ClickHouse/src/Storages/MergeTree/IMergeTreeDataPart.cpp
Nikita Mikhaylov c52b8ec083
Introduced MergeTask and MutateTask (#25165)
Introduced MergeTask and MutateTask
2021-09-17 00:19:58 +03:00

1544 lines
56 KiB
C++

#include "IMergeTreeDataPart.h"
#include <optional>
#include <Core/Defines.h>
#include <IO/HashingWriteBuffer.h>
#include <IO/ReadBufferFromString.h>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <Storages/MergeTree/MergeTreeData.h>
#include <Storages/MergeTree/localBackup.h>
#include <Storages/MergeTree/checkDataPart.h>
#include <Storages/StorageReplicatedMergeTree.h>
#include <Common/StringUtils/StringUtils.h>
#include <Common/escapeForFileName.h>
#include <Common/ZooKeeper/ZooKeeper.h>
#include <Common/CurrentMetrics.h>
#include <Common/FieldVisitorsAccurateComparison.h>
#include <common/JSON.h>
#include <common/logger_useful.h>
#include <Compression/getCompressionCodecForFile.h>
#include <Parsers/queryToString.h>
#include <DataTypes/NestedUtils.h>
namespace CurrentMetrics
{
extern const Metric PartsTemporary;
extern const Metric PartsPreCommitted;
extern const Metric PartsCommitted;
extern const Metric PartsOutdated;
extern const Metric PartsDeleting;
extern const Metric PartsDeleteOnDestroy;
extern const Metric PartsWide;
extern const Metric PartsCompact;
extern const Metric PartsInMemory;
}
namespace DB
{
namespace ErrorCodes
{
extern const int DIRECTORY_ALREADY_EXISTS;
extern const int CANNOT_READ_ALL_DATA;
extern const int LOGICAL_ERROR;
extern const int FILE_DOESNT_EXIST;
extern const int NO_FILE_IN_DATA_PART;
extern const int EXPECTED_END_OF_FILE;
extern const int CORRUPTED_DATA;
extern const int NOT_FOUND_EXPECTED_DATA_PART;
extern const int BAD_SIZE_OF_FILE_IN_DATA_PART;
extern const int BAD_TTL_FILE;
extern const int NOT_IMPLEMENTED;
}
static std::unique_ptr<ReadBufferFromFileBase> openForReading(const DiskPtr & disk, const String & path)
{
size_t file_size = disk->getFileSize(path);
return disk->readFile(path, ReadSettings().adjustBufferSize(file_size), file_size);
}
void IMergeTreeDataPart::MinMaxIndex::load(const MergeTreeData & data, const DiskPtr & disk_, const String & part_path)
{
auto metadata_snapshot = data.getInMemoryMetadataPtr();
const auto & partition_key = metadata_snapshot->getPartitionKey();
auto minmax_column_names = data.getMinMaxColumnsNames(partition_key);
auto minmax_column_types = data.getMinMaxColumnsTypes(partition_key);
size_t minmax_idx_size = minmax_column_types.size();
hyperrectangle.reserve(minmax_idx_size);
for (size_t i = 0; i < minmax_idx_size; ++i)
{
String file_name = fs::path(part_path) / ("minmax_" + escapeForFileName(minmax_column_names[i]) + ".idx");
auto file = openForReading(disk_, file_name);
auto serialization = minmax_column_types[i]->getDefaultSerialization();
Field min_val;
serialization->deserializeBinary(min_val, *file);
Field max_val;
serialization->deserializeBinary(max_val, *file);
// NULL_LAST
if (min_val.isNull())
min_val = POSITIVE_INFINITY;
if (max_val.isNull())
max_val = POSITIVE_INFINITY;
hyperrectangle.emplace_back(min_val, true, max_val, true);
}
initialized = true;
}
void IMergeTreeDataPart::MinMaxIndex::store(
const MergeTreeData & data, const DiskPtr & disk_, const String & part_path, Checksums & out_checksums) const
{
auto metadata_snapshot = data.getInMemoryMetadataPtr();
const auto & partition_key = metadata_snapshot->getPartitionKey();
auto minmax_column_names = data.getMinMaxColumnsNames(partition_key);
auto minmax_column_types = data.getMinMaxColumnsTypes(partition_key);
store(minmax_column_names, minmax_column_types, disk_, part_path, out_checksums);
}
void IMergeTreeDataPart::MinMaxIndex::store(
const Names & column_names,
const DataTypes & data_types,
const DiskPtr & disk_,
const String & part_path,
Checksums & out_checksums) const
{
if (!initialized)
throw Exception("Attempt to store uninitialized MinMax index for part " + part_path + ". This is a bug.",
ErrorCodes::LOGICAL_ERROR);
for (size_t i = 0; i < column_names.size(); ++i)
{
String file_name = "minmax_" + escapeForFileName(column_names[i]) + ".idx";
auto serialization = data_types.at(i)->getDefaultSerialization();
auto out = disk_->writeFile(fs::path(part_path) / file_name);
HashingWriteBuffer out_hashing(*out);
serialization->serializeBinary(hyperrectangle[i].left, out_hashing);
serialization->serializeBinary(hyperrectangle[i].right, out_hashing);
out_hashing.next();
out_checksums.files[file_name].file_size = out_hashing.count();
out_checksums.files[file_name].file_hash = out_hashing.getHash();
out->finalize();
}
}
void IMergeTreeDataPart::MinMaxIndex::update(const Block & block, const Names & column_names)
{
if (!initialized)
hyperrectangle.reserve(column_names.size());
for (size_t i = 0; i < column_names.size(); ++i)
{
FieldRef min_value;
FieldRef max_value;
const ColumnWithTypeAndName & column = block.getByName(column_names[i]);
if (const auto * column_nullable = typeid_cast<const ColumnNullable *>(column.column.get()))
column_nullable->getExtremesNullLast(min_value, max_value);
else
column.column->getExtremes(min_value, max_value);
if (!initialized)
hyperrectangle.emplace_back(min_value, true, max_value, true);
else
{
hyperrectangle[i].left
= applyVisitor(FieldVisitorAccurateLess(), hyperrectangle[i].left, min_value) ? hyperrectangle[i].left : min_value;
hyperrectangle[i].right
= applyVisitor(FieldVisitorAccurateLess(), hyperrectangle[i].right, max_value) ? max_value : hyperrectangle[i].right;
}
}
initialized = true;
}
void IMergeTreeDataPart::MinMaxIndex::merge(const MinMaxIndex & other)
{
if (!other.initialized)
return;
if (!initialized)
{
hyperrectangle = other.hyperrectangle;
initialized = true;
}
else
{
for (size_t i = 0; i < hyperrectangle.size(); ++i)
{
hyperrectangle[i].left = std::min(hyperrectangle[i].left, other.hyperrectangle[i].left);
hyperrectangle[i].right = std::max(hyperrectangle[i].right, other.hyperrectangle[i].right);
}
}
}
static void incrementStateMetric(IMergeTreeDataPart::State state)
{
switch (state)
{
case IMergeTreeDataPart::State::Temporary:
CurrentMetrics::add(CurrentMetrics::PartsTemporary);
return;
case IMergeTreeDataPart::State::PreCommitted:
CurrentMetrics::add(CurrentMetrics::PartsPreCommitted);
return;
case IMergeTreeDataPart::State::Committed:
CurrentMetrics::add(CurrentMetrics::PartsCommitted);
return;
case IMergeTreeDataPart::State::Outdated:
CurrentMetrics::add(CurrentMetrics::PartsOutdated);
return;
case IMergeTreeDataPart::State::Deleting:
CurrentMetrics::add(CurrentMetrics::PartsDeleting);
return;
case IMergeTreeDataPart::State::DeleteOnDestroy:
CurrentMetrics::add(CurrentMetrics::PartsDeleteOnDestroy);
return;
}
}
static void decrementStateMetric(IMergeTreeDataPart::State state)
{
switch (state)
{
case IMergeTreeDataPart::State::Temporary:
CurrentMetrics::sub(CurrentMetrics::PartsTemporary);
return;
case IMergeTreeDataPart::State::PreCommitted:
CurrentMetrics::sub(CurrentMetrics::PartsPreCommitted);
return;
case IMergeTreeDataPart::State::Committed:
CurrentMetrics::sub(CurrentMetrics::PartsCommitted);
return;
case IMergeTreeDataPart::State::Outdated:
CurrentMetrics::sub(CurrentMetrics::PartsOutdated);
return;
case IMergeTreeDataPart::State::Deleting:
CurrentMetrics::sub(CurrentMetrics::PartsDeleting);
return;
case IMergeTreeDataPart::State::DeleteOnDestroy:
CurrentMetrics::sub(CurrentMetrics::PartsDeleteOnDestroy);
return;
}
}
static void incrementTypeMetric(MergeTreeDataPartType type)
{
switch (type.getValue())
{
case MergeTreeDataPartType::WIDE:
CurrentMetrics::add(CurrentMetrics::PartsWide);
return;
case MergeTreeDataPartType::COMPACT:
CurrentMetrics::add(CurrentMetrics::PartsCompact);
return;
case MergeTreeDataPartType::IN_MEMORY:
CurrentMetrics::add(CurrentMetrics::PartsInMemory);
return;
case MergeTreeDataPartType::UNKNOWN:
return;
}
}
static void decrementTypeMetric(MergeTreeDataPartType type)
{
switch (type.getValue())
{
case MergeTreeDataPartType::WIDE:
CurrentMetrics::sub(CurrentMetrics::PartsWide);
return;
case MergeTreeDataPartType::COMPACT:
CurrentMetrics::sub(CurrentMetrics::PartsCompact);
return;
case MergeTreeDataPartType::IN_MEMORY:
CurrentMetrics::sub(CurrentMetrics::PartsInMemory);
return;
case MergeTreeDataPartType::UNKNOWN:
return;
}
}
IMergeTreeDataPart::IMergeTreeDataPart(
MergeTreeData & storage_,
const String & name_,
const VolumePtr & volume_,
const std::optional<String> & relative_path_,
Type part_type_,
const IMergeTreeDataPart * parent_part_)
: storage(storage_)
, name(name_)
, info(MergeTreePartInfo::fromPartName(name_, storage.format_version))
, volume(parent_part_ ? parent_part_->volume : volume_)
, relative_path(relative_path_.value_or(name_))
, index_granularity_info(storage_, part_type_)
, part_type(part_type_)
, parent_part(parent_part_)
{
if (parent_part)
state = State::Committed;
incrementStateMetric(state);
incrementTypeMetric(part_type);
minmax_idx = std::make_shared<MinMaxIndex>();
}
IMergeTreeDataPart::IMergeTreeDataPart(
const MergeTreeData & storage_,
const String & name_,
const MergeTreePartInfo & info_,
const VolumePtr & volume_,
const std::optional<String> & relative_path_,
Type part_type_,
const IMergeTreeDataPart * parent_part_)
: storage(storage_)
, name(name_)
, info(info_)
, volume(parent_part_ ? parent_part_->volume : volume_)
, relative_path(relative_path_.value_or(name_))
, index_granularity_info(storage_, part_type_)
, part_type(part_type_)
, parent_part(parent_part_)
{
if (parent_part)
state = State::Committed;
incrementStateMetric(state);
incrementTypeMetric(part_type);
minmax_idx = std::make_shared<MinMaxIndex>();
}
IMergeTreeDataPart::~IMergeTreeDataPart()
{
decrementStateMetric(state);
decrementTypeMetric(part_type);
}
String IMergeTreeDataPart::getNewName(const MergeTreePartInfo & new_part_info) const
{
if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING)
{
/// NOTE: getting min and max dates from the part name (instead of part data) because we want
/// the merged part name be determined only by source part names.
/// It is simpler this way when the real min and max dates for the block range can change
/// (e.g. after an ALTER DELETE command).
DayNum min_date;
DayNum max_date;
MergeTreePartInfo::parseMinMaxDatesFromPartName(name, min_date, max_date);
return new_part_info.getPartNameV0(min_date, max_date);
}
else
return new_part_info.getPartName();
}
std::optional<size_t> IMergeTreeDataPart::getColumnPosition(const String & column_name) const
{
auto it = column_name_to_position.find(column_name);
if (it == column_name_to_position.end())
return {};
return it->second;
}
void IMergeTreeDataPart::setState(IMergeTreeDataPart::State new_state) const
{
decrementStateMetric(state);
state = new_state;
incrementStateMetric(state);
}
IMergeTreeDataPart::State IMergeTreeDataPart::getState() const
{
return state;
}
std::pair<DayNum, DayNum> IMergeTreeDataPart::getMinMaxDate() const
{
if (storage.minmax_idx_date_column_pos != -1 && minmax_idx->initialized)
{
const auto & hyperrectangle = minmax_idx->hyperrectangle[storage.minmax_idx_date_column_pos];
return {DayNum(hyperrectangle.left.get<UInt64>()), DayNum(hyperrectangle.right.get<UInt64>())};
}
else
return {};
}
std::pair<time_t, time_t> IMergeTreeDataPart::getMinMaxTime() const
{
if (storage.minmax_idx_time_column_pos != -1 && minmax_idx->initialized)
{
const auto & hyperrectangle = minmax_idx->hyperrectangle[storage.minmax_idx_time_column_pos];
/// The case of DateTime
if (hyperrectangle.left.getType() == Field::Types::UInt64)
{
assert(hyperrectangle.right.getType() == Field::Types::UInt64);
return {hyperrectangle.left.get<UInt64>(), hyperrectangle.right.get<UInt64>()};
}
/// The case of DateTime64
else if (hyperrectangle.left.getType() == Field::Types::Decimal64)
{
assert(hyperrectangle.right.getType() == Field::Types::Decimal64);
auto left = hyperrectangle.left.get<DecimalField<Decimal64>>();
auto right = hyperrectangle.right.get<DecimalField<Decimal64>>();
assert(left.getScale() == right.getScale());
return { left.getValue() / left.getScaleMultiplier(), right.getValue() / right.getScaleMultiplier() };
}
else
throw Exception(ErrorCodes::LOGICAL_ERROR, "Part minmax index by time is neither DateTime or DateTime64");
}
else
return {};
}
void IMergeTreeDataPart::setColumns(const NamesAndTypesList & new_columns)
{
columns = new_columns;
column_name_to_position.clear();
column_name_to_position.reserve(new_columns.size());
size_t pos = 0;
for (const auto & column : columns)
{
column_name_to_position.emplace(column.name, pos);
for (const auto & subcolumn : column.type->getSubcolumnNames())
column_name_to_position.emplace(Nested::concatenateName(column.name, subcolumn), pos);
++pos;
}
}
void IMergeTreeDataPart::removeIfNeeded()
{
if (state == State::DeleteOnDestroy || is_temp)
{
try
{
auto path = getFullRelativePath();
if (!volume->getDisk()->exists(path))
return;
if (is_temp)
{
String file_name = fileName(relative_path);
if (file_name.empty())
throw Exception("relative_path " + relative_path + " of part " + name + " is invalid or not set", ErrorCodes::LOGICAL_ERROR);
if (!startsWith(file_name, "tmp"))
{
LOG_ERROR(storage.log, "~DataPart() should remove part {} but its name doesn't start with tmp. Too suspicious, keeping the part.", path);
return;
}
}
if (parent_part)
{
std::optional<bool> keep_shared_data = keepSharedDataInDecoupledStorage();
if (!keep_shared_data.has_value())
return;
projectionRemove(parent_part->getFullRelativePath(), *keep_shared_data);
}
else
remove();
if (state == State::DeleteOnDestroy)
{
LOG_TRACE(storage.log, "Removed part from old location {}", path);
}
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
}
UInt64 IMergeTreeDataPart::getIndexSizeInBytes() const
{
UInt64 res = 0;
for (const ColumnPtr & column : index)
res += column->byteSize();
return res;
}
UInt64 IMergeTreeDataPart::getIndexSizeInAllocatedBytes() const
{
UInt64 res = 0;
for (const ColumnPtr & column : index)
res += column->allocatedBytes();
return res;
}
void IMergeTreeDataPart::assertState(const std::initializer_list<IMergeTreeDataPart::State> & affordable_states) const
{
if (!checkState(affordable_states))
{
String states_str;
for (auto affordable_state : affordable_states)
{
states_str += stateString(affordable_state);
states_str += ' ';
}
throw Exception("Unexpected state of part " + getNameWithState() + ". Expected: " + states_str, ErrorCodes::NOT_FOUND_EXPECTED_DATA_PART);
}
}
void IMergeTreeDataPart::assertOnDisk() const
{
if (!isStoredOnDisk())
throw Exception("Data part '" + name + "' with type '"
+ getType().toString() + "' is not stored on disk", ErrorCodes::LOGICAL_ERROR);
}
UInt64 IMergeTreeDataPart::getMarksCount() const
{
return index_granularity.getMarksCount();
}
size_t IMergeTreeDataPart::getFileSizeOrZero(const String & file_name) const
{
auto checksum = checksums.files.find(file_name);
if (checksum == checksums.files.end())
return 0;
return checksum->second.file_size;
}
String IMergeTreeDataPart::getColumnNameWithMinimumCompressedSize(const StorageMetadataPtr & metadata_snapshot) const
{
const auto & storage_columns = metadata_snapshot->getColumns().getAllPhysical();
MergeTreeData::AlterConversions alter_conversions;
if (!parent_part)
alter_conversions = storage.getAlterConversionsForPart(shared_from_this());
std::optional<std::string> minimum_size_column;
UInt64 minimum_size = std::numeric_limits<UInt64>::max();
for (const auto & column : storage_columns)
{
auto column_name = column.name;
auto column_type = column.type;
if (alter_conversions.isColumnRenamed(column.name))
column_name = alter_conversions.getColumnOldName(column.name);
if (!hasColumnFiles(column))
continue;
const auto size = getColumnSize(column_name, *column_type).data_compressed;
if (size < minimum_size)
{
minimum_size = size;
minimum_size_column = column_name;
}
}
if (!minimum_size_column)
throw Exception("Could not find a column of minimum size in MergeTree, part " + getFullPath(), ErrorCodes::LOGICAL_ERROR);
return *minimum_size_column;
}
String IMergeTreeDataPart::getFullPath() const
{
if (relative_path.empty())
throw Exception("Part relative_path cannot be empty. It's bug.", ErrorCodes::LOGICAL_ERROR);
return fs::path(storage.getFullPathOnDisk(volume->getDisk())) / (parent_part ? parent_part->relative_path : "") / relative_path / "";
}
String IMergeTreeDataPart::getFullRelativePath() const
{
if (relative_path.empty())
throw Exception("Part relative_path cannot be empty. It's bug.", ErrorCodes::LOGICAL_ERROR);
return fs::path(storage.relative_data_path) / (parent_part ? parent_part->relative_path : "") / relative_path / "";
}
void IMergeTreeDataPart::loadColumnsChecksumsIndexes(bool require_columns_checksums, bool check_consistency)
{
assertOnDisk();
/// Memory should not be limited during ATTACH TABLE query.
/// This is already true at the server startup but must be also ensured for manual table ATTACH.
/// Motivation: memory for index is shared between queries - not belong to the query itself.
MemoryTracker::BlockerInThread temporarily_disable_memory_tracker(VariableContext::Global);
loadUUID();
loadColumns(require_columns_checksums);
loadChecksums(require_columns_checksums);
loadIndexGranularity();
calculateColumnsSizesOnDisk();
loadIndex(); /// Must be called after loadIndexGranularity as it uses the value of `index_granularity`
loadRowsCount(); /// Must be called after loadIndexGranularity() as it uses the value of `index_granularity`.
loadPartitionAndMinMaxIndex();
if (!parent_part)
{
loadTTLInfos();
loadProjections(require_columns_checksums, check_consistency);
}
if (check_consistency)
checkConsistency(require_columns_checksums);
loadDefaultCompressionCodec();
}
void IMergeTreeDataPart::loadProjections(bool require_columns_checksums, bool check_consistency)
{
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
for (const auto & projection : metadata_snapshot->projections)
{
String path = getFullRelativePath() + projection.name + ".proj";
if (volume->getDisk()->exists(path))
{
auto part = storage.createPart(projection.name, {"all", 0, 0, 0}, volume, projection.name + ".proj", this);
part->loadColumnsChecksumsIndexes(require_columns_checksums, check_consistency);
projection_parts.emplace(projection.name, std::move(part));
}
}
}
void IMergeTreeDataPart::loadIndexGranularity()
{
throw Exception("Method 'loadIndexGranularity' is not implemented for part with type " + getType().toString(), ErrorCodes::NOT_IMPLEMENTED);
}
void IMergeTreeDataPart::loadIndex()
{
/// It can be empty in case of mutations
if (!index_granularity.isInitialized())
throw Exception("Index granularity is not loaded before index loading", ErrorCodes::LOGICAL_ERROR);
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.get(name).metadata;
const auto & primary_key = metadata_snapshot->getPrimaryKey();
size_t key_size = primary_key.column_names.size();
if (key_size)
{
MutableColumns loaded_index;
loaded_index.resize(key_size);
for (size_t i = 0; i < key_size; ++i)
{
loaded_index[i] = primary_key.data_types[i]->createColumn();
loaded_index[i]->reserve(index_granularity.getMarksCount());
}
String index_path = fs::path(getFullRelativePath()) / "primary.idx";
auto index_file = openForReading(volume->getDisk(), index_path);
size_t marks_count = index_granularity.getMarksCount();
Serializations serializations(key_size);
for (size_t j = 0; j < key_size; ++j)
serializations[j] = primary_key.data_types[j]->getDefaultSerialization();
for (size_t i = 0; i < marks_count; ++i) //-V756
for (size_t j = 0; j < key_size; ++j)
serializations[j]->deserializeBinary(*loaded_index[j], *index_file);
for (size_t i = 0; i < key_size; ++i)
{
loaded_index[i]->protect();
if (loaded_index[i]->size() != marks_count)
throw Exception("Cannot read all data from index file " + index_path
+ "(expected size: " + toString(marks_count) + ", read: " + toString(loaded_index[i]->size()) + ")",
ErrorCodes::CANNOT_READ_ALL_DATA);
}
if (!index_file->eof())
throw Exception("Index file " + fullPath(volume->getDisk(), index_path) + " is unexpectedly long", ErrorCodes::EXPECTED_END_OF_FILE);
index.assign(std::make_move_iterator(loaded_index.begin()), std::make_move_iterator(loaded_index.end()));
}
}
NameSet IMergeTreeDataPart::getFileNamesWithoutChecksums() const
{
if (!isStoredOnDisk())
return {};
NameSet result = {"checksums.txt", "columns.txt"};
String default_codec_path = fs::path(getFullRelativePath()) / DEFAULT_COMPRESSION_CODEC_FILE_NAME;
if (volume->getDisk()->exists(default_codec_path))
result.emplace(DEFAULT_COMPRESSION_CODEC_FILE_NAME);
return result;
}
void IMergeTreeDataPart::loadDefaultCompressionCodec()
{
/// In memory parts doesn't have any compression
if (!isStoredOnDisk())
{
default_codec = CompressionCodecFactory::instance().get("NONE", {});
return;
}
String path = fs::path(getFullRelativePath()) / DEFAULT_COMPRESSION_CODEC_FILE_NAME;
if (!volume->getDisk()->exists(path))
{
default_codec = detectDefaultCompressionCodec();
}
else
{
auto file_buf = openForReading(volume->getDisk(), path);
String codec_line;
readEscapedStringUntilEOL(codec_line, *file_buf);
ReadBufferFromString buf(codec_line);
if (!checkString("CODEC", buf))
{
LOG_WARNING(storage.log, "Cannot parse default codec for part {} from file {}, content '{}'. Default compression codec will be deduced automatically, from data on disk", name, path, codec_line);
default_codec = detectDefaultCompressionCodec();
}
try
{
ParserCodec codec_parser;
auto codec_ast = parseQuery(codec_parser, codec_line.data() + buf.getPosition(), codec_line.data() + codec_line.length(), "codec parser", 0, DBMS_DEFAULT_MAX_PARSER_DEPTH);
default_codec = CompressionCodecFactory::instance().get(codec_ast, {});
}
catch (const DB::Exception & ex)
{
LOG_WARNING(storage.log, "Cannot parse default codec for part {} from file {}, content '{}', error '{}'. Default compression codec will be deduced automatically, from data on disk.", name, path, codec_line, ex.what());
default_codec = detectDefaultCompressionCodec();
}
}
}
CompressionCodecPtr IMergeTreeDataPart::detectDefaultCompressionCodec() const
{
/// In memory parts doesn't have any compression
if (!isStoredOnDisk())
return CompressionCodecFactory::instance().get("NONE", {});
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
const auto & storage_columns = metadata_snapshot->getColumns();
CompressionCodecPtr result = nullptr;
for (const auto & part_column : columns)
{
/// It was compressed with default codec and it's not empty
auto column_size = getColumnSize(part_column.name, *part_column.type);
if (column_size.data_compressed != 0 && !storage_columns.hasCompressionCodec(part_column.name))
{
auto serialization = IDataType::getSerialization(part_column,
[&](const String & stream_name)
{
return volume->getDisk()->exists(stream_name + IMergeTreeDataPart::DATA_FILE_EXTENSION);
});
String path_to_data_file;
serialization->enumerateStreams([&](const ISerialization::SubstreamPath & substream_path)
{
if (path_to_data_file.empty())
{
String candidate_path = fs::path(getFullRelativePath()) / (ISerialization::getFileNameForStream(part_column, substream_path) + ".bin");
/// We can have existing, but empty .bin files. Example: LowCardinality(Nullable(...)) columns and column_name.dict.null.bin file.
if (volume->getDisk()->exists(candidate_path) && volume->getDisk()->getFileSize(candidate_path) != 0)
path_to_data_file = candidate_path;
}
});
if (path_to_data_file.empty())
{
LOG_WARNING(storage.log, "Part's {} column {} has non zero data compressed size, but all data files don't exist or empty", name, backQuoteIfNeed(part_column.name));
continue;
}
result = getCompressionCodecForFile(volume->getDisk(), path_to_data_file);
break;
}
}
if (!result)
result = CompressionCodecFactory::instance().getDefaultCodec();
return result;
}
void IMergeTreeDataPart::loadPartitionAndMinMaxIndex()
{
if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING && !parent_part)
{
DayNum min_date;
DayNum max_date;
MergeTreePartInfo::parseMinMaxDatesFromPartName(name, min_date, max_date);
const auto & date_lut = DateLUT::instance();
partition = MergeTreePartition(date_lut.toNumYYYYMM(min_date));
minmax_idx = std::make_shared<MinMaxIndex>(min_date, max_date);
}
else
{
String path = getFullRelativePath();
if (!parent_part)
partition.load(storage, volume->getDisk(), path);
if (!isEmpty())
{
if (parent_part)
// projection parts don't have minmax_idx, and it's always initialized
minmax_idx->initialized = true;
else
minmax_idx->load(storage, volume->getDisk(), path);
}
if (parent_part)
return;
}
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
String calculated_partition_id = partition.getID(metadata_snapshot->getPartitionKey().sample_block);
if (calculated_partition_id != info.partition_id)
throw Exception(
"While loading part " + getFullPath() + ": calculated partition ID: " + calculated_partition_id
+ " differs from partition ID in part name: " + info.partition_id,
ErrorCodes::CORRUPTED_DATA);
}
void IMergeTreeDataPart::loadChecksums(bool require)
{
const String path = fs::path(getFullRelativePath()) / "checksums.txt";
if (volume->getDisk()->exists(path))
{
auto buf = openForReading(volume->getDisk(), path);
if (checksums.read(*buf))
{
assertEOF(*buf);
bytes_on_disk = checksums.getTotalSizeOnDisk();
}
else
bytes_on_disk = calculateTotalSizeOnDisk(volume->getDisk(), getFullRelativePath());
}
else
{
if (require)
throw Exception(ErrorCodes::NO_FILE_IN_DATA_PART, "No checksums.txt in part {}", name);
/// If the checksums file is not present, calculate the checksums and write them to disk.
/// Check the data while we are at it.
LOG_WARNING(storage.log, "Checksums for part {} not found. Will calculate them from data on disk.", name);
checksums = checkDataPart(shared_from_this(), false);
{
auto out = volume->getDisk()->writeFile(fs::path(getFullRelativePath()) / "checksums.txt.tmp", 4096);
checksums.write(*out);
}
volume->getDisk()->moveFile(fs::path(getFullRelativePath()) / "checksums.txt.tmp", fs::path(getFullRelativePath()) / "checksums.txt");
bytes_on_disk = checksums.getTotalSizeOnDisk();
}
}
void IMergeTreeDataPart::loadRowsCount()
{
String path = fs::path(getFullRelativePath()) / "count.txt";
if (index_granularity.empty())
{
rows_count = 0;
}
else if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING || part_type == Type::COMPACT || parent_part)
{
if (!volume->getDisk()->exists(path))
throw Exception("No count.txt in part " + name, ErrorCodes::NO_FILE_IN_DATA_PART);
auto buf = openForReading(volume->getDisk(), path);
readIntText(rows_count, *buf);
assertEOF(*buf);
#ifndef NDEBUG
/// columns have to be loaded
for (const auto & column : getColumns())
{
/// Most trivial types
if (column.type->isValueRepresentedByNumber() && !column.type->haveSubtypes())
{
auto size = getColumnSize(column.name, *column.type);
if (size.data_uncompressed == 0)
continue;
size_t rows_in_column = size.data_uncompressed / column.type->getSizeOfValueInMemory();
if (rows_in_column != rows_count)
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Column {} has rows count {} according to size in memory "
"and size of single value, but data part {} has {} rows", backQuote(column.name), rows_in_column, name, rows_count);
}
size_t last_possibly_incomplete_mark_rows = index_granularity.getLastNonFinalMarkRows();
/// All this rows have to be written in column
size_t index_granularity_without_last_mark = index_granularity.getTotalRows() - last_possibly_incomplete_mark_rows;
/// We have more rows in column than in index granularity without last possibly incomplete mark
if (rows_in_column < index_granularity_without_last_mark)
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Column {} has rows count {} according to size in memory "
"and size of single value, but index granularity in part {} without last mark has {} rows, which is more than in column",
backQuote(column.name), rows_in_column, name, index_granularity.getTotalRows());
}
/// In last mark we actually written less or equal rows than stored in last mark of index granularity
if (rows_in_column - index_granularity_without_last_mark > last_possibly_incomplete_mark_rows)
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Column {} has rows count {} in last mark according to size in memory "
"and size of single value, but index granularity in part {} in last mark has {} rows which is less than in column",
backQuote(column.name), rows_in_column - index_granularity_without_last_mark, name, last_possibly_incomplete_mark_rows);
}
}
}
#endif
}
else
{
for (const NameAndTypePair & column : columns)
{
ColumnPtr column_col = column.type->createColumn();
if (!column_col->isFixedAndContiguous() || column_col->lowCardinality())
continue;
size_t column_size = getColumnSize(column.name, *column.type).data_uncompressed;
if (!column_size)
continue;
size_t sizeof_field = column_col->sizeOfValueIfFixed();
rows_count = column_size / sizeof_field;
if (column_size % sizeof_field != 0)
{
throw Exception(
"Uncompressed size of column " + column.name + "(" + toString(column_size)
+ ") is not divisible by the size of value (" + toString(sizeof_field) + ")",
ErrorCodes::LOGICAL_ERROR);
}
size_t last_mark_index_granularity = index_granularity.getLastNonFinalMarkRows();
size_t rows_approx = index_granularity.getTotalRows();
if (!(rows_count <= rows_approx && rows_approx < rows_count + last_mark_index_granularity))
throw Exception(
"Unexpected size of column " + column.name + ": " + toString(rows_count) + " rows, expected "
+ toString(rows_approx) + "+-" + toString(last_mark_index_granularity) + " rows according to the index",
ErrorCodes::LOGICAL_ERROR);
return;
}
throw Exception("Data part doesn't contain fixed size column (even Date column)", ErrorCodes::LOGICAL_ERROR);
}
}
void IMergeTreeDataPart::loadTTLInfos()
{
String path = fs::path(getFullRelativePath()) / "ttl.txt";
if (volume->getDisk()->exists(path))
{
auto in = openForReading(volume->getDisk(), path);
assertString("ttl format version: ", *in);
size_t format_version;
readText(format_version, *in);
assertChar('\n', *in);
if (format_version == 1)
{
try
{
ttl_infos.read(*in);
}
catch (const JSONException &)
{
throw Exception("Error while parsing file ttl.txt in part: " + name, ErrorCodes::BAD_TTL_FILE);
}
}
else
throw Exception("Unknown ttl format version: " + toString(format_version), ErrorCodes::BAD_TTL_FILE);
}
}
void IMergeTreeDataPart::loadUUID()
{
String path = fs::path(getFullRelativePath()) / UUID_FILE_NAME;
if (volume->getDisk()->exists(path))
{
auto in = openForReading(volume->getDisk(), path);
readText(uuid, *in);
if (uuid == UUIDHelpers::Nil)
throw Exception("Unexpected empty " + String(UUID_FILE_NAME) + " in part: " + name, ErrorCodes::LOGICAL_ERROR);
}
}
void IMergeTreeDataPart::loadColumns(bool require)
{
String path = fs::path(getFullRelativePath()) / "columns.txt";
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.get(name).metadata;
NamesAndTypesList loaded_columns;
if (!volume->getDisk()->exists(path))
{
/// We can get list of columns only from columns.txt in compact parts.
if (require || part_type == Type::COMPACT)
throw Exception("No columns.txt in part " + name + ", expected path " + path + " on drive " + volume->getDisk()->getName(),
ErrorCodes::NO_FILE_IN_DATA_PART);
/// If there is no file with a list of columns, write it down.
for (const NameAndTypePair & column : metadata_snapshot->getColumns().getAllPhysical())
if (volume->getDisk()->exists(fs::path(getFullRelativePath()) / (getFileNameForColumn(column) + ".bin")))
loaded_columns.push_back(column);
if (columns.empty())
throw Exception("No columns in part " + name, ErrorCodes::NO_FILE_IN_DATA_PART);
{
auto buf = volume->getDisk()->writeFile(path + ".tmp", 4096);
loaded_columns.writeText(*buf);
}
volume->getDisk()->moveFile(path + ".tmp", path);
}
else
{
loaded_columns.readText(*volume->getDisk()->readFile(path));
}
setColumns(loaded_columns);
}
bool IMergeTreeDataPart::shallParticipateInMerges(const StoragePolicyPtr & storage_policy) const
{
/// `IMergeTreeDataPart::volume` describes space where current part belongs, and holds
/// `SingleDiskVolume` object which does not contain up-to-date settings of corresponding volume.
/// Therefore we shall obtain volume from storage policy.
auto volume_ptr = storage_policy->getVolume(storage_policy->getVolumeIndexByDisk(volume->getDisk()));
return !volume_ptr->areMergesAvoided();
}
UInt64 IMergeTreeDataPart::calculateTotalSizeOnDisk(const DiskPtr & disk_, const String & from)
{
if (disk_->isFile(from))
return disk_->getFileSize(from);
std::vector<std::string> files;
disk_->listFiles(from, files);
UInt64 res = 0;
for (const auto & file : files)
res += calculateTotalSizeOnDisk(disk_, fs::path(from) / file);
return res;
}
void IMergeTreeDataPart::renameTo(const String & new_relative_path, bool remove_new_dir_if_exists) const
{
assertOnDisk();
String from = getFullRelativePath();
String to = fs::path(storage.relative_data_path) / (parent_part ? parent_part->relative_path : "") / new_relative_path / "";
if (!volume->getDisk()->exists(from))
throw Exception("Part directory " + fullPath(volume->getDisk(), from) + " doesn't exist. Most likely it is a logical error.", ErrorCodes::FILE_DOESNT_EXIST);
if (volume->getDisk()->exists(to))
{
if (remove_new_dir_if_exists)
{
Names files;
volume->getDisk()->listFiles(to, files);
LOG_WARNING(storage.log, "Part directory {} already exists and contains {} files. Removing it.", fullPath(volume->getDisk(), to), files.size());
volume->getDisk()->removeRecursive(to);
}
else
{
throw Exception("Part directory " + fullPath(volume->getDisk(), to) + " already exists", ErrorCodes::DIRECTORY_ALREADY_EXISTS);
}
}
volume->getDisk()->setLastModified(from, Poco::Timestamp::fromEpochTime(time(nullptr)));
volume->getDisk()->moveDirectory(from, to);
relative_path = new_relative_path;
SyncGuardPtr sync_guard;
if (storage.getSettings()->fsync_part_directory)
sync_guard = volume->getDisk()->getDirectorySyncGuard(to);
storage.lockSharedData(*this);
}
std::optional<bool> IMergeTreeDataPart::keepSharedDataInDecoupledStorage() const
{
/// NOTE: It's needed for zero-copy replication
if (force_keep_shared_data)
return true;
/// TODO Unlocking in try-catch and ignoring exception look ugly
try
{
return !storage.unlockSharedData(*this);
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__, "There is a problem with deleting part " + name + " from filesystem");
}
return {};
}
void IMergeTreeDataPart::remove() const
{
std::optional<bool> keep_shared_data = keepSharedDataInDecoupledStorage();
if (!keep_shared_data.has_value())
return;
if (!isStoredOnDisk())
return;
if (relative_path.empty())
throw Exception("Part relative_path cannot be empty. This is bug.", ErrorCodes::LOGICAL_ERROR);
if (isProjectionPart())
{
LOG_WARNING(storage.log, "Projection part {} should be removed by its parent {}.", name, parent_part->name);
projectionRemove(parent_part->getFullRelativePath(), *keep_shared_data);
return;
}
/** Atomic directory removal:
* - rename directory to temporary name;
* - remove it recursive.
*
* For temporary name we use "delete_tmp_" prefix.
*
* NOTE: We cannot use "tmp_delete_" prefix, because there is a second thread,
* that calls "clearOldTemporaryDirectories" and removes all directories, that begin with "tmp_" and are old enough.
* But when we removing data part, it can be old enough. And rename doesn't change mtime.
* And a race condition can happen that will lead to "File not found" error here.
*/
fs::path from = fs::path(storage.relative_data_path) / relative_path;
fs::path to = fs::path(storage.relative_data_path) / ("delete_tmp_" + name);
// TODO directory delete_tmp_<name> is never removed if server crashes before returning from this function
auto disk = volume->getDisk();
if (disk->exists(to))
{
LOG_WARNING(storage.log, "Directory {} (to which part must be renamed before removing) already exists. Most likely this is due to unclean restart. Removing it.", fullPath(disk, to));
try
{
disk->removeSharedRecursive(fs::path(to) / "", *keep_shared_data);
}
catch (...)
{
LOG_ERROR(storage.log, "Cannot recursively remove directory {}. Exception: {}", fullPath(disk, to), getCurrentExceptionMessage(false));
throw;
}
}
try
{
disk->moveDirectory(from, to);
}
catch (const fs::filesystem_error & e)
{
if (e.code() == std::errc::no_such_file_or_directory)
{
LOG_ERROR(storage.log, "Directory {} (part to remove) doesn't exist or one of nested files has gone. Most likely this is due to manual removing. This should be discouraged. Ignoring.", fullPath(disk, to));
return;
}
throw;
}
// Record existing projection directories so we don't remove them twice
std::unordered_set<String> projection_directories;
for (const auto & [p_name, projection_part] : projection_parts)
{
projection_part->projectionRemove(to, *keep_shared_data);
projection_directories.emplace(p_name + ".proj");
}
if (checksums.empty())
{
/// If the part is not completely written, we cannot use fast path by listing files.
disk->removeSharedRecursive(fs::path(to) / "", *keep_shared_data);
}
else
{
try
{
/// Remove each expected file in directory, then remove directory itself.
#if !defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-variable"
#endif
for (const auto & [file, _] : checksums.files)
{
if (projection_directories.find(file) == projection_directories.end())
disk->removeSharedFile(fs::path(to) / file, *keep_shared_data);
}
#if !defined(__clang__)
# pragma GCC diagnostic pop
#endif
for (const auto & file : {"checksums.txt", "columns.txt"})
disk->removeSharedFile(fs::path(to) / file, *keep_shared_data);
disk->removeSharedFileIfExists(fs::path(to) / DEFAULT_COMPRESSION_CODEC_FILE_NAME, *keep_shared_data);
disk->removeSharedFileIfExists(fs::path(to) / DELETE_ON_DESTROY_MARKER_FILE_NAME, *keep_shared_data);
disk->removeDirectory(to);
}
catch (...)
{
/// Recursive directory removal does many excessive "stat" syscalls under the hood.
LOG_ERROR(storage.log, "Cannot quickly remove directory {} by removing files; fallback to recursive removal. Reason: {}", fullPath(disk, to), getCurrentExceptionMessage(false));
disk->removeSharedRecursive(fs::path(to) / "", *keep_shared_data);
}
}
}
void IMergeTreeDataPart::projectionRemove(const String & parent_to, bool keep_shared_data) const
{
String to = parent_to + "/" + relative_path;
auto disk = volume->getDisk();
if (checksums.empty())
{
LOG_ERROR(
storage.log,
"Cannot quickly remove directory {} by removing files; fallback to recursive removal. Reason: checksums.txt is missing",
fullPath(disk, to));
/// If the part is not completely written, we cannot use fast path by listing files.
disk->removeSharedRecursive(to + "/", keep_shared_data);
}
else
{
try
{
/// Remove each expected file in directory, then remove directory itself.
#if !defined(__clang__)
# pragma GCC diagnostic push
# pragma GCC diagnostic ignored "-Wunused-variable"
#endif
for (const auto & [file, _] : checksums.files)
disk->removeSharedFile(to + "/" + file, keep_shared_data);
#if !defined(__clang__)
# pragma GCC diagnostic pop
#endif
for (const auto & file : {"checksums.txt", "columns.txt"})
disk->removeSharedFile(to + "/" + file, keep_shared_data);
disk->removeSharedFileIfExists(to + "/" + DEFAULT_COMPRESSION_CODEC_FILE_NAME, keep_shared_data);
disk->removeSharedFileIfExists(to + "/" + DELETE_ON_DESTROY_MARKER_FILE_NAME, keep_shared_data);
disk->removeSharedRecursive(to, keep_shared_data);
}
catch (...)
{
/// Recursive directory removal does many excessive "stat" syscalls under the hood.
LOG_ERROR(storage.log, "Cannot quickly remove directory {} by removing files; fallback to recursive removal. Reason: {}", fullPath(disk, to), getCurrentExceptionMessage(false));
disk->removeSharedRecursive(to + "/", keep_shared_data);
}
}
}
String IMergeTreeDataPart::getRelativePathForPrefix(const String & prefix) const
{
String res;
/** If you need to detach a part, and directory into which we want to rename it already exists,
* we will rename to the directory with the name to which the suffix is added in the form of "_tryN".
* This is done only in the case of `to_detached`, because it is assumed that in this case the exact name does not matter.
* No more than 10 attempts are made so that there are not too many junk directories left.
*/
for (int try_no = 0; try_no < 10; try_no++)
{
res = (prefix.empty() ? "" : prefix + "_") + name + (try_no ? "_try" + DB::toString(try_no) : "");
if (!volume->getDisk()->exists(fs::path(getFullRelativePath()) / res))
return res;
LOG_WARNING(storage.log, "Directory {} (to detach to) already exists. Will detach to directory with '_tryN' suffix.", res);
}
return res;
}
String IMergeTreeDataPart::getRelativePathForDetachedPart(const String & prefix) const
{
/// Do not allow underscores in the prefix because they are used as separators.
assert(prefix.find_first_of('_') == String::npos);
assert(prefix.empty() || std::find(DetachedPartInfo::DETACH_REASONS.begin(),
DetachedPartInfo::DETACH_REASONS.end(),
prefix) != DetachedPartInfo::DETACH_REASONS.end());
return "detached/" + getRelativePathForPrefix(prefix);
}
void IMergeTreeDataPart::renameToDetached(const String & prefix) const
{
renameTo(getRelativePathForDetachedPart(prefix), true);
}
void IMergeTreeDataPart::makeCloneInDetached(const String & prefix, const StorageMetadataPtr & /*metadata_snapshot*/) const
{
String destination_path = fs::path(storage.relative_data_path) / getRelativePathForDetachedPart(prefix);
/// Backup is not recursive (max_level is 0), so do not copy inner directories
localBackup(volume->getDisk(), getFullRelativePath(), destination_path, 0);
volume->getDisk()->removeFileIfExists(fs::path(destination_path) / DELETE_ON_DESTROY_MARKER_FILE_NAME);
}
void IMergeTreeDataPart::makeCloneOnDisk(const DiskPtr & disk, const String & directory_name) const
{
assertOnDisk();
if (disk->getName() == volume->getDisk()->getName())
throw Exception("Can not clone data part " + name + " to same disk " + volume->getDisk()->getName(), ErrorCodes::LOGICAL_ERROR);
if (directory_name.empty())
throw Exception("Can not clone data part " + name + " to empty directory.", ErrorCodes::LOGICAL_ERROR);
String path_to_clone = fs::path(storage.relative_data_path) / directory_name / "";
if (disk->exists(fs::path(path_to_clone) / relative_path))
{
LOG_WARNING(storage.log, "Path " + fullPath(disk, path_to_clone + relative_path) + " already exists. Will remove it and clone again.");
disk->removeRecursive(fs::path(path_to_clone) / relative_path / "");
}
disk->createDirectories(path_to_clone);
volume->getDisk()->copy(getFullRelativePath(), disk, path_to_clone);
volume->getDisk()->removeFileIfExists(fs::path(path_to_clone) / DELETE_ON_DESTROY_MARKER_FILE_NAME);
}
void IMergeTreeDataPart::checkConsistencyBase() const
{
String path = getFullRelativePath();
auto metadata_snapshot = storage.getInMemoryMetadataPtr();
if (parent_part)
metadata_snapshot = metadata_snapshot->projections.get(name).metadata;
else
{
// No need to check projections here because we already did consistent checking when loading projections if necessary.
}
const auto & pk = metadata_snapshot->getPrimaryKey();
const auto & partition_key = metadata_snapshot->getPartitionKey();
if (!checksums.empty())
{
if (!pk.column_names.empty() && !checksums.files.count("primary.idx"))
throw Exception("No checksum for primary.idx", ErrorCodes::NO_FILE_IN_DATA_PART);
if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING)
{
if (!checksums.files.count("count.txt"))
throw Exception("No checksum for count.txt", ErrorCodes::NO_FILE_IN_DATA_PART);
if (metadata_snapshot->hasPartitionKey() && !checksums.files.count("partition.dat"))
throw Exception("No checksum for partition.dat", ErrorCodes::NO_FILE_IN_DATA_PART);
if (!isEmpty() && !parent_part)
{
for (const String & col_name : storage.getMinMaxColumnsNames(partition_key))
{
if (!checksums.files.count("minmax_" + escapeForFileName(col_name) + ".idx"))
throw Exception("No minmax idx file checksum for column " + col_name, ErrorCodes::NO_FILE_IN_DATA_PART);
}
}
}
checksums.checkSizes(volume->getDisk(), path);
}
else
{
auto check_file_not_empty = [&path](const DiskPtr & disk_, const String & file_path)
{
UInt64 file_size;
if (!disk_->exists(file_path) || (file_size = disk_->getFileSize(file_path)) == 0)
throw Exception("Part " + fullPath(disk_, path) + " is broken: " + fullPath(disk_, file_path) + " is empty", ErrorCodes::BAD_SIZE_OF_FILE_IN_DATA_PART);
return file_size;
};
/// Check that the primary key index is not empty.
if (!pk.column_names.empty())
check_file_not_empty(volume->getDisk(), fs::path(path) / "primary.idx");
if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING)
{
check_file_not_empty(volume->getDisk(), fs::path(path) / "count.txt");
if (metadata_snapshot->hasPartitionKey())
check_file_not_empty(volume->getDisk(), fs::path(path) / "partition.dat");
if (!parent_part)
{
for (const String & col_name : storage.getMinMaxColumnsNames(partition_key))
check_file_not_empty(volume->getDisk(), fs::path(path) / ("minmax_" + escapeForFileName(col_name) + ".idx"));
}
}
}
}
void IMergeTreeDataPart::checkConsistency(bool /* require_part_metadata */) const
{
throw Exception("Method 'checkConsistency' is not implemented for part with type " + getType().toString(), ErrorCodes::NOT_IMPLEMENTED);
}
void IMergeTreeDataPart::calculateColumnsSizesOnDisk()
{
if (getColumns().empty() || checksums.empty())
throw Exception("Cannot calculate columns sizes when columns or checksums are not initialized", ErrorCodes::LOGICAL_ERROR);
calculateEachColumnSizes(columns_sizes, total_columns_size);
}
ColumnSize IMergeTreeDataPart::getColumnSize(const String & column_name, const IDataType & /* type */) const
{
/// For some types of parts columns_size maybe not calculated
auto it = columns_sizes.find(column_name);
if (it != columns_sizes.end())
return it->second;
return ColumnSize{};
}
void IMergeTreeDataPart::accumulateColumnSizes(ColumnToSize & column_to_size) const
{
for (const auto & [column_name, size] : columns_sizes)
column_to_size[column_name] = size.data_compressed;
}
bool IMergeTreeDataPart::checkAllTTLCalculated(const StorageMetadataPtr & metadata_snapshot) const
{
if (!metadata_snapshot->hasAnyTTL())
return false;
if (metadata_snapshot->hasRowsTTL())
{
if (isEmpty()) /// All rows were finally deleted and we don't store TTL
return true;
else if (ttl_infos.table_ttl.min == 0)
return false;
}
for (const auto & [column, desc] : metadata_snapshot->getColumnTTLs())
{
/// Part has this column, but we don't calculated TTL for it
if (!ttl_infos.columns_ttl.count(column) && getColumns().contains(column))
return false;
}
for (const auto & move_desc : metadata_snapshot->getMoveTTLs())
{
/// Move TTL is not calculated
if (!ttl_infos.moves_ttl.count(move_desc.result_column))
return false;
}
for (const auto & group_by_desc : metadata_snapshot->getGroupByTTLs())
{
if (!ttl_infos.group_by_ttl.count(group_by_desc.result_column))
return false;
}
for (const auto & rows_where_desc : metadata_snapshot->getRowsWhereTTLs())
{
if (!ttl_infos.rows_where_ttl.count(rows_where_desc.result_column))
return false;
}
return true;
}
SerializationPtr IMergeTreeDataPart::getSerializationForColumn(const NameAndTypePair & column) const
{
return IDataType::getSerialization(column,
[&](const String & stream_name)
{
return checksums.files.count(stream_name + DATA_FILE_EXTENSION) != 0;
});
}
String IMergeTreeDataPart::getUniqueId() const
{
auto disk = volume->getDisk();
if (!disk->supportZeroCopyReplication())
throw Exception(fmt::format("Disk {} doesn't support zero-copy replication", disk->getName()), ErrorCodes::LOGICAL_ERROR);
String id = disk->getUniqueId(fs::path(getFullRelativePath()) / "checksums.txt");
return id;
}
String IMergeTreeDataPart::getZeroLevelPartBlockID() const
{
if (info.level != 0)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Trying to get block id for non zero level part {}", name);
SipHash hash;
checksums.computeTotalChecksumDataOnly(hash);
union
{
char bytes[16];
UInt64 words[2];
} hash_value;
hash.get128(hash_value.bytes);
return info.partition_id + "_" + toString(hash_value.words[0]) + "_" + toString(hash_value.words[1]);
}
bool isCompactPart(const MergeTreeDataPartPtr & data_part)
{
return (data_part && data_part->getType() == MergeTreeDataPartType::COMPACT);
}
bool isWidePart(const MergeTreeDataPartPtr & data_part)
{
return (data_part && data_part->getType() == MergeTreeDataPartType::WIDE);
}
bool isInMemoryPart(const MergeTreeDataPartPtr & data_part)
{
return (data_part && data_part->getType() == MergeTreeDataPartType::IN_MEMORY);
}
}