ClickHouse/src/Dictionaries/FlatDictionary.cpp

654 lines
23 KiB
C++

#include "FlatDictionary.h"
#include <Core/Defines.h>
#include <Common/HashTable/HashMap.h>
#include <Common/HashTable/HashSet.h>
#include <Common/ArenaUtils.h>
#include <DataTypes/DataTypesDecimal.h>
#include <IO/WriteHelpers.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnNullable.h>
#include <Functions/FunctionHelpers.h>
#include <QueryPipeline/QueryPipelineBuilder.h>
#include <Processors/Executors/PullingPipelineExecutor.h>
#include <Dictionaries/DictionarySource.h>
#include <Dictionaries/DictionaryFactory.h>
#include <Dictionaries/HierarchyDictionariesUtils.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ARGUMENT_OUT_OF_BOUND;
extern const int BAD_ARGUMENTS;
extern const int DICTIONARY_IS_EMPTY;
extern const int UNSUPPORTED_METHOD;
}
FlatDictionary::FlatDictionary(
const StorageID & dict_id_,
const DictionaryStructure & dict_struct_,
DictionarySourcePtr source_ptr_,
Configuration configuration_,
BlockPtr update_field_loaded_block_)
: IDictionary(dict_id_)
, dict_struct(dict_struct_)
, source_ptr{std::move(source_ptr_)}
, configuration(configuration_)
, loaded_keys(configuration.initial_array_size, false)
, update_field_loaded_block(std::move(update_field_loaded_block_))
{
createAttributes();
loadData();
buildHierarchyParentToChildIndexIfNeeded();
calculateBytesAllocated();
}
ColumnPtr FlatDictionary::getColumn(
const std::string & attribute_name,
const DataTypePtr & result_type,
const Columns & key_columns,
const DataTypes &,
const ColumnPtr & default_values_column) const
{
ColumnPtr result;
PaddedPODArray<UInt64> backup_storage;
const auto & ids = getColumnVectorData(this, key_columns.front(), backup_storage);
auto size = ids.size();
const auto & dictionary_attribute = dict_struct.getAttribute(attribute_name, result_type);
size_t attribute_index = dict_struct.attribute_name_to_index.find(attribute_name)->second;
const auto & attribute = attributes[attribute_index];
bool is_attribute_nullable = attribute.is_nullable_set.has_value();
ColumnUInt8::MutablePtr col_null_map_to;
ColumnUInt8::Container * vec_null_map_to = nullptr;
if (is_attribute_nullable)
{
col_null_map_to = ColumnUInt8::create(size, false);
vec_null_map_to = &col_null_map_to->getData();
}
auto type_call = [&](const auto & dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
using ValueType = DictionaryValueType<AttributeType>;
using ColumnProvider = DictionaryAttributeColumnProvider<AttributeType>;
DictionaryDefaultValueExtractor<AttributeType> default_value_extractor(dictionary_attribute.null_value, default_values_column);
auto column = ColumnProvider::getColumn(dictionary_attribute, size);
if constexpr (std::is_same_v<ValueType, Array>)
{
auto * out = column.get();
getItemsImpl<ValueType, false>(
attribute,
ids,
[&](size_t, const Array & value, bool) { out->insert(value); },
default_value_extractor);
}
else if constexpr (std::is_same_v<ValueType, StringRef>)
{
auto * out = column.get();
if (is_attribute_nullable)
getItemsImpl<ValueType, true>(
attribute,
ids,
[&](size_t row, const StringRef value, bool is_null)
{
(*vec_null_map_to)[row] = is_null;
out->insertData(value.data, value.size);
},
default_value_extractor);
else
getItemsImpl<ValueType, false>(
attribute,
ids,
[&](size_t, const StringRef value, bool) { out->insertData(value.data, value.size); },
default_value_extractor);
}
else
{
auto & out = column->getData();
if (is_attribute_nullable)
getItemsImpl<ValueType, true>(
attribute,
ids,
[&](size_t row, const auto value, bool is_null)
{
(*vec_null_map_to)[row] = is_null;
out[row] = value;
},
default_value_extractor);
else
getItemsImpl<ValueType, false>(
attribute,
ids,
[&](size_t row, const auto value, bool) { out[row] = value; },
default_value_extractor);
}
result = std::move(column);
};
callOnDictionaryAttributeType(attribute.type, type_call);
if (attribute.is_nullable_set)
result = ColumnNullable::create(result, std::move(col_null_map_to));
return result;
}
ColumnUInt8::Ptr FlatDictionary::hasKeys(const Columns & key_columns, const DataTypes &) const
{
PaddedPODArray<UInt64> backup_storage;
const auto & keys = getColumnVectorData(this, key_columns.front(), backup_storage);
size_t keys_size = keys.size();
auto result = ColumnUInt8::create(keys_size);
auto & out = result->getData();
size_t keys_found = 0;
for (size_t key_index = 0; key_index < keys_size; ++key_index)
{
const auto key = keys[key_index];
out[key_index] = key < loaded_keys.size() && loaded_keys[key];
keys_found += out[key_index];
}
query_count.fetch_add(keys_size, std::memory_order_relaxed);
found_count.fetch_add(keys_found, std::memory_order_relaxed);
return result;
}
ColumnPtr FlatDictionary::getHierarchy(ColumnPtr key_column, const DataTypePtr &) const
{
PaddedPODArray<UInt64> keys_backup_storage;
const auto & keys = getColumnVectorData(this, key_column, keys_backup_storage);
size_t hierarchical_attribute_index = *dict_struct.hierarchical_attribute_index;
const auto & dictionary_attribute = dict_struct.attributes[hierarchical_attribute_index];
const auto & hierarchical_attribute = attributes[hierarchical_attribute_index];
const UInt64 null_value = dictionary_attribute.null_value.get<UInt64>();
const ContainerType<UInt64> & parent_keys = std::get<ContainerType<UInt64>>(hierarchical_attribute.container);
auto is_key_valid_func = [&, this](auto & key) { return key < loaded_keys.size() && loaded_keys[key]; };
size_t keys_found = 0;
auto get_parent_key_func = [&, this](auto & hierarchy_key)
{
bool is_key_valid = hierarchy_key < loaded_keys.size() && loaded_keys[hierarchy_key];
std::optional<UInt64> result = is_key_valid ? std::make_optional(parent_keys[hierarchy_key]) : std::nullopt;
keys_found += result.has_value();
return result;
};
auto dictionary_hierarchy_array = getKeysHierarchyArray(keys, null_value, is_key_valid_func, get_parent_key_func);
query_count.fetch_add(keys.size(), std::memory_order_relaxed);
found_count.fetch_add(keys_found, std::memory_order_relaxed);
return dictionary_hierarchy_array;
}
ColumnUInt8::Ptr FlatDictionary::isInHierarchy(
ColumnPtr key_column,
ColumnPtr in_key_column,
const DataTypePtr &) const
{
PaddedPODArray<UInt64> keys_backup_storage;
const auto & keys = getColumnVectorData(this, key_column, keys_backup_storage);
PaddedPODArray<UInt64> keys_in_backup_storage;
const auto & keys_in = getColumnVectorData(this, in_key_column, keys_in_backup_storage);
size_t hierarchical_attribute_index = *dict_struct.hierarchical_attribute_index;
const auto & dictionary_attribute = dict_struct.attributes[hierarchical_attribute_index];
const auto & hierarchical_attribute = attributes[hierarchical_attribute_index];
const UInt64 null_value = dictionary_attribute.null_value.get<UInt64>();
const ContainerType<UInt64> & parent_keys = std::get<ContainerType<UInt64>>(hierarchical_attribute.container);
auto is_key_valid_func = [&, this](auto & key) { return key < loaded_keys.size() && loaded_keys[key]; };
size_t keys_found = 0;
auto get_parent_key_func = [&, this](auto & hierarchy_key)
{
bool is_key_valid = hierarchy_key < loaded_keys.size() && loaded_keys[hierarchy_key];
std::optional<UInt64> result = is_key_valid ? std::make_optional(parent_keys[hierarchy_key]) : std::nullopt;
keys_found += result.has_value();
return result;
};
auto result = getKeysIsInHierarchyColumn(keys, keys_in, null_value, is_key_valid_func, get_parent_key_func);
query_count.fetch_add(keys.size(), std::memory_order_relaxed);
found_count.fetch_add(keys_found, std::memory_order_relaxed);
return result;
}
DictionaryHierarchyParentToChildIndexPtr FlatDictionary::getHierarchicalIndex() const
{
if (hierarhical_index)
return hierarhical_index;
size_t hierarchical_attribute_index = *dict_struct.hierarchical_attribute_index;
const auto & hierarchical_attribute = attributes[hierarchical_attribute_index];
const ContainerType<UInt64> & parent_keys = std::get<ContainerType<UInt64>>(hierarchical_attribute.container);
HashMap<UInt64, PaddedPODArray<UInt64>> parent_to_child;
parent_to_child.reserve(element_count);
UInt64 child_keys_size = static_cast<UInt64>(parent_keys.size());
for (UInt64 child_key = 0; child_key < child_keys_size; ++child_key)
{
if (!loaded_keys[child_key])
continue;
auto parent_key = parent_keys[child_key];
parent_to_child[parent_key].emplace_back(child_key);
}
return std::make_shared<DictionaryHierarchicalParentToChildIndex>(parent_to_child);
}
ColumnPtr FlatDictionary::getDescendants(
ColumnPtr key_column,
const DataTypePtr &,
size_t level,
DictionaryHierarchicalParentToChildIndexPtr parent_to_child_index) const
{
PaddedPODArray<UInt64> keys_backup;
const auto & keys = getColumnVectorData(this, key_column, keys_backup);
size_t keys_found;
auto result = getKeysDescendantsArray(keys, *parent_to_child_index, level, keys_found);
query_count.fetch_add(keys.size(), std::memory_order_relaxed);
found_count.fetch_add(keys_found, std::memory_order_relaxed);
return result;
}
void FlatDictionary::createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
for (const auto & attribute : dict_struct.attributes)
attributes.push_back(createAttribute(attribute));
}
void FlatDictionary::blockToAttributes(const Block & block)
{
const auto keys_column = block.safeGetByPosition(0).column;
DictionaryKeysArenaHolder<DictionaryKeyType::Simple> arena_holder;
DictionaryKeysExtractor<DictionaryKeyType::Simple> keys_extractor({ keys_column }, arena_holder.getComplexKeyArena());
size_t keys_size = keys_extractor.getKeysSize();
static constexpr size_t key_offset = 1;
size_t attributes_size = attributes.size();
if (unlikely(attributes_size == 0))
{
for (size_t i = 0; i < keys_size; ++i)
{
auto key = keys_extractor.extractCurrentKey();
if (unlikely(key >= configuration.max_array_size))
throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND,
"{}: identifier should be less than {}",
getFullName(),
toString(configuration.max_array_size));
if (key >= loaded_keys.size())
{
const size_t elements_count = key + 1;
loaded_keys.resize(elements_count, false);
}
loaded_keys[key] = true;
keys_extractor.rollbackCurrentKey();
}
return;
}
for (size_t attribute_index = 0; attribute_index < attributes_size; ++attribute_index)
{
const IColumn & attribute_column = *block.safeGetByPosition(attribute_index + key_offset).column;
Attribute & attribute = attributes[attribute_index];
for (size_t i = 0; i < keys_size; ++i)
{
auto key = keys_extractor.extractCurrentKey();
setAttributeValue(attribute, key, attribute_column[i]);
keys_extractor.rollbackCurrentKey();
}
keys_extractor.reset();
}
}
void FlatDictionary::updateData()
{
if (!update_field_loaded_block || update_field_loaded_block->rows() == 0)
{
QueryPipeline pipeline(source_ptr->loadUpdatedAll());
PullingPipelineExecutor executor(pipeline);
Block block;
while (executor.pull(block))
{
convertToFullIfSparse(block);
/// We are using this to keep saved data if input stream consists of multiple blocks
if (!update_field_loaded_block)
update_field_loaded_block = std::make_shared<DB::Block>(block.cloneEmpty());
for (size_t column_index = 0; column_index < block.columns(); ++column_index)
{
const IColumn & update_column = *block.getByPosition(column_index).column.get();
MutableColumnPtr saved_column = update_field_loaded_block->getByPosition(column_index).column->assumeMutable();
saved_column->insertRangeFrom(update_column, 0, update_column.size());
}
}
}
else
{
auto pipeline(source_ptr->loadUpdatedAll());
mergeBlockWithPipe<DictionaryKeyType::Simple>(
dict_struct.getKeysSize(),
*update_field_loaded_block,
std::move(pipeline));
}
if (update_field_loaded_block)
blockToAttributes(*update_field_loaded_block.get());
}
void FlatDictionary::loadData()
{
if (!source_ptr->hasUpdateField())
{
QueryPipeline pipeline(source_ptr->loadAll());
PullingPipelineExecutor executor(pipeline);
Block block;
while (executor.pull(block))
blockToAttributes(block);
}
else
updateData();
element_count = 0;
size_t loaded_keys_size = loaded_keys.size();
for (size_t i = 0; i < loaded_keys_size; ++i)
element_count += loaded_keys[i];
if (configuration.require_nonempty && 0 == element_count)
throw Exception(ErrorCodes::DICTIONARY_IS_EMPTY, "{}: dictionary source is empty and 'require_nonempty' property is set.", getFullName());
}
void FlatDictionary::buildHierarchyParentToChildIndexIfNeeded()
{
if (!dict_struct.hierarchical_attribute_index)
return;
if (dict_struct.attributes[*dict_struct.hierarchical_attribute_index].bidirectional)
hierarhical_index = getHierarchicalIndex();
}
void FlatDictionary::calculateBytesAllocated()
{
bytes_allocated += attributes.size() * sizeof(attributes.front());
for (const auto & attribute : attributes)
{
auto type_call = [&](const auto & dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
using ValueType = DictionaryValueType<AttributeType>;
const auto & container = std::get<ContainerType<ValueType>>(attribute.container);
bytes_allocated += sizeof(ContainerType<ValueType>);
if constexpr (std::is_same_v<ValueType, Array>)
{
/// It is not accurate calculations
bytes_allocated += sizeof(Array) * container.size();
}
else
{
bytes_allocated += container.allocated_bytes();
}
bucket_count = container.capacity();
};
callOnDictionaryAttributeType(attribute.type, type_call);
bytes_allocated += sizeof(attribute.is_nullable_set);
if (attribute.is_nullable_set.has_value())
bytes_allocated = attribute.is_nullable_set->getBufferSizeInBytes();
}
if (update_field_loaded_block)
bytes_allocated += update_field_loaded_block->allocatedBytes();
if (hierarhical_index)
{
hierarchical_index_bytes_allocated = hierarhical_index->getSizeInBytes();
bytes_allocated += hierarchical_index_bytes_allocated;
}
bytes_allocated += string_arena.size();
}
FlatDictionary::Attribute FlatDictionary::createAttribute(const DictionaryAttribute & dictionary_attribute)
{
auto is_nullable_set = dictionary_attribute.is_nullable ? std::make_optional<NullableSet>() : std::optional<NullableSet>{};
Attribute attribute{dictionary_attribute.underlying_type, std::move(is_nullable_set), {}};
auto type_call = [&](const auto & dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
using ValueType = DictionaryValueType<AttributeType>;
attribute.container.emplace<ContainerType<ValueType>>(configuration.initial_array_size, ValueType());
};
callOnDictionaryAttributeType(dictionary_attribute.underlying_type, type_call);
return attribute;
}
template <typename AttributeType, bool is_nullable, typename ValueSetter, typename DefaultValueExtractor>
void FlatDictionary::getItemsImpl(
const Attribute & attribute,
const PaddedPODArray<UInt64> & keys,
ValueSetter && set_value,
DefaultValueExtractor & default_value_extractor) const
{
const auto & container = std::get<ContainerType<AttributeType>>(attribute.container);
const auto rows = keys.size();
size_t keys_found = 0;
for (size_t row = 0; row < rows; ++row)
{
const auto key = keys[row];
if (key < loaded_keys.size() && loaded_keys[key])
{
if constexpr (is_nullable)
set_value(row, container[key], attribute.is_nullable_set->find(key) != nullptr);
else
set_value(row, container[key], false);
++keys_found;
}
else
{
if constexpr (is_nullable)
set_value(row, default_value_extractor[row], default_value_extractor.isNullAt(row));
else
set_value(row, default_value_extractor[row], false);
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
found_count.fetch_add(keys_found, std::memory_order_relaxed);
}
template <typename T>
void FlatDictionary::resize(Attribute & attribute, UInt64 key)
{
if (key >= configuration.max_array_size)
throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND,
"{}: identifier should be less than {}",
getFullName(),
toString(configuration.max_array_size));
auto & container = std::get<ContainerType<T>>(attribute.container);
if (key >= container.size())
{
const size_t elements_count = key + 1; //id=0 -> elements_count=1
loaded_keys.resize(elements_count, false);
if constexpr (std::is_same_v<T, Array>)
container.resize(elements_count, T{});
else
container.resize_fill(elements_count, T{});
}
}
void FlatDictionary::setAttributeValue(Attribute & attribute, const UInt64 key, const Field & value)
{
auto type_call = [&](const auto & dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
using ValueType = DictionaryValueType<AttributeType>;
resize<ValueType>(attribute, key);
if (attribute.is_nullable_set && value.isNull())
{
attribute.is_nullable_set->insert(key);
loaded_keys[key] = true;
return;
}
auto & attribute_value = value.get<AttributeType>();
auto & container = std::get<ContainerType<ValueType>>(attribute.container);
loaded_keys[key] = true;
if constexpr (std::is_same_v<ValueType, StringRef>)
{
auto arena_value = copyStringInArena(string_arena, attribute_value);
container[key] = arena_value;
}
else
{
container[key] = attribute_value;
}
};
callOnDictionaryAttributeType(attribute.type, type_call);
}
Pipe FlatDictionary::read(const Names & column_names, size_t max_block_size, size_t num_streams) const
{
const auto keys_count = loaded_keys.size();
PaddedPODArray<UInt64> keys;
keys.reserve(keys_count);
for (size_t key_index = 0; key_index < keys_count; ++key_index)
if (loaded_keys[key_index])
keys.push_back(key_index);
auto keys_column = getColumnFromPODArray(std::move(keys));
ColumnsWithTypeAndName key_columns = {ColumnWithTypeAndName(keys_column, std::make_shared<DataTypeUInt64>(), dict_struct.id->name)};
std::shared_ptr<const IDictionary> dictionary = shared_from_this();
auto coordinator =std::make_shared<DictionarySourceCoordinator>(dictionary, column_names, std::move(key_columns), max_block_size);
auto result = coordinator->read(num_streams);
return result;
}
void registerDictionaryFlat(DictionaryFactory & factory)
{
auto create_layout = [=](const std::string & full_name,
const DictionaryStructure & dict_struct,
const Poco::Util::AbstractConfiguration & config,
const std::string & config_prefix,
DictionarySourcePtr source_ptr,
ContextPtr /* global_context */,
bool /* created_from_ddl */) -> DictionaryPtr
{
if (dict_struct.key)
throw Exception(ErrorCodes::UNSUPPORTED_METHOD, "'key' is not supported for dictionary of layout 'flat'");
if (dict_struct.range_min || dict_struct.range_max)
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"{}: elements .structure.range_min and .structure.range_max should be defined only "
"for a dictionary of layout 'range_hashed'",
full_name);
static constexpr size_t default_initial_array_size = 1024;
static constexpr size_t default_max_array_size = 500000;
String dictionary_layout_prefix = config_prefix + ".layout" + ".flat";
const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"};
FlatDictionary::Configuration configuration
{
.initial_array_size = config.getUInt64(dictionary_layout_prefix + ".initial_array_size", default_initial_array_size),
.max_array_size = config.getUInt64(dictionary_layout_prefix + ".max_array_size", default_max_array_size),
.require_nonempty = config.getBool(config_prefix + ".require_nonempty", false),
.dict_lifetime = dict_lifetime
};
const auto dict_id = StorageID::fromDictionaryConfig(config, config_prefix);
return std::make_unique<FlatDictionary>(dict_id, dict_struct, std::move(source_ptr), configuration);
};
factory.registerLayout("flat", create_layout, false);
}
}