Vec8d pow<Vec8d const &>(Vec8d const & x, Vec8d const & y) {
|
|
return pow_template_d<Vec8d, Vec8q, Vec8db>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec8d pow<double>(Vec8d const & x, double y) {
|
|
return pow_template_d<Vec8d, Vec8q, Vec8db>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec8d pow<float>(Vec8d const & x, float y) {
|
|
return pow_template_d<Vec8d, Vec8q, Vec8db>(x, (double)y);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
|
|
// ****************************************************************************
|
|
// pow template, single precision
|
|
// ****************************************************************************
|
|
|
|
// Template parameters:
|
|
// VTYPE: data vector type
|
|
// ITYPE: signed integer vector type
|
|
// BTYPE: boolean vector type
|
|
// Calculate x to the power of y
|
|
template <class VTYPE, class ITYPE, class BTYPE>
|
|
static inline VTYPE pow_template_f(VTYPE const & x0, VTYPE const & y) {
|
|
|
|
// define constants
|
|
const float ln2f_hi = 0.693359375f;
|
|
const float ln2f_lo = -2.12194440e-4f;
|
|
//const float max_expf = 87.3f;
|
|
const float log2e = float(VM_LOG2E); // 1/log(2)
|
|
const float pow2_23 = 8388608.0f; // 2^23
|
|
|
|
const float P0logf = 3.3333331174E-1f;
|
|
const float P1logf = -2.4999993993E-1f;
|
|
const float P2logf = 2.0000714765E-1f;
|
|
const float P3logf = -1.6668057665E-1f;
|
|
const float P4logf = 1.4249322787E-1f;
|
|
const float P5logf = -1.2420140846E-1f;
|
|
const float P6logf = 1.1676998740E-1f;
|
|
const float P7logf = -1.1514610310E-1f;
|
|
const float P8logf = 7.0376836292E-2f;
|
|
|
|
// Taylor coefficients for exp function, 1/n!
|
|
const float p2expf = 1.f/2.f;
|
|
const float p3expf = 1.f/6.f;
|
|
const float p4expf = 1.f/24.f;
|
|
const float p5expf = 1.f/120.f;
|
|
const float p6expf = 1.f/720.f;
|
|
const float p7expf = 1.f/5040.f;
|
|
|
|
// data vectors
|
|
VTYPE x, x1, x2;
|
|
VTYPE ef, yr, v, z, z1;
|
|
VTYPE lg, lg1;
|
|
VTYPE lgerr, x2err;
|
|
VTYPE e1, e2, e3, ee;
|
|
// integer vectors
|
|
ITYPE ei, ej, yodd;
|
|
// boolean vectors
|
|
BTYPE blend, xzero, xnegative;
|
|
BTYPE overflow, underflow, xfinite, yfinite, efinite;
|
|
|
|
// remove sign
|
|
x1 = abs(x0);
|
|
|
|
// Separate mantissa from exponent
|
|
// This gives the mantissa * 0.5
|
|
x = fraction_2(x1);
|
|
|
|
// reduce range of x = +/- sqrt(2)/2
|
|
blend = x > float(VM_SQRT2 * 0.5);
|
|
x = if_add(!blend, x, x); // conditional add
|
|
|
|
// Taylor expansion, high precision
|
|
x -= 1.0f;
|
|
x2 = x * x;
|
|
lg1 = polynomial_8(x, P0logf, P1logf, P2logf, P3logf, P4logf, P5logf, P6logf, P7logf, P8logf);
|
|
lg1 *= x2 * x;
|
|
|
|
// extract exponent
|
|
ef = exponent_f(x1);
|
|
ef = if_add(blend, ef, 1.0f); // conditional add
|
|
|
|
// multiply exponent by y
|
|
// nearest integer e1 goes into exponent of result, remainder yr is added to log
|
|
e1 = round(ef * y);
|
|
yr = mul_sub_x(ef, y, e1); // calculate remainder yr. precision very important here
|
|
|
|
// add initial terms to expansion
|
|
lg = nmul_add(0.5f, x2, x) + lg1; // lg = (x - 0.5f * x2) + lg1;
|
|
|
|
// calculate rounding errors in lg
|
|
// rounding error in multiplication 0.5*x*x
|
|
x2err = mul_sub_x(0.5f*x, x, 0.5f * x2);
|
|
// rounding error in additions and subtractions
|
|
lgerr = mul_add(0.5f, x2, lg - x) - lg1; // lgerr = ((lg - x) + 0.5f * x2) - lg1;
|
|
|
|
// extract something for the exponent
|
|
e2 = round(lg * y * float(VM_LOG2E));
|
|
// subtract this from lg, with extra precision
|
|
v = mul_sub_x(lg, y, e2 * ln2f_hi);
|
|
v = nmul_add(e2, ln2f_lo, v); // v -= e2 * ln2f_lo;
|
|
|
|
// correct for previous rounding errors
|
|
v -= mul_sub(lgerr + x2err, y, yr * float(VM_LN2)); // v -= (lgerr + x2err) * y - yr * float(VM_LN2) ;
|
|
|
|
// exp function
|
|
|
|
// extract something for the exponent if possible
|
|
x = v;
|
|
e3 = round(x*log2e);
|
|
// high precision multiplication not needed here because abs(e3) <= 1
|
|
x = nmul_add(e3, float(VM_LN2), x); // x -= e3 * float(VM_LN2);
|
|
|
|
// Taylor polynomial
|
|
x2 = x * x;
|
|
z = polynomial_5(x, p2expf, p3expf, p4expf, p5expf, p6expf, p7expf)*x2 + x + 1.0f;
|
|
|
|
// contributions to exponent
|
|
ee = e1 + e2 + e3;
|
|
ei = round_to_int(ee);
|
|
// biased exponent of result:
|
|
ej = ei + (ITYPE(reinterpret_i(z)) >> 23);
|
|
// check exponent for overflow and underflow
|
|
overflow = BTYPE(ej >= 0x0FF) | (ee > 300.f);
|
|
underflow = BTYPE(ej <= 0x000) | (ee < -300.f);
|
|
|
|
// add exponent by integer addition
|
|
z = reinterpret_f(ITYPE(reinterpret_i(z)) + (ei << 23)); // the extra 0x10000 is shifted out here
|
|
|
|
// check for special cases
|
|
xfinite = is_finite(x0);
|
|
yfinite = is_finite(y);
|
|
efinite = is_finite(ee);
|
|
xzero = is_zero_or_subnormal(x0);
|
|
xnegative = x0 < 0.f;
|
|
|
|
// check for overflow and underflow
|
|
if (horizontal_or(overflow | underflow)) {
|
|
// handle errors
|
|
z = select(underflow, VTYPE(0.f), z);
|
|
z = select(overflow, infinite_vec<VTYPE>(), z);
|
|
}
|
|
|
|
// check for x == 0
|
|
z = select(xzero, select(y < 0.f, infinite_vec<VTYPE>(), select(y == 0.f, VTYPE(1.), VTYPE(0.f))), z);
|
|
|
|
// check for x < 0. y must be integer
|
|
if (horizontal_or(xnegative)) {
|
|
// test if y odd
|
|
yodd = ITYPE(reinterpret_i(abs(y) + pow2_23)) << 31; // convert y to integer and shift bit 0 to position of sign bit
|
|
z1 = z | (x0 & VTYPE(reinterpret_f(yodd))); // apply sign if y odd
|
|
z1 = select(y == round(y), z1, nan_vec<VTYPE>(NAN_POW)); // NAN if y not integer
|
|
z = select(xnegative, z1, z);
|
|
}
|
|
|
|
// check for range errors
|
|
if (horizontal_and(xfinite & yfinite & efinite)) {
|
|
// fast return if no special cases
|
|
return z;
|
|
}
|
|
// handle special error cases
|
|
z = select(yfinite & efinite, z, select(x1 == 1.f, VTYPE(1.f), select((x1 > 1.f) ^ sign_bit(y), infinite_vec<VTYPE>(), 0.f)));
|
|
yodd = ITYPE(reinterpret_i(abs(y) + pow2_23)) << 31; // same as above
|
|
z = select(xfinite, z, select(y == 0.f, VTYPE(1.f), select(y < 0.f, VTYPE(0.f), infinite_vec<VTYPE>() | (VTYPE(reinterpret_f(yodd)) & x0))));
|
|
z = select(is_nan(x0), select(is_nan(y), x0 | y, x0), select(is_nan(y), y, z));
|
|
return z;
|
|
}
|
|
|
|
//This template is in vectorf128.h to prevent implicit conversion of float y to int when float version is not defined:
|
|
//template <typename TT> static Vec4f pow(Vec4f const & a, TT n);
|
|
|
|
template <>
|
|
inline Vec4f pow<Vec4f const &>(Vec4f const & x, Vec4f const & y) {
|
|
return pow_template_f<Vec4f, Vec4i, Vec4fb>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec4f pow<float>(Vec4f const & x, float y) {
|
|
return pow_template_f<Vec4f, Vec4i, Vec4fb>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec4f pow<double>(Vec4f const & x, double y) {
|
|
return pow_template_f<Vec4f, Vec4i, Vec4fb>(x, (float)y);
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
template <>
|
|
inline Vec8f pow<Vec8f const &>(Vec8f const & x, Vec8f const & y) {
|
|
return pow_template_f<Vec8f, Vec8i, Vec8fb>(x, y);
|
|
}
|
|
|
|
template <>
|
|
inline Vec8f pow<float>(Vec8f const & x, float y) {
|
|
return pow_template_f<Vec8f, Vec8i, Vec8fb>(x, y);
|
|
}
|
|
template <>
|
|
inline Vec8f pow<double>(Vec8f const & x, double y) {
|
|
return pow_template_f<Vec8f, Vec8i, Vec8fb>(x, (float)y);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
inline Vec16f pow(Vec16f const & x, Vec16f const & y) {
|
|
return pow_template_f<Vec16f, Vec16i, Vec16fb>(x, y);
|
|
}
|
|
|
|
inline Vec16f pow(Vec16f const & x, float y) {
|
|
return pow_template_f<Vec16f, Vec16i, Vec16fb>(x, y);
|
|
}
|
|
|
|
inline Vec16f pow(Vec16f const & x, double y) {
|
|
return pow_template_f<Vec16f, Vec16i, Vec16fb>(x, (float)y);
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
|
|
// *************************************************************
|
|
// power function with rational exponent
|
|
// *************************************************************
|
|
// Power function with rational exponent: x^(a/b)
|
|
// Template must be defined as class to allow partial template specialization
|
|
template <int a, int b>
|
|
class Power_rational {
|
|
public:
|
|
// overloaded member function for each vector type
|
|
static Vec4f pow(Vec4f const & x) {
|
|
Vec4f y = x;
|
|
// negative x allowed when b odd or a even
|
|
// (if a is even then either b is odd or a/b can be reduced,
|
|
// but we can check a even anyway at no cost to be sure)
|
|
if (a == 0) return 1.f;
|
|
if ((b | ~a) & 1) y = abs(y);
|
|
y = ::pow(y, float(double(a)/double(b)));
|
|
if (a & b & 1) y = sign_combine(y, x); // apply sign if a and b both odd
|
|
if ((a ^ b) >= 0) y = select(x == 0.f, 0.f, y); // zero allowed for positive a and b
|
|
return y;
|
|
}
|
|
static Vec2d pow(Vec2d const & x) {
|
|
Vec2d y = x;
|
|
if (a == 0) return 1.;
|
|
if ((b | ~a) & 1) y = abs(y);
|
|
y = ::pow(y, double((long double)a/(long double)b));
|
|
if (a & b & 1) y = sign_combine(y, x);
|
|
if ((a ^ b) >= 0) y = select(x == 0., 0., y);
|
|
return y;
|
|
}
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
static Vec8f pow(Vec8f const & x) {
|
|
Vec8f y = x;
|
|
if (a == 0) return 1.f;
|
|
if ((b | ~a) & 1) y = abs(y);
|
|
y = ::pow(y, float(double(a)/double(b)));
|
|
if (a & b & 1) y = sign_combine(y, x);
|
|
if ((a ^ b) >= 0) y = select(x == 0.f, 0.f, y);
|
|
return y;
|
|
}
|
|
static Vec4d pow(Vec4d const & x) {
|
|
Vec4d y = x;
|
|
if (a == 0) return 1.;
|
|
if ((b | ~a) & 1) y = abs(y);
|
|
y = ::pow(y, double((long double)a/(long double)b));
|
|
if (a & b & 1) y = sign_combine(y, x);
|
|
if ((a ^ b) >= 0) y = select(x == 0., 0., y);
|
|
return y;
|
|
}
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
static Vec16f pow(Vec16f const & x) {
|
|
Vec16f y = x;
|
|
if (a == 0) return 1.f;
|
|
if ((b | ~a) & 1) y = abs(y);
|
|
y = ::pow(y, float(double(a)/double(b)));
|
|
if (a & b & 1) y = sign_combine(y, x);
|
|
if ((a ^ b) >= 0) y = select(x == 0.f, 0.f, y);
|
|
return y;
|
|
}
|
|
static Vec8d pow(Vec8d const & x) {
|
|
Vec8d y = x;
|
|
if (a == 0) return 1.;
|
|
if ((b | ~a) & 1) y = abs(y);
|
|
y = ::pow(y, double((long double)a/(long double)b));
|
|
if (a & b & 1) y = sign_combine(y, x);
|
|
if ((a ^ b) >= 0) y = select(x == 0., 0., y);
|
|
return y;
|
|
}
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
};
|
|
|
|
// partial specialization for b = 0
|
|
template<int a>
|
|
class Power_rational<a,0> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {return nan_vec<VTYPE>(NAN_LOG);}
|
|
};
|
|
|
|
// partial specialization for b = 1
|
|
template<int a>
|
|
class Power_rational<a,1> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {return pow_n<a>(x);}
|
|
};
|
|
|
|
// partial specialization for b = 2
|
|
template<int a>
|
|
class Power_rational<a,2> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
VTYPE y = pow_n<(a > 0 ? a/2 : (a-1)/2)>(x);
|
|
if (a & 1) y *= sqrt(x);
|
|
return y;
|
|
}
|
|
};
|
|
|
|
// full specialization for a = 1, b = 2
|
|
template<>
|
|
class Power_rational<1,2> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
return sqrt(x);
|
|
}
|
|
};
|
|
|
|
// full specialization for a = -1, b = 2
|
|
template<>
|
|
class Power_rational<-1,2> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
// (this is faster than iteration method on modern CPUs)
|
|
return VTYPE(1.f) / sqrt(x);
|
|
}
|
|
};
|
|
|
|
// partial specialization for b = 3
|
|
template<int a>
|
|
class Power_rational<a,3> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
VTYPE t;
|
|
switch (a % 3) {
|
|
case -2:
|
|
t = reciprocal_cbrt(x);
|
|
t *= t;
|
|
if (a == -2) return t;
|
|
t = t / pow_n<(-a-2)/3>(x);
|
|
break;
|
|
case -1:
|
|
t = reciprocal_cbrt(x);
|
|
if (a == -1) return t;
|
|
t = t / pow_n<(-a-1)/3>(x);
|
|
break;
|
|
case 0:
|
|
t = pow_n<a/3>(x);
|
|
break;
|
|
case 1:
|
|
t = cbrt(x);
|
|
if (a == 1) return t;
|
|
t = t * pow_n<a/3>(x);
|
|
break;
|
|
case 2:
|
|
t = square_cbrt(x);
|
|
if (a == 2) return t;
|
|
t = t * pow_n<a/3>(x);
|
|
break;
|
|
}
|
|
return t;
|
|
}
|
|
};
|
|
|
|
// partial specialization for b = 4
|
|
template<int a>
|
|
class Power_rational<a,4> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
VTYPE t, s1, s2;
|
|
s1 = sqrt(x);
|
|
if (a & 1) s2 = sqrt(s1);
|
|
switch (a % 4) {
|
|
case -3:
|
|
t = s2 / pow_n<1+(-a)/4>(x);
|
|
break;
|
|
case -2:
|
|
t = s1 / pow_n<1+(-a)/4>(x);
|
|
break;
|
|
case -1:
|
|
if (a != -1) s2 *= pow_n<(-a)/4>(x);
|
|
t = VTYPE(1.f) / s2;
|
|
break;
|
|
case 0: default:
|
|
t = pow_n<a/4>(x);
|
|
break;
|
|
case 1:
|
|
t = s2;
|
|
if (a != 1) t *= pow_n<a/4>(x);
|
|
break;
|
|
case 2:
|
|
t = s1;
|
|
if (a != 2) t *= pow_n<a/4>(x);
|
|
break;
|
|
case 3:
|
|
t = s1 * s2;
|
|
if (a != 3) t *= pow_n<a/4>(x);
|
|
break;
|
|
}
|
|
return t;
|
|
}
|
|
};
|
|
|
|
// partial specialization for b = 6
|
|
template<int a>
|
|
class Power_rational<a,6> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
VTYPE t, s1, s2, s3;
|
|
switch (a % 6) {
|
|
case -5:
|
|
t = reciprocal_cbrt(x);
|
|
t = t * t * sqrt(t);
|
|
if (a != -5) t /= pow_n<(-a)/6>(x);
|
|
break;
|
|
case -4:
|
|
t = reciprocal_cbrt(x);
|
|
t *= t;
|
|
if (a != -4) t /= pow_n<(-a)/6>(x);
|
|
break;
|
|
case -3:
|
|
t = pow_n<a/6>(x);
|
|
t /= sqrt(x);
|
|
break;
|
|
case -2:
|
|
t = reciprocal_cbrt(x);
|
|
if (a != -2) t /= pow_n<(-a)/6>(x);
|
|
break;
|
|
case -1:
|
|
t = sqrt(reciprocal_cbrt(x));
|
|
if (a != -1) t /= pow_n<(-a)/6>(x);
|
|
break;
|
|
case 0: default:
|
|
t = pow_n<a/6>(x);
|
|
break;
|
|
case 1:
|
|
t = sqrt(cbrt(x));
|
|
if (a != 1) t *= pow_n<a/6>(x);
|
|
break;
|
|
case 2:
|
|
t = cbrt(x);
|
|
if (a != 2) t *= pow_n<a/6>(x);
|
|
break;
|
|
case 3:
|
|
t = sqrt(x);
|
|
if (a != 3) t *= pow_n<a/6>(x);
|
|
break;
|
|
case 4:
|
|
t = square_cbrt(x);
|
|
if (a != 4) t *= pow_n<a/6>(x);
|
|
break;
|
|
case 5:
|
|
t = cbrt(x);
|
|
t = t * t * sqrt(t);
|
|
if (a != 5) t *= pow_n<a/6>(x);
|
|
break;
|
|
}
|
|
return t;
|
|
}
|
|
};
|
|
|
|
// partial specialization for b = 8
|
|
template<int a>
|
|
class Power_rational<a,8> {
|
|
public:
|
|
template<class VTYPE>
|
|
static VTYPE pow(VTYPE const & x) {
|
|
VTYPE t, s1, s2, s3;
|
|
s1 = sqrt(x); // x^(1/2)
|
|
if (a & 3) s2 = sqrt(s1); // x^(1/4)
|
|
if (a & 1) s3 = sqrt(s2); // x^(1/8)
|
|
switch (a % 8) {
|
|
case -7:
|
|
t = s3 / pow_n<1+(-a)/8>(x);
|
|
break;
|
|
case -6:
|
|
t = s2 / pow_n<1+(-a)/8>(x);
|
|
break;
|
|
case -5:
|
|
t = s3 * (s2 / pow_n<1+(-a)/8>(x));
|
|
break;
|
|
case -4:
|
|
t = s1 / pow_n<1+(-a)/8>(x);
|
|
break;
|
|
case -3:
|
|
t = s3 * (s1 / pow_n<1+(-a)/8>(x));
|
|
break;
|
|
case -2:
|
|
if (a != -2) s2 *= pow_n<(-a)/8>(x);
|
|
t = VTYPE(1.f) / s2;
|
|
break;
|
|
case -1:
|
|
if (a != -1) s3 *= pow_n<(-a)/8>(x);
|
|
t = VTYPE(1.f) / s3;
|
|
break;
|
|
case 0: default:
|
|
t = pow_n<a/8>(x);
|
|
break;
|
|
case 1:
|
|
t = s3;
|
|
if (a != 1) t *= pow_n<a/8>(x);
|
|
break;
|
|
case 2:
|
|
t = s2;
|
|
if (a != 2) t *= pow_n<a/8>(x);
|
|
break;
|
|
case 3:
|
|
t = s2 * s3;
|
|
if (a != 3) t *= pow_n<a/8>(x);
|
|
break;
|
|
case 4:
|
|
t = s1;
|
|
if (a != 4) t *= pow_n<a/8>(x);
|
|
break;
|
|
case 5:
|
|
t = s1 * s3;
|
|
if (a != 5) t *= pow_n<a/8>(x);
|
|
break;
|
|
case 6:
|
|
t = s1 * s2;
|
|
if (a != 6) t *= pow_n<a/8>(x);
|
|
break;
|
|
case 7:
|
|
t = s2 * s3;
|
|
if (a != 7) s1 *= pow_n<a/8>(x);
|
|
t *= s1;
|
|
break;
|
|
|
|
}
|
|
return t;
|
|
}
|
|
};
|
|
|
|
// macro to call template class member function pow
|
|
#define pow_ratio(x, a, b) (Power_rational<(b)<0 ? -(a):(a), (b)<0 ? -(b):(b)> ().pow(x))
|
|
|
|
|
|
/******************************************************************************
|
|
* Detect NAN codes
|
|
*
|
|
* These functions return the code hidden in a NAN. The sign bit is ignored
|
|
******************************************************************************/
|
|
|
|
Vec4i nan_code(Vec4f const & x) {
|
|
Vec4i a = reinterpret_i(x);
|
|
Vec4ib b = (a & 0x7F800000) == 0x7F800000; // check if NAN/INF
|
|
return a & 0x007FFFFF & Vec4i(b); // isolate NAN code bits
|
|
}
|
|
|
|
// This function returns the code hidden in a NAN. The sign bit is ignored
|
|
Vec2q nan_code(Vec2d const & x) {
|
|
Vec2q a = reinterpret_i(x);
|
|
Vec2q const m = 0x7FF0000000000000;
|
|
Vec2q const n = 0x000FFFFFFFFFFFFF;
|
|
Vec2qb b = (a & m) == m; // check if NAN/INF
|
|
return a & n & Vec2q(b); // isolate NAN code bits
|
|
}
|
|
|
|
#if MAX_VECTOR_SIZE >= 256
|
|
|
|
// This function returns the code hidden in a NAN. The sign bit is ignored
|
|
Vec8i nan_code(Vec8f const & x) {
|
|
Vec8i a = reinterpret_i(x);
|
|
Vec8ib b = (a & 0x7F800000) == 0x7F800000; // check if NAN/INF
|
|
return a & 0x007FFFFF & Vec8i(b); // isolate NAN code bits
|
|
}
|
|
|
|
// This function returns the code hidden in a NAN. The sign bit is ignored
|
|
Vec4q nan_code(Vec4d const & x) {
|
|
Vec4q a = reinterpret_i(x);
|
|
Vec4q const m = 0x7FF0000000000000;
|
|
Vec4q const n = 0x000FFFFFFFFFFFFF;
|
|
Vec4qb b = (a & m) == m; // check if NAN/INF
|
|
return a & n & Vec4q(b); // isolate NAN code bits
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 256
|
|
#if MAX_VECTOR_SIZE >= 512
|
|
|
|
// This function returns the code hidden in a NAN. The sign bit is ignored
|
|
Vec16i nan_code(Vec16f const & x) {
|
|
Vec16i a = Vec16i(reinterpret_i(x));
|
|
Vec16ib b = (a & 0x7F800000) == 0x7F800000; // check if NAN/INF
|
|
return a & 0x007FFFFF & Vec16i(b); // isolate NAN code bits
|
|
}
|
|
|
|
// This function returns the code hidden in a NAN. The sign bit is ignored
|
|
Vec8q nan_code(Vec8d const & x) {
|
|
Vec8q a = Vec8q(reinterpret_i(x));
|
|
Vec8q const m = 0x7FF0000000000000;
|
|
Vec8q const n = 0x000FFFFFFFFFFFFF;
|
|
Vec8qb b = (a & m) == m; // check if NAN/INF
|
|
return a & n & Vec8q(b); // isolate NAN code bits
|
|
}
|
|
|
|
#endif // MAX_VECTOR_SIZE >= 512
|
|
|
|
#endif // VECTORMATH_EXP_H
|