mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-27 01:51:59 +00:00
449 lines
14 KiB
Python
449 lines
14 KiB
Python
import os.path as p
|
|
import time
|
|
import pytest
|
|
|
|
from helpers.cluster import ClickHouseCluster
|
|
from helpers.test_tools import TSV
|
|
|
|
import json
|
|
import subprocess
|
|
import kafka.errors
|
|
from kafka import KafkaAdminClient, KafkaProducer
|
|
from google.protobuf.internal.encoder import _VarintBytes
|
|
|
|
"""
|
|
protoc --version
|
|
libprotoc 3.0.0
|
|
|
|
# to create kafka_pb2.py
|
|
protoc --python_out=. kafka.proto
|
|
"""
|
|
import kafka_pb2
|
|
|
|
|
|
# TODO: add test for run-time offset update in CH, if we manually update it on Kafka side.
|
|
# TODO: add test for SELECT LIMIT is working.
|
|
# TODO: modify tests to respect `skip_broken_messages` setting.
|
|
|
|
cluster = ClickHouseCluster(__file__)
|
|
instance = cluster.add_instance('instance',
|
|
main_configs=['configs/kafka.xml'],
|
|
with_kafka=True,
|
|
clickhouse_path_dir='clickhouse_path')
|
|
kafka_id = ''
|
|
|
|
|
|
# Helpers
|
|
|
|
def check_kafka_is_available():
|
|
p = subprocess.Popen(('docker',
|
|
'exec',
|
|
'-i',
|
|
kafka_id,
|
|
'/usr/bin/kafka-broker-api-versions',
|
|
'--bootstrap-server',
|
|
'INSIDE://localhost:9092'),
|
|
stdout=subprocess.PIPE)
|
|
p.communicate()
|
|
return p.returncode == 0
|
|
|
|
|
|
def wait_kafka_is_available(max_retries=50):
|
|
retries = 0
|
|
while True:
|
|
if check_kafka_is_available():
|
|
break
|
|
else:
|
|
retries += 1
|
|
if retries > max_retries:
|
|
raise "Kafka is not available"
|
|
print("Waiting for Kafka to start up")
|
|
time.sleep(1)
|
|
|
|
|
|
def kafka_produce(topic, messages, timestamp=None):
|
|
producer = KafkaProducer(bootstrap_servers="localhost:9092")
|
|
for message in messages:
|
|
producer.send(topic=topic, value=message, timestamp_ms=timestamp)
|
|
producer.flush()
|
|
print ("Produced {} messages for topic {}".format(len(messages), topic))
|
|
|
|
|
|
def kafka_produce_protobuf_messages(topic, start_index, num_messages):
|
|
data = ''
|
|
for i in range(start_index, start_index + num_messages):
|
|
msg = kafka_pb2.KeyValuePair()
|
|
msg.key = i
|
|
msg.value = str(i)
|
|
serialized_msg = msg.SerializeToString()
|
|
data = data + _VarintBytes(len(serialized_msg)) + serialized_msg
|
|
producer = KafkaProducer(bootstrap_servers="localhost:9092")
|
|
producer.send(topic=topic, value=data)
|
|
producer.flush()
|
|
print("Produced {} messages for topic {}".format(num_messages, topic))
|
|
|
|
|
|
# Since everything is async and shaky when receiving messages from Kafka,
|
|
# we may want to try and check results multiple times in a loop.
|
|
def kafka_check_result(result, check=False, ref_file='test_kafka_json.reference'):
|
|
fpath = p.join(p.dirname(__file__), ref_file)
|
|
with open(fpath) as reference:
|
|
if check:
|
|
assert TSV(result) == TSV(reference)
|
|
else:
|
|
return TSV(result) == TSV(reference)
|
|
|
|
|
|
# Fixtures
|
|
|
|
@pytest.fixture(scope="module")
|
|
def kafka_cluster():
|
|
try:
|
|
global kafka_id
|
|
cluster.start()
|
|
kafka_id = instance.cluster.kafka_docker_id
|
|
print("kafka_id is {}".format(kafka_id))
|
|
instance.query('CREATE DATABASE test')
|
|
|
|
yield cluster
|
|
|
|
finally:
|
|
cluster.shutdown()
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def kafka_setup_teardown():
|
|
instance.query('DROP TABLE IF EXISTS test.kafka')
|
|
wait_kafka_is_available()
|
|
print("kafka is available - running test")
|
|
yield # run test
|
|
instance.query('DROP TABLE test.kafka')
|
|
|
|
|
|
# Tests
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_settings_old_syntax(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka('kafka1:19092', 'old', 'old', 'JSONEachRow', '\\n');
|
|
''')
|
|
|
|
# Don't insert malformed messages since old settings syntax
|
|
# doesn't support skipping of broken messages.
|
|
messages = []
|
|
for i in range(50):
|
|
messages.append(json.dumps({'key': i, 'value': i}))
|
|
kafka_produce('old', messages)
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT * FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_settings_new_syntax(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'new',
|
|
kafka_group_name = 'new',
|
|
kafka_format = 'JSONEachRow',
|
|
kafka_row_delimiter = '\\n',
|
|
kafka_skip_broken_messages = 1;
|
|
''')
|
|
|
|
messages = []
|
|
for i in range(25):
|
|
messages.append(json.dumps({'key': i, 'value': i}))
|
|
kafka_produce('new', messages)
|
|
|
|
# Insert couple of malformed messages.
|
|
kafka_produce('new', ['}{very_broken_message,'])
|
|
kafka_produce('new', ['}another{very_broken_message,'])
|
|
|
|
messages = []
|
|
for i in range(25, 50):
|
|
messages.append(json.dumps({'key': i, 'value': i}))
|
|
kafka_produce('new', messages)
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT * FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_csv_with_delimiter(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'csv',
|
|
kafka_group_name = 'csv',
|
|
kafka_format = 'CSV',
|
|
kafka_row_delimiter = '\\n';
|
|
''')
|
|
|
|
messages = []
|
|
for i in range(50):
|
|
messages.append('{i}, {i}'.format(i=i))
|
|
kafka_produce('csv', messages)
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT * FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_tsv_with_delimiter(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'tsv',
|
|
kafka_group_name = 'tsv',
|
|
kafka_format = 'TSV',
|
|
kafka_row_delimiter = '\\n';
|
|
''')
|
|
|
|
messages = []
|
|
for i in range(50):
|
|
messages.append('{i}\t{i}'.format(i=i))
|
|
kafka_produce('tsv', messages)
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT * FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_json_without_delimiter(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'json',
|
|
kafka_group_name = 'json',
|
|
kafka_format = 'JSONEachRow';
|
|
''')
|
|
|
|
messages = ''
|
|
for i in range(25):
|
|
messages += json.dumps({'key': i, 'value': i}) + '\n'
|
|
kafka_produce('json', [messages])
|
|
|
|
messages = ''
|
|
for i in range(25, 50):
|
|
messages += json.dumps({'key': i, 'value': i}) + '\n'
|
|
kafka_produce('json', [messages])
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT * FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_protobuf(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value String)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'pb',
|
|
kafka_group_name = 'pb',
|
|
kafka_format = 'Protobuf',
|
|
kafka_schema = 'kafka.proto:KeyValuePair';
|
|
''')
|
|
|
|
kafka_produce_protobuf_messages('pb', 0, 20)
|
|
kafka_produce_protobuf_messages('pb', 20, 1)
|
|
kafka_produce_protobuf_messages('pb', 21, 29)
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT * FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_materialized_view(kafka_cluster):
|
|
instance.query('''
|
|
DROP TABLE IF EXISTS test.view;
|
|
DROP TABLE IF EXISTS test.consumer;
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'mv',
|
|
kafka_group_name = 'mv',
|
|
kafka_format = 'JSONEachRow',
|
|
kafka_row_delimiter = '\\n';
|
|
CREATE TABLE test.view (key UInt64, value UInt64)
|
|
ENGINE = MergeTree()
|
|
ORDER BY key;
|
|
CREATE MATERIALIZED VIEW test.consumer TO test.view AS
|
|
SELECT * FROM test.kafka;
|
|
''')
|
|
|
|
messages = []
|
|
for i in range(50):
|
|
messages.append(json.dumps({'key': i, 'value': i}))
|
|
kafka_produce('mv', messages)
|
|
|
|
while True:
|
|
result = instance.query('SELECT * FROM test.view')
|
|
if kafka_check_result(result):
|
|
break
|
|
|
|
instance.query('''
|
|
DROP TABLE test.consumer;
|
|
DROP TABLE test.view;
|
|
''')
|
|
|
|
kafka_check_result(result, True)
|
|
|
|
|
|
@pytest.mark.timeout(300)
|
|
def test_kafka_flush_on_big_message(kafka_cluster):
|
|
# Create batchs of messages of size ~100Kb
|
|
kafka_messages = 1000
|
|
batch_messages = 1000
|
|
messages = [json.dumps({'key': i, 'value': 'x' * 100}) * batch_messages for i in range(kafka_messages)]
|
|
kafka_produce('flush', messages)
|
|
|
|
instance.query('''
|
|
DROP TABLE IF EXISTS test.view;
|
|
DROP TABLE IF EXISTS test.consumer;
|
|
CREATE TABLE test.kafka (key UInt64, value String)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'flush',
|
|
kafka_group_name = 'flush',
|
|
kafka_format = 'JSONEachRow',
|
|
kafka_max_block_size = 10;
|
|
CREATE TABLE test.view (key UInt64, value String)
|
|
ENGINE = MergeTree
|
|
ORDER BY key;
|
|
CREATE MATERIALIZED VIEW test.consumer TO test.view AS
|
|
SELECT * FROM test.kafka;
|
|
''')
|
|
|
|
client = KafkaAdminClient(bootstrap_servers="localhost:9092")
|
|
received = False
|
|
while not received:
|
|
try:
|
|
offsets = client.list_consumer_group_offsets('flush')
|
|
for topic, offset in offsets.items():
|
|
if topic.topic == 'flush' and offset.offset == kafka_messages:
|
|
received = True
|
|
break
|
|
except kafka.errors.GroupCoordinatorNotAvailableError:
|
|
continue
|
|
|
|
while True:
|
|
result = instance.query('SELECT count() FROM test.view')
|
|
if int(result) == kafka_messages*batch_messages:
|
|
break
|
|
|
|
instance.query('''
|
|
DROP TABLE test.consumer;
|
|
DROP TABLE test.view;
|
|
''')
|
|
|
|
assert int(result) == kafka_messages*batch_messages, 'ClickHouse lost some messages: {}'.format(result)
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_virtual_columns(kafka_cluster):
|
|
instance.query('''
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'virt1',
|
|
kafka_group_name = 'virt1',
|
|
kafka_format = 'JSONEachRow';
|
|
''')
|
|
|
|
messages = ''
|
|
for i in range(25):
|
|
messages += json.dumps({'key': i, 'value': i}) + '\n'
|
|
kafka_produce('virt1', [messages], 0)
|
|
|
|
messages = ''
|
|
for i in range(25, 50):
|
|
messages += json.dumps({'key': i, 'value': i}) + '\n'
|
|
kafka_produce('virt1', [messages], 0)
|
|
|
|
result = ''
|
|
while True:
|
|
result += instance.query('SELECT _key, key, _topic, value, _offset, _partition, _timestamp FROM test.kafka', ignore_error=True)
|
|
if kafka_check_result(result, False, 'test_kafka_virtual1.reference'):
|
|
break
|
|
|
|
kafka_check_result(result, True, 'test_kafka_virtual1.reference')
|
|
|
|
|
|
@pytest.mark.timeout(60)
|
|
def test_kafka_virtual_columns_with_materialized_view(kafka_cluster):
|
|
instance.query('''
|
|
DROP TABLE IF EXISTS test.view;
|
|
DROP TABLE IF EXISTS test.consumer;
|
|
CREATE TABLE test.kafka (key UInt64, value UInt64)
|
|
ENGINE = Kafka
|
|
SETTINGS kafka_broker_list = 'kafka1:19092',
|
|
kafka_topic_list = 'virt2',
|
|
kafka_group_name = 'virt2',
|
|
kafka_format = 'JSONEachRow',
|
|
kafka_row_delimiter = '\\n';
|
|
CREATE TABLE test.view (key UInt64, value UInt64, kafka_key String, topic String, offset UInt64, partition UInt64, timestamp Nullable(DateTime))
|
|
ENGINE = MergeTree()
|
|
ORDER BY key;
|
|
CREATE MATERIALIZED VIEW test.consumer TO test.view AS
|
|
SELECT *, _key as kafka_key, _topic as topic, _offset as offset, _partition as partition, _timestamp as timestamp FROM test.kafka;
|
|
''')
|
|
|
|
messages = []
|
|
for i in range(50):
|
|
messages.append(json.dumps({'key': i, 'value': i}))
|
|
kafka_produce('virt2', messages, 0)
|
|
|
|
while True:
|
|
result = instance.query('SELECT kafka_key, key, topic, value, offset, partition, timestamp FROM test.view')
|
|
if kafka_check_result(result, False, 'test_kafka_virtual2.reference'):
|
|
break
|
|
|
|
instance.query('''
|
|
DROP TABLE test.consumer;
|
|
DROP TABLE test.view;
|
|
''')
|
|
|
|
kafka_check_result(result, True, 'test_kafka_virtual2.reference')
|
|
|
|
|
|
if __name__ == '__main__':
|
|
cluster.start()
|
|
raw_input("Cluster created, press any key to destroy...")
|
|
cluster.shutdown()
|