mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-26 09:32:01 +00:00
b9233f6d4f
This should reduce amount of code that should be recompiled on Exception.h changes (and everything else that had been included there). This will actually not help a lot, because it is also included into PODArray.h and ThreadPool.h at least... Sigh. Signed-off-by: Azat Khuzhin <a.khuzhin@semrush.com>
478 lines
16 KiB
C++
478 lines
16 KiB
C++
#include <Functions/IFunction.h>
|
|
#include <Functions/FunctionHelpers.h>
|
|
#include <Functions/FunctionFactory.h>
|
|
#include <Common/Exception.h>
|
|
#include <Common/thread_local_rng.h>
|
|
#include <Common/NaNUtils.h>
|
|
#include <Columns/ColumnConst.h>
|
|
#include <Columns/ColumnsNumber.h>
|
|
#include <DataTypes/DataTypesNumber.h>
|
|
#include <Common/FieldVisitorConvertToNumber.h>
|
|
#include <Common/ProfileEvents.h>
|
|
#include <Common/assert_cast.h>
|
|
#include <IO/WriteHelpers.h>
|
|
#include <Interpreters/Context_fwd.h>
|
|
|
|
#include <random>
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int ILLEGAL_TYPE_OF_ARGUMENT;
|
|
extern const int ILLEGAL_COLUMN;
|
|
extern const int BAD_ARGUMENTS;
|
|
extern const int LOGICAL_ERROR;
|
|
}
|
|
|
|
namespace
|
|
{
|
|
struct UniformDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randUniform"; }
|
|
static constexpr size_t getNumberOfArguments() { return 2; }
|
|
|
|
static void generate(Float64 min, Float64 max, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::uniform_real_distribution<>(min, max);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct NormalDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randNormal"; }
|
|
static constexpr size_t getNumberOfArguments() { return 2; }
|
|
|
|
static void generate(Float64 mean, Float64 variance, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::normal_distribution<>(mean, variance);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct LogNormalDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randLogNormal"; }
|
|
static constexpr size_t getNumberOfArguments() { return 2; }
|
|
|
|
static void generate(Float64 mean, Float64 variance, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::lognormal_distribution<>(mean, variance);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct ExponentialDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randExponential"; }
|
|
static constexpr size_t getNumberOfArguments() { return 1; }
|
|
|
|
static void generate(Float64 lambda, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::exponential_distribution<>(lambda);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct ChiSquaredDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randChiSquared"; }
|
|
static constexpr size_t getNumberOfArguments() { return 1; }
|
|
|
|
static void generate(Float64 degree_of_freedom, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::chi_squared_distribution<>(degree_of_freedom);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct StudentTDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randStudentT"; }
|
|
static constexpr size_t getNumberOfArguments() { return 1; }
|
|
|
|
static void generate(Float64 degree_of_freedom, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::student_t_distribution<>(degree_of_freedom);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct FisherFDistribution
|
|
{
|
|
using ReturnType = DataTypeFloat64;
|
|
static constexpr const char * getName() { return "randFisherF"; }
|
|
static constexpr size_t getNumberOfArguments() { return 2; }
|
|
|
|
static void generate(Float64 d1, Float64 d2, ColumnFloat64::Container & container)
|
|
{
|
|
auto distribution = std::fisher_f_distribution<>(d1, d2);
|
|
for (auto & elem : container)
|
|
elem = distribution(thread_local_rng);
|
|
}
|
|
};
|
|
|
|
struct BernoulliDistribution
|
|
{
|
|
using ReturnType = DataTypeUInt8;
|
|
static constexpr const char * getName() { return "randBernoulli"; }
|
|
static constexpr size_t getNumberOfArguments() { return 1; }
|
|
|
|
static void generate(Float64 p, ColumnUInt8::Container & container)
|
|
{
|
|
if (p < 0.0f || p > 1.0f)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Argument of function {} should be inside [0, 1] because it is a probability", getName());
|
|
|
|
auto distribution = std::bernoulli_distribution(p);
|
|
for (auto & elem : container)
|
|
elem = static_cast<UInt8>(distribution(thread_local_rng));
|
|
}
|
|
};
|
|
|
|
struct BinomialDistribution
|
|
{
|
|
using ReturnType = DataTypeUInt64;
|
|
static constexpr const char * getName() { return "randBinomial"; }
|
|
static constexpr size_t getNumberOfArguments() { return 2; }
|
|
|
|
static void generate(UInt64 t, Float64 p, ColumnUInt64::Container & container)
|
|
{
|
|
if (p < 0.0f || p > 1.0f)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Argument of function {} should be inside [0, 1] because it is a probability", getName());
|
|
|
|
auto distribution = std::binomial_distribution(t, p);
|
|
for (auto & elem : container)
|
|
elem = static_cast<UInt64>(distribution(thread_local_rng));
|
|
}
|
|
};
|
|
|
|
struct NegativeBinomialDistribution
|
|
{
|
|
using ReturnType = DataTypeUInt64;
|
|
static constexpr const char * getName() { return "randNegativeBinomial"; }
|
|
static constexpr size_t getNumberOfArguments() { return 2; }
|
|
|
|
static void generate(UInt64 t, Float64 p, ColumnUInt64::Container & container)
|
|
{
|
|
if (p < 0.0f || p > 1.0f)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Argument of function {} should be inside [0, 1] because it is a probability", getName());
|
|
|
|
auto distribution = std::negative_binomial_distribution(t, p);
|
|
for (auto & elem : container)
|
|
elem = static_cast<UInt64>(distribution(thread_local_rng));
|
|
}
|
|
};
|
|
|
|
struct PoissonDistribution
|
|
{
|
|
using ReturnType = DataTypeUInt64;
|
|
static constexpr const char * getName() { return "randPoisson"; }
|
|
static constexpr size_t getNumberOfArguments() { return 1; }
|
|
|
|
static void generate(UInt64 n, ColumnUInt64::Container & container)
|
|
{
|
|
auto distribution = std::poisson_distribution(n);
|
|
for (auto & elem : container)
|
|
elem = static_cast<UInt64>(distribution(thread_local_rng));
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
/** Function which will generate values according to the specified distribution
|
|
* Accepts only constant arguments
|
|
* Similar to the functions rand and rand64 an additional 'tag' argument could be added to the
|
|
* end of arguments list (this argument will be ignored) which will guarantee that functions are not sticked together
|
|
* during optimizations.
|
|
* Example: SELECT randNormal(0, 1, 1), randNormal(0, 1, 2) FROM numbers(10)
|
|
* This query will return two different columns
|
|
*/
|
|
template <typename Distribution>
|
|
class FunctionRandomDistribution : public IFunction
|
|
{
|
|
private:
|
|
|
|
template <typename ResultType>
|
|
ResultType getParameterFromConstColumn(size_t parameter_number, const ColumnsWithTypeAndName & arguments) const
|
|
{
|
|
if (parameter_number >= arguments.size())
|
|
throw Exception(
|
|
ErrorCodes::LOGICAL_ERROR,
|
|
"Parameter number ({}) is greater than the size of arguments ({}). This is a bug",
|
|
parameter_number, arguments.size());
|
|
|
|
const IColumn * col = arguments[parameter_number].column.get();
|
|
|
|
if (!isColumnConst(*col))
|
|
throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Parameter number {} of function {} must be constant.", parameter_number, getName());
|
|
|
|
auto parameter = applyVisitor(FieldVisitorConvertToNumber<ResultType>(), assert_cast<const ColumnConst &>(*col).getField());
|
|
|
|
if (isNaN(parameter) || !std::isfinite(parameter))
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Parameter number {} of function {} cannot be NaN of infinite", parameter_number, getName());
|
|
|
|
return parameter;
|
|
}
|
|
|
|
public:
|
|
static FunctionPtr create(ContextPtr)
|
|
{
|
|
return std::make_shared<FunctionRandomDistribution<Distribution>>();
|
|
}
|
|
|
|
static constexpr auto name = Distribution::getName();
|
|
String getName() const override { return name; }
|
|
size_t getNumberOfArguments() const override { return Distribution::getNumberOfArguments(); }
|
|
bool isVariadic() const override { return true; }
|
|
bool isDeterministic() const override { return false; }
|
|
bool isDeterministicInScopeOfQuery() const override { return false; }
|
|
bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; }
|
|
|
|
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
|
{
|
|
auto desired = Distribution::getNumberOfArguments();
|
|
if (arguments.size() != desired && arguments.size() != desired + 1)
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS,
|
|
"Wrong number of arguments for function {}. Should be {} or {}",
|
|
getName(), desired, desired + 1);
|
|
|
|
for (size_t i = 0; i < Distribution::getNumberOfArguments(); ++i)
|
|
{
|
|
const auto & type = arguments[i];
|
|
WhichDataType which(type);
|
|
if (!which.isFloat() && !which.isNativeUInt())
|
|
throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT,
|
|
"Illegal type {} of argument of function {}, expected Float64 or integer", type->getName(), getName());
|
|
}
|
|
|
|
return std::make_shared<typename Distribution::ReturnType>();
|
|
}
|
|
|
|
ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & /*result_type*/, size_t input_rows_count) const override
|
|
{
|
|
if constexpr (std::is_same_v<Distribution, BernoulliDistribution>)
|
|
{
|
|
auto res_column = ColumnUInt8::create(input_rows_count);
|
|
auto & res_data = res_column->getData();
|
|
Distribution::generate(getParameterFromConstColumn<Float64>(0, arguments), res_data);
|
|
return res_column;
|
|
}
|
|
else if constexpr (std::is_same_v<Distribution, BinomialDistribution> || std::is_same_v<Distribution, NegativeBinomialDistribution>)
|
|
{
|
|
auto res_column = ColumnUInt64::create(input_rows_count);
|
|
auto & res_data = res_column->getData();
|
|
Distribution::generate(getParameterFromConstColumn<UInt64>(0, arguments), getParameterFromConstColumn<Float64>(1, arguments), res_data);
|
|
return res_column;
|
|
}
|
|
else if constexpr (std::is_same_v<Distribution, PoissonDistribution>)
|
|
{
|
|
auto res_column = ColumnUInt64::create(input_rows_count);
|
|
auto & res_data = res_column->getData();
|
|
Distribution::generate(getParameterFromConstColumn<UInt64>(0, arguments), res_data);
|
|
return res_column;
|
|
}
|
|
else
|
|
{
|
|
auto res_column = ColumnFloat64::create(input_rows_count);
|
|
auto & res_data = res_column->getData();
|
|
if constexpr (Distribution::getNumberOfArguments() == 1)
|
|
{
|
|
Distribution::generate(getParameterFromConstColumn<Float64>(0, arguments), res_data);
|
|
}
|
|
else if constexpr (Distribution::getNumberOfArguments() == 2)
|
|
{
|
|
Distribution::generate(getParameterFromConstColumn<Float64>(0, arguments), getParameterFromConstColumn<Float64>(1, arguments), res_data);
|
|
}
|
|
else
|
|
{
|
|
throw Exception(ErrorCodes::BAD_ARGUMENTS, "More than two argument specified for function {}", getName());
|
|
}
|
|
|
|
return res_column;
|
|
}
|
|
}
|
|
};
|
|
|
|
|
|
REGISTER_FUNCTION(Distribution)
|
|
{
|
|
factory.registerFunction<FunctionRandomDistribution<UniformDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the uniform distribution in the specified range.
|
|
Accepts two parameters - minimum bound and maximum bound.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randUniform(0, 1) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<NormalDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the normal distribution.
|
|
Accepts two parameters - mean and variance.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randNormal(0, 5) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<LogNormalDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the lognormal distribution (a distribution of a random variable whose logarithm is normally distributed).
|
|
Accepts two parameters - mean and variance.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randLogNormal(0, 5) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<ExponentialDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the exponential distribution.
|
|
Accepts one parameter - lambda value.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randExponential(0, 5) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<ChiSquaredDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the chi-squared distribution (a distribution of a sum of the squares of k independent standard normal random variables).
|
|
Accepts one parameter - degree of freedom.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randChiSquared(5) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<StudentTDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the t-distribution.
|
|
Accepts one parameter - degree of freedom.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randStudentT(5) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<FisherFDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the f-distribution.
|
|
The F-distribution is the distribution of X = (S1 / d1) / (S2 / d2) where d1 and d2 are degrees of freedom.
|
|
Accepts two parameters - degrees of freedom.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randFisherF(5) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<BernoulliDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the Bernoulli distribution.
|
|
Accepts one parameter - probability of success.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randBernoulli(0.1) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<BinomialDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the binomial distribution.
|
|
Accepts two parameters - number of experiments and probability of success in each experiment.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randBinomial(10, 0.1) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<NegativeBinomialDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the negative binomial distribution.
|
|
Accepts two parameters - number of experiments and probability of success in each experiment.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randNegativeBinomial(10, 0.1) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
|
|
|
|
factory.registerFunction<FunctionRandomDistribution<PoissonDistribution>>(
|
|
FunctionDocumentation{
|
|
.description=R"(
|
|
Returns a random number from the poisson distribution.
|
|
Accepts one parameter - the mean number of occurrences.
|
|
|
|
Typical usage:
|
|
[example:typical]
|
|
)",
|
|
.examples{
|
|
{"typical", "SELECT randPoisson(3) FROM numbers(100000);", ""}},
|
|
.categories{"Distribution"}
|
|
});
|
|
}
|
|
|
|
}
|