ClickHouse/src/Interpreters/MutationsInterpreter.cpp

1511 lines
60 KiB
C++

#include <Functions/FunctionFactory.h>
#include <Functions/IFunction.h>
#include <Interpreters/InterpreterSelectQuery.h>
#include <Interpreters/MutationsInterpreter.h>
#include <Interpreters/TreeRewriter.h>
#include <Interpreters/MutationsNonDeterministicHelpers.h>
#include <Storages/MergeTree/MergeTreeData.h>
#include <Storages/MergeTree/StorageFromMergeTreeDataPart.h>
#include <Storages/StorageMergeTree.h>
#include <Storages/BlockNumberColumn.h>
#include <Processors/Transforms/FilterTransform.h>
#include <Processors/Transforms/ExpressionTransform.h>
#include <Processors/Transforms/CreatingSetsTransform.h>
#include <Processors/Transforms/MaterializingTransform.h>
#include <Processors/Sources/NullSource.h>
#include <QueryPipeline/QueryPipelineBuilder.h>
#include <Processors/QueryPlan/QueryPlan.h>
#include <Processors/QueryPlan/ExpressionStep.h>
#include <Processors/QueryPlan/FilterStep.h>
#include <Processors/QueryPlan/ReadFromPreparedSource.h>
#include <Processors/Executors/PullingAsyncPipelineExecutor.h>
#include <Processors/Transforms/CheckSortedTransform.h>
#include <Parsers/ASTIdentifier.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTExpressionList.h>
#include <Parsers/ASTSelectQuery.h>
#include <Parsers/formatAST.h>
#include <Parsers/queryToString.h>
#include <IO/WriteHelpers.h>
#include <Processors/QueryPlan/CreatingSetsStep.h>
#include <DataTypes/NestedUtils.h>
#include <Interpreters/PreparedSets.h>
#include <Storages/LightweightDeleteDescription.h>
#include <Storages/MergeTree/MergeTreeSequentialSource.h>
#include <Processors/Sources/ThrowingExceptionSource.h>
#include <Analyzer/QueryTreeBuilder.h>
#include <Analyzer/QueryTreePassManager.h>
#include <Analyzer/QueryNode.h>
#include <Analyzer/TableNode.h>
#include <Interpreters/InterpreterSelectQueryAnalyzer.h>
#include <Parsers/makeASTForLogicalFunction.h>
#include <Common/logger_useful.h>
#include <Storages/MergeTree/MergeTreeDataPartType.h>
namespace DB
{
namespace ErrorCodes
{
extern const int NOT_IMPLEMENTED;
extern const int BAD_ARGUMENTS;
extern const int LOGICAL_ERROR;
extern const int UNKNOWN_MUTATION_COMMAND;
extern const int NO_SUCH_COLUMN_IN_TABLE;
extern const int CANNOT_UPDATE_COLUMN;
extern const int UNEXPECTED_EXPRESSION;
extern const int THERE_IS_NO_COLUMN;
extern const int ILLEGAL_STATISTIC;
}
namespace
{
ASTPtr prepareQueryAffectedAST(const std::vector<MutationCommand> & commands, const StoragePtr & storage, ContextPtr context)
{
/// Execute `SELECT count() FROM storage WHERE predicate1 OR predicate2 OR ...` query.
/// The result can differ from the number of affected rows (e.g. if there is an UPDATE command that
/// changes how many rows satisfy the predicates of the subsequent commands).
/// But we can be sure that if count = 0, then no rows will be touched.
auto select = std::make_shared<ASTSelectQuery>();
select->setExpression(ASTSelectQuery::Expression::SELECT, std::make_shared<ASTExpressionList>());
auto count_func = std::make_shared<ASTFunction>();
count_func->name = "count";
count_func->arguments = std::make_shared<ASTExpressionList>();
select->select()->children.push_back(count_func);
ASTs conditions;
for (const MutationCommand & command : commands)
{
if (ASTPtr condition = getPartitionAndPredicateExpressionForMutationCommand(command, storage, context))
conditions.push_back(std::move(condition));
}
if (conditions.size() > 1)
{
auto coalesced_predicates = makeASTFunction("or");
coalesced_predicates->arguments->children = std::move(conditions);
select->setExpression(ASTSelectQuery::Expression::WHERE, std::move(coalesced_predicates));
}
else if (conditions.size() == 1)
{
select->setExpression(ASTSelectQuery::Expression::WHERE, std::move(conditions.front()));
}
return select;
}
QueryTreeNodePtr prepareQueryAffectedQueryTree(const std::vector<MutationCommand> & commands, const StoragePtr & storage, ContextPtr context)
{
auto ast = prepareQueryAffectedAST(commands, storage, context);
auto query_tree = buildQueryTree(ast, context);
auto & query_node = query_tree->as<QueryNode &>();
query_node.getJoinTree() = std::make_shared<TableNode>(storage, context);
QueryTreePassManager query_tree_pass_manager(context);
addQueryTreePasses(query_tree_pass_manager);
query_tree_pass_manager.run(query_tree);
return query_tree;
}
ColumnDependencies getAllColumnDependencies(
const StorageMetadataPtr & metadata_snapshot,
const NameSet & updated_columns,
const StorageInMemoryMetadata::HasDependencyCallback & has_dependency)
{
NameSet new_updated_columns = updated_columns;
ColumnDependencies dependencies;
while (!new_updated_columns.empty())
{
auto new_dependencies = metadata_snapshot->getColumnDependencies(new_updated_columns, true, has_dependency);
new_updated_columns.clear();
for (const auto & dependency : new_dependencies)
{
if (!dependencies.contains(dependency))
{
dependencies.insert(dependency);
if (!dependency.isReadOnly())
new_updated_columns.insert(dependency.column_name);
}
}
}
return dependencies;
}
}
bool isStorageTouchedByMutations(
MergeTreeData & storage,
MergeTreeData::DataPartPtr source_part,
const StorageMetadataPtr & metadata_snapshot,
const std::vector<MutationCommand> & commands,
ContextPtr context)
{
if (commands.empty())
return false;
bool all_commands_can_be_skipped = true;
for (const auto & command : commands)
{
if (command.type == MutationCommand::APPLY_DELETED_MASK)
{
if (source_part->hasLightweightDelete())
return true;
}
else
{
if (!command.predicate) /// The command touches all rows.
return true;
if (command.partition)
{
const String partition_id = storage.getPartitionIDFromQuery(command.partition, context);
if (partition_id == source_part->info.partition_id)
all_commands_can_be_skipped = false;
}
else
{
all_commands_can_be_skipped = false;
}
}
}
if (all_commands_can_be_skipped)
return false;
auto storage_from_part = std::make_shared<StorageFromMergeTreeDataPart>(source_part);
std::optional<InterpreterSelectQuery> interpreter_select_query;
BlockIO io;
if (context->getSettingsRef().allow_experimental_analyzer)
{
auto select_query_tree = prepareQueryAffectedQueryTree(commands, storage.shared_from_this(), context);
InterpreterSelectQueryAnalyzer interpreter(select_query_tree, context, SelectQueryOptions().ignoreLimits());
io = interpreter.execute();
}
else
{
ASTPtr select_query = prepareQueryAffectedAST(commands, storage.shared_from_this(), context);
/// Interpreter must be alive, when we use result of execute() method.
/// For some reason it may copy context and give it into ExpressionTransform
/// after that we will use context from destroyed stack frame in our stream.
interpreter_select_query.emplace(
select_query, context, storage_from_part, metadata_snapshot, SelectQueryOptions().ignoreLimits());
io = interpreter_select_query->execute();
}
PullingAsyncPipelineExecutor executor(io.pipeline);
Block block;
while (block.rows() == 0 && executor.pull(block));
if (!block.rows())
return false;
else if (block.rows() != 1)
throw Exception(ErrorCodes::LOGICAL_ERROR, "count() expression returned {} rows, not 1", block.rows());
Block tmp_block;
while (executor.pull(tmp_block));
auto count = (*block.getByName("count()").column)[0].get<UInt64>();
return count != 0;
}
ASTPtr getPartitionAndPredicateExpressionForMutationCommand(
const MutationCommand & command,
const StoragePtr & storage,
ContextPtr context
)
{
ASTPtr partition_predicate_as_ast_func;
if (command.partition)
{
String partition_id;
auto storage_merge_tree = std::dynamic_pointer_cast<MergeTreeData>(storage);
auto storage_from_merge_tree_data_part = std::dynamic_pointer_cast<StorageFromMergeTreeDataPart>(storage);
if (storage_merge_tree)
partition_id = storage_merge_tree->getPartitionIDFromQuery(command.partition, context);
else if (storage_from_merge_tree_data_part)
partition_id = storage_from_merge_tree_data_part->getPartitionIDFromQuery(command.partition, context);
else
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "ALTER UPDATE/DELETE ... IN PARTITION is not supported for non-MergeTree tables");
partition_predicate_as_ast_func = makeASTFunction("equals",
std::make_shared<ASTIdentifier>("_partition_id"),
std::make_shared<ASTLiteral>(partition_id)
);
}
if (command.predicate && command.partition)
return makeASTFunction("and", command.predicate->clone(), std::move(partition_predicate_as_ast_func));
else
return command.predicate ? command.predicate->clone() : partition_predicate_as_ast_func;
}
MutationCommand createCommandToApplyDeletedMask(const MutationCommand & command)
{
if (command.type != MutationCommand::APPLY_DELETED_MASK)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Expected APPLY_DELETED_MASK mutation command, got: {}", magic_enum::enum_name(command.type));
auto alter_command = std::make_shared<ASTAlterCommand>();
alter_command->type = ASTAlterCommand::DELETE;
alter_command->partition = alter_command->children.emplace_back(command.partition).get();
auto row_exists_predicate = makeASTFunction("equals",
std::make_shared<ASTIdentifier>(LightweightDeleteDescription::FILTER_COLUMN.name),
std::make_shared<ASTLiteral>(Field(0)));
if (command.predicate)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Mutation command APPLY DELETED MASK does not support WHERE clause");
alter_command->predicate = alter_command->children.emplace_back(std::move(row_exists_predicate)).get();
auto mutation_command = MutationCommand::parse(alter_command.get());
if (!mutation_command)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Failed to parse command {}. It's a bug", queryToString(alter_command));
return *mutation_command;
}
MutationsInterpreter::Source::Source(StoragePtr storage_) : storage(std::move(storage_))
{
}
MutationsInterpreter::Source::Source(MergeTreeData & storage_, MergeTreeData::DataPartPtr source_part_)
: data(&storage_), part(std::move(source_part_))
{
}
StorageSnapshotPtr MutationsInterpreter::Source::getStorageSnapshot(const StorageMetadataPtr & snapshot_, const ContextPtr & context_) const
{
if (const auto * merge_tree = getMergeTreeData())
return merge_tree->getStorageSnapshotWithoutData(snapshot_, context_);
return storage->getStorageSnapshotWithoutData(snapshot_, context_);
}
StoragePtr MutationsInterpreter::Source::getStorage() const
{
if (data)
return data->shared_from_this();
return storage;
}
const MergeTreeData * MutationsInterpreter::Source::getMergeTreeData() const
{
if (data)
return data;
return dynamic_cast<const MergeTreeData *>(storage.get());
}
bool MutationsInterpreter::Source::supportsLightweightDelete() const
{
if (part)
return part->supportLightweightDeleteMutate();
return storage->supportsLightweightDelete();
}
bool MutationsInterpreter::Source::hasLightweightDeleteMask() const
{
return part && part->hasLightweightDelete();
}
bool MutationsInterpreter::Source::materializeTTLRecalculateOnly() const
{
return data && data->getSettings()->materialize_ttl_recalculate_only;
}
bool MutationsInterpreter::Source::hasSecondaryIndex(const String & name) const
{
return part && part->hasSecondaryIndex(name);
}
bool MutationsInterpreter::Source::hasProjection(const String & name) const
{
return part && part->hasProjection(name);
}
bool MutationsInterpreter::Source::hasBrokenProjection(const String & name) const
{
return part && part->hasBrokenProjection(name);
}
bool MutationsInterpreter::Source::isCompactPart() const
{
return part && part->getType() == MergeTreeDataPartType::Compact;
}
static Names getAvailableColumnsWithVirtuals(StorageMetadataPtr metadata_snapshot, const IStorage & storage)
{
auto all_columns = metadata_snapshot->getColumns().getNamesOfPhysical();
for (const auto & column : storage.getVirtuals())
all_columns.push_back(column.name);
return all_columns;
}
MutationsInterpreter::MutationsInterpreter(
StoragePtr storage_,
StorageMetadataPtr metadata_snapshot_,
MutationCommands commands_,
ContextPtr context_,
Settings settings_)
: MutationsInterpreter(
Source(storage_),
metadata_snapshot_, std::move(commands_),
getAvailableColumnsWithVirtuals(metadata_snapshot_, *storage_),
std::move(context_), std::move(settings_))
{
if (settings.can_execute && dynamic_cast<const MergeTreeData *>(source.getStorage().get()))
{
throw Exception(
ErrorCodes::LOGICAL_ERROR,
"Cannot execute mutation for {}. Mutation should be applied to every part separately.",
source.getStorage()->getName());
}
}
MutationsInterpreter::MutationsInterpreter(
MergeTreeData & storage_,
MergeTreeData::DataPartPtr source_part_,
StorageMetadataPtr metadata_snapshot_,
MutationCommands commands_,
Names available_columns_,
ContextPtr context_,
Settings settings_)
: MutationsInterpreter(
Source(storage_, std::move(source_part_)),
std::move(metadata_snapshot_), std::move(commands_),
std::move(available_columns_), std::move(context_), std::move(settings_))
{
}
MutationsInterpreter::MutationsInterpreter(
Source source_,
StorageMetadataPtr metadata_snapshot_,
MutationCommands commands_,
Names available_columns_,
ContextPtr context_,
Settings settings_)
: source(std::move(source_))
, metadata_snapshot(metadata_snapshot_)
, commands(std::move(commands_))
, available_columns(std::move(available_columns_))
, context(Context::createCopy(context_))
, settings(std::move(settings_))
, select_limits(SelectQueryOptions().analyze(!settings.can_execute).ignoreLimits())
{
prepare(!settings.can_execute);
}
static NameSet getKeyColumns(const MutationsInterpreter::Source & source, const StorageMetadataPtr & metadata_snapshot)
{
const MergeTreeData * merge_tree_data = source.getMergeTreeData();
if (!merge_tree_data)
return {};
NameSet key_columns;
for (const String & col : metadata_snapshot->getColumnsRequiredForPartitionKey())
key_columns.insert(col);
for (const String & col : metadata_snapshot->getColumnsRequiredForSortingKey())
key_columns.insert(col);
/// We don't process sample_by_ast separately because it must be among the primary key columns.
if (!merge_tree_data->merging_params.sign_column.empty())
key_columns.insert(merge_tree_data->merging_params.sign_column);
if (!merge_tree_data->merging_params.version_column.empty())
key_columns.insert(merge_tree_data->merging_params.version_column);
return key_columns;
}
static void validateUpdateColumns(
const MutationsInterpreter::Source & source,
const StorageMetadataPtr & metadata_snapshot, const NameSet & updated_columns,
const std::unordered_map<String, Names> & column_to_affected_materialized)
{
NameSet key_columns = getKeyColumns(source, metadata_snapshot);
for (const String & column_name : updated_columns)
{
auto found = false;
for (const auto & col : metadata_snapshot->getColumns().getOrdinary())
{
if (col.name == column_name)
{
found = true;
break;
}
}
/// Allow to override value of lightweight delete filter virtual column
if (!found && column_name == LightweightDeleteDescription::FILTER_COLUMN.name)
{
if (!source.supportsLightweightDelete())
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Lightweight delete is not supported for table");
found = true;
}
/// Dont allow to override value of block number virtual column
if (!found && column_name == BlockNumberColumn::name)
{
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Update is not supported for virtual column {} ", backQuote(column_name));
}
if (!found)
{
for (const auto & col : metadata_snapshot->getColumns().getMaterialized())
{
if (col.name == column_name)
throw Exception(ErrorCodes::CANNOT_UPDATE_COLUMN, "Cannot UPDATE materialized column {}", backQuote(column_name));
}
throw Exception(ErrorCodes::NO_SUCH_COLUMN_IN_TABLE, "There is no column {} in table", backQuote(column_name));
}
if (key_columns.contains(column_name))
throw Exception(ErrorCodes::CANNOT_UPDATE_COLUMN, "Cannot UPDATE key column {}", backQuote(column_name));
auto materialized_it = column_to_affected_materialized.find(column_name);
if (materialized_it != column_to_affected_materialized.end())
{
for (const String & materialized : materialized_it->second)
{
if (key_columns.contains(materialized))
throw Exception(ErrorCodes::CANNOT_UPDATE_COLUMN,
"Updated column {} affects MATERIALIZED column {}, which is a key column. "
"Cannot UPDATE it.", backQuote(column_name), backQuote(materialized));
}
}
}
}
/// Returns ASTs of updated nested subcolumns, if all of subcolumns were updated.
/// They are used to validate sizes of nested arrays.
/// If some of subcolumns were updated and some weren't,
/// it makes sense to validate only updated columns with their old versions,
/// because their sizes couldn't change, since sizes of all nested subcolumns must be consistent.
static std::optional<std::vector<ASTPtr>> getExpressionsOfUpdatedNestedSubcolumns(
const String & column_name,
const NamesAndTypesList & all_columns,
const std::unordered_map<String, ASTPtr> & column_to_update_expression)
{
std::vector<ASTPtr> res;
auto source_name = Nested::splitName(column_name).first;
/// Check this nested subcolumn
for (const auto & column : all_columns)
{
auto split = Nested::splitName(column.name);
if (isArray(column.type) && split.first == source_name && !split.second.empty())
{
auto it = column_to_update_expression.find(column.name);
if (it == column_to_update_expression.end())
return {};
res.push_back(it->second);
}
}
return res;
}
void MutationsInterpreter::prepare(bool dry_run)
{
if (is_prepared)
throw Exception(ErrorCodes::LOGICAL_ERROR, "MutationsInterpreter is already prepared. It is a bug.");
if (commands.empty())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Empty mutation commands list");
/// TODO Should we get columns, indices and projections from the part itself? Table metadata may be different
const ColumnsDescription & columns_desc = metadata_snapshot->getColumns();
const IndicesDescription & indices_desc = metadata_snapshot->getSecondaryIndices();
const ProjectionsDescription & projections_desc = metadata_snapshot->getProjections();
auto storage_snapshot = std::make_shared<StorageSnapshot>(*source.getStorage(), metadata_snapshot);
auto options = GetColumnsOptions(GetColumnsOptions::AllPhysical).withVirtuals();
auto all_columns = storage_snapshot->getColumnsByNames(options, available_columns);
NameSet available_columns_set(available_columns.begin(), available_columns.end());
/// Add _row_exists column if it is physically present in the part
if (source.hasLightweightDeleteMask())
{
all_columns.push_back({LightweightDeleteDescription::FILTER_COLUMN});
available_columns_set.insert(LightweightDeleteDescription::FILTER_COLUMN.name);
}
NameSet updated_columns;
bool materialize_ttl_recalculate_only = source.materializeTTLRecalculateOnly();
for (auto & command : commands)
{
if (command.type == MutationCommand::Type::APPLY_DELETED_MASK)
command = createCommandToApplyDeletedMask(command);
if (command.type == MutationCommand::Type::UPDATE || command.type == MutationCommand::Type::DELETE)
materialize_ttl_recalculate_only = false;
for (const auto & [name, _] : command.column_to_update_expression)
{
if (!available_columns_set.contains(name)
&& name != LightweightDeleteDescription::FILTER_COLUMN.name
&& name != BlockNumberColumn::name)
throw Exception(ErrorCodes::THERE_IS_NO_COLUMN,
"Column {} is updated but not requested to read", name);
updated_columns.insert(name);
}
}
/// We need to know which columns affect which MATERIALIZED columns, data skipping indices
/// and projections to recalculate them if dependencies are updated.
std::unordered_map<String, Names> column_to_affected_materialized;
if (!updated_columns.empty())
{
for (const auto & column : columns_desc)
{
if (column.default_desc.kind == ColumnDefaultKind::Materialized && available_columns_set.contains(column.name))
{
auto query = column.default_desc.expression->clone();
auto syntax_result = TreeRewriter(context).analyze(query, all_columns);
for (const auto & dependency : syntax_result->requiredSourceColumns())
if (updated_columns.contains(dependency))
column_to_affected_materialized[dependency].push_back(column.name);
}
}
validateUpdateColumns(source, metadata_snapshot, updated_columns, column_to_affected_materialized);
}
StorageInMemoryMetadata::HasDependencyCallback has_dependency =
[&](const String & name, ColumnDependency::Kind kind)
{
if (kind == ColumnDependency::PROJECTION)
return source.hasProjection(name);
if (kind == ColumnDependency::SKIP_INDEX)
return source.hasSecondaryIndex(name);
return true;
};
if (settings.recalculate_dependencies_of_updated_columns)
dependencies = getAllColumnDependencies(metadata_snapshot, updated_columns, has_dependency);
bool need_rebuild_indexes = false;
bool need_rebuild_projections = false;
std::vector<String> read_columns;
/// First, break a sequence of commands into stages.
for (const auto & command : commands)
{
// we can return deleted rows only if it's the only present command
assert(command.type == MutationCommand::DELETE || command.type == MutationCommand::UPDATE || !settings.return_mutated_rows);
if (command.type == MutationCommand::DELETE)
{
mutation_kind.set(MutationKind::MUTATE_OTHER);
if (stages.empty() || !stages.back().column_to_updated.empty())
stages.emplace_back(context);
auto predicate = getPartitionAndPredicateExpressionForMutationCommand(command);
if (!settings.return_mutated_rows)
predicate = makeASTFunction("isZeroOrNull", predicate);
stages.back().filters.push_back(predicate);
/// ALTER DELETE can changes number of rows in the part, so we need to rebuild indexes and projection
need_rebuild_indexes = true;
need_rebuild_projections = true;
}
else if (command.type == MutationCommand::UPDATE)
{
mutation_kind.set(MutationKind::MUTATE_OTHER);
if (stages.empty() || !stages.back().column_to_updated.empty())
stages.emplace_back(context);
if (stages.size() == 1) /// First stage only supports filtering and can't update columns.
stages.emplace_back(context);
NameSet affected_materialized;
for (const auto & [column_name, update_expr] : command.column_to_update_expression)
{
auto materialized_it = column_to_affected_materialized.find(column_name);
if (materialized_it != column_to_affected_materialized.end())
for (const auto & mat_column : materialized_it->second)
affected_materialized.emplace(mat_column);
/// When doing UPDATE column = expression WHERE condition
/// we will replace column to the result of the following expression:
///
/// CAST(if(condition, CAST(expression, type), column), type)
///
/// Inner CAST is needed to make 'if' work when branches have no common type,
/// example: type is UInt64, UPDATE x = -1 or UPDATE x = x - 1.
///
/// Outer CAST is added just in case if we don't trust the returning type of 'if'.
DataTypePtr type;
if (auto physical_column = columns_desc.tryGetPhysical(column_name))
{
type = physical_column->type;
}
else if (column_name == LightweightDeleteDescription::FILTER_COLUMN.name)
{
type = LightweightDeleteDescription::FILTER_COLUMN.type;
deleted_mask_updated = true;
}
else if (column_name == BlockNumberColumn::name)
{
type = BlockNumberColumn::type;
}
else
{
throw Exception(ErrorCodes::LOGICAL_ERROR, "Unknown column {}", column_name);
}
auto type_literal = std::make_shared<ASTLiteral>(type->getName());
ASTPtr condition = getPartitionAndPredicateExpressionForMutationCommand(command);
/// And new check validateNestedArraySizes for Nested subcolumns
if (isArray(type) && !Nested::splitName(column_name).second.empty())
{
std::shared_ptr<ASTFunction> function = nullptr;
auto nested_update_exprs = getExpressionsOfUpdatedNestedSubcolumns(column_name, all_columns, command.column_to_update_expression);
if (!nested_update_exprs)
{
function = makeASTFunction("validateNestedArraySizes",
condition,
update_expr->clone(),
std::make_shared<ASTIdentifier>(column_name));
condition = makeASTFunction("and", condition, function);
}
else if (nested_update_exprs->size() > 1)
{
function = std::make_shared<ASTFunction>();
function->name = "validateNestedArraySizes";
function->arguments = std::make_shared<ASTExpressionList>();
function->children.push_back(function->arguments);
function->arguments->children.push_back(condition);
for (const auto & it : *nested_update_exprs)
function->arguments->children.push_back(it->clone());
condition = makeASTFunction("and", condition, function);
}
}
auto updated_column = makeASTFunction("_CAST",
makeASTFunction("if",
condition,
makeASTFunction("_CAST",
update_expr->clone(),
type_literal),
std::make_shared<ASTIdentifier>(column_name)),
type_literal);
stages.back().column_to_updated.emplace(column_name, updated_column);
if (condition && settings.return_mutated_rows)
stages.back().filters.push_back(condition);
}
if (!affected_materialized.empty())
{
stages.emplace_back(context);
for (const auto & column : columns_desc)
{
if (column.default_desc.kind == ColumnDefaultKind::Materialized)
{
auto type_literal = std::make_shared<ASTLiteral>(column.type->getName());
auto materialized_column = makeASTFunction("_CAST",
column.default_desc.expression->clone(),
type_literal);
stages.back().column_to_updated.emplace(
column.name,
materialized_column);
}
}
}
/// If the part is compact and adaptive index granularity is enabled, modify data in one column via ALTER UPDATE can change
/// the part granularity, so we need to rebuild indexes
if (source.isCompactPart() && source.getMergeTreeData() && source.getMergeTreeData()->getSettings()->index_granularity_bytes > 0)
need_rebuild_indexes = true;
}
else if (command.type == MutationCommand::MATERIALIZE_COLUMN)
{
mutation_kind.set(MutationKind::MUTATE_OTHER);
if (stages.empty() || !stages.back().column_to_updated.empty())
stages.emplace_back(context);
if (stages.size() == 1) /// First stage only supports filtering and can't update columns.
stages.emplace_back(context);
const auto & column = columns_desc.get(command.column_name);
if (!column.default_desc.expression)
throw Exception(
ErrorCodes::BAD_ARGUMENTS,
"Cannot materialize column `{}` because it doesn't have default expression", column.name);
auto materialized_column = makeASTFunction(
"_CAST", column.default_desc.expression->clone(), std::make_shared<ASTLiteral>(column.type->getName()));
stages.back().column_to_updated.emplace(column.name, materialized_column);
}
else if (command.type == MutationCommand::MATERIALIZE_INDEX)
{
mutation_kind.set(MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION);
auto it = std::find_if(
std::cbegin(indices_desc), std::end(indices_desc),
[&](const IndexDescription & index)
{
return index.name == command.index_name;
});
if (it == std::cend(indices_desc))
throw Exception(ErrorCodes::BAD_ARGUMENTS, "Unknown index: {}", command.index_name);
if (!source.hasSecondaryIndex(it->name))
{
auto query = (*it).expression_list_ast->clone();
auto syntax_result = TreeRewriter(context).analyze(query, all_columns);
const auto required_columns = syntax_result->requiredSourceColumns();
for (const auto & column : required_columns)
dependencies.emplace(column, ColumnDependency::SKIP_INDEX);
materialized_indices.emplace(command.index_name);
}
}
else if (command.type == MutationCommand::MATERIALIZE_STATISTIC)
{
mutation_kind.set(MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION);
for (const auto & stat_column_name: command.statistic_columns)
{
if (!columns_desc.has(stat_column_name) || !columns_desc.get(stat_column_name).stat)
throw Exception(ErrorCodes::ILLEGAL_STATISTIC, "Unknown statistic column: {}", stat_column_name);
dependencies.emplace(stat_column_name, ColumnDependency::STATISTIC);
materialized_statistics.emplace(stat_column_name);
}
}
else if (command.type == MutationCommand::MATERIALIZE_PROJECTION)
{
mutation_kind.set(MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION);
const auto & projection = projections_desc.get(command.projection_name);
if (!source.hasProjection(projection.name) || source.hasBrokenProjection(projection.name))
{
for (const auto & column : projection.required_columns)
dependencies.emplace(column, ColumnDependency::PROJECTION);
materialized_projections.emplace(command.projection_name);
}
}
else if (command.type == MutationCommand::DROP_INDEX)
{
mutation_kind.set(MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION);
materialized_indices.erase(command.index_name);
}
else if (command.type == MutationCommand::DROP_STATISTIC)
{
mutation_kind.set(MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION);
for (const auto & stat_column_name: command.statistic_columns)
materialized_statistics.erase(stat_column_name);
}
else if (command.type == MutationCommand::DROP_PROJECTION)
{
mutation_kind.set(MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION);
materialized_projections.erase(command.projection_name);
}
else if (command.type == MutationCommand::MATERIALIZE_TTL)
{
mutation_kind.set(MutationKind::MUTATE_OTHER);
if (materialize_ttl_recalculate_only)
{
// just recalculate ttl_infos without remove expired data
auto all_columns_vec = all_columns.getNames();
auto all_columns_set = NameSet(all_columns_vec.begin(), all_columns_vec.end());
auto new_dependencies = metadata_snapshot->getColumnDependencies(all_columns_set, false, has_dependency);
for (const auto & dependency : new_dependencies)
{
if (dependency.kind == ColumnDependency::TTL_EXPRESSION)
dependencies.insert(dependency);
}
}
else if (metadata_snapshot->hasRowsTTL()
|| metadata_snapshot->hasAnyRowsWhereTTL()
|| metadata_snapshot->hasAnyGroupByTTL())
{
for (const auto & column : all_columns)
dependencies.emplace(column.name, ColumnDependency::TTL_TARGET);
}
else
{
NameSet new_updated_columns;
auto column_ttls = metadata_snapshot->getColumns().getColumnTTLs();
for (const auto & elem : column_ttls)
{
dependencies.emplace(elem.first, ColumnDependency::TTL_TARGET);
new_updated_columns.insert(elem.first);
}
auto all_columns_vec = all_columns.getNames();
auto all_columns_set = NameSet(all_columns_vec.begin(), all_columns_vec.end());
auto all_dependencies = getAllColumnDependencies(metadata_snapshot, all_columns_set, has_dependency);
for (const auto & dependency : all_dependencies)
{
if (dependency.kind == ColumnDependency::TTL_EXPRESSION)
dependencies.insert(dependency);
}
/// Recalc only skip indices and projections of columns which could be updated by TTL.
auto new_dependencies = metadata_snapshot->getColumnDependencies(new_updated_columns, true, has_dependency);
for (const auto & dependency : new_dependencies)
{
if (dependency.kind == ColumnDependency::SKIP_INDEX
|| dependency.kind == ColumnDependency::PROJECTION
|| dependency.kind == ColumnDependency::STATISTIC)
dependencies.insert(dependency);
}
}
if (dependencies.empty())
{
/// Very rare case. It can happen if we have only one MOVE TTL with constant expression.
/// But we still have to read at least one column.
dependencies.emplace(all_columns.front().name, ColumnDependency::TTL_EXPRESSION);
}
}
else if (command.type == MutationCommand::READ_COLUMN)
{
mutation_kind.set(MutationKind::MUTATE_OTHER);
read_columns.emplace_back(command.column_name);
}
else
throw Exception(ErrorCodes::UNKNOWN_MUTATION_COMMAND, "Unknown mutation command type: {}", DB::toString<int>(command.type));
}
if (!read_columns.empty())
{
if (stages.empty() || !stages.back().column_to_updated.empty())
stages.emplace_back(context);
if (stages.size() == 1) /// First stage only supports filtering and can't update columns.
stages.emplace_back(context);
for (auto & column_name : read_columns)
stages.back().column_to_updated.emplace(column_name, std::make_shared<ASTIdentifier>(column_name));
}
/// We care about affected indices and projections because we also need to rewrite them
/// when one of index columns updated or filtered with delete.
/// The same about columns, that are needed for calculation of TTL expressions.
NameSet changed_columns;
NameSet unchanged_columns;
if (!dependencies.empty())
{
for (const auto & dependency : dependencies)
{
if (dependency.isReadOnly())
unchanged_columns.insert(dependency.column_name);
else
changed_columns.insert(dependency.column_name);
}
if (!changed_columns.empty())
{
if (stages.empty() || !stages.back().column_to_updated.empty())
stages.emplace_back(context);
if (stages.size() == 1) /// First stage only supports filtering and can't update columns.
stages.emplace_back(context);
for (const auto & column : changed_columns)
stages.back().column_to_updated.emplace(
column, std::make_shared<ASTIdentifier>(column));
}
if (!unchanged_columns.empty())
{
if (!stages.empty())
{
std::vector<Stage> stages_copy;
/// Copy all filled stages except index calculation stage.
for (const auto & stage : stages)
{
stages_copy.emplace_back(context);
stages_copy.back().column_to_updated = stage.column_to_updated;
stages_copy.back().output_columns = stage.output_columns;
stages_copy.back().filters = stage.filters;
}
prepareMutationStages(stages_copy, true);
QueryPlan plan;
initQueryPlan(stages_copy.front(), plan);
auto pipeline = addStreamsForLaterStages(stages_copy, plan);
updated_header = std::make_unique<Block>(pipeline.getHeader());
}
/// Special step to recalculate affected indices, projections and TTL expressions.
stages.emplace_back(context);
for (const auto & column : unchanged_columns)
stages.back().column_to_updated.emplace(
column, std::make_shared<ASTIdentifier>(column));
}
}
for (const auto & index : metadata_snapshot->getSecondaryIndices())
{
if (!source.hasSecondaryIndex(index.name))
continue;
if (need_rebuild_indexes)
{
materialized_indices.insert(index.name);
continue;
}
const auto & index_cols = index.expression->getRequiredColumns();
bool changed = std::any_of(
index_cols.begin(),
index_cols.end(),
[&](const auto & col) { return updated_columns.contains(col) || changed_columns.contains(col); });
if (changed)
materialized_indices.insert(index.name);
}
for (const auto & projection : metadata_snapshot->getProjections())
{
if (!source.hasProjection(projection.name))
continue;
/// Always rebuild broken projections.
if (source.hasBrokenProjection(projection.name))
{
materialized_projections.insert(projection.name);
continue;
}
if (need_rebuild_projections)
{
materialized_projections.insert(projection.name);
continue;
}
const auto & projection_cols = projection.required_columns;
bool changed = std::any_of(
projection_cols.begin(),
projection_cols.end(),
[&](const auto & col) { return updated_columns.contains(col) || changed_columns.contains(col); });
if (changed)
materialized_projections.insert(projection.name);
}
/// Stages might be empty when we materialize skip indices or projections which don't add any
/// column dependencies.
if (stages.empty())
stages.emplace_back(context);
is_prepared = true;
prepareMutationStages(stages, dry_run);
}
void MutationsInterpreter::prepareMutationStages(std::vector<Stage> & prepared_stages, bool dry_run)
{
auto storage_snapshot = source.getStorageSnapshot(metadata_snapshot, context);
auto options = GetColumnsOptions(GetColumnsOptions::AllPhysical).withExtendedObjects().withVirtuals();
auto all_columns = storage_snapshot->getColumnsByNames(options, available_columns);
/// Add _row_exists column if it is present in the part
if (source.hasLightweightDeleteMask() || deleted_mask_updated)
all_columns.push_back(LightweightDeleteDescription::FILTER_COLUMN);
bool has_filters = false;
/// Next, for each stage calculate columns changed by this and previous stages.
for (size_t i = 0; i < prepared_stages.size(); ++i)
{
if (settings.return_all_columns || !prepared_stages[i].filters.empty())
{
for (const auto & column : all_columns)
{
if (column.name == LightweightDeleteDescription::FILTER_COLUMN.name && !deleted_mask_updated)
continue;
prepared_stages[i].output_columns.insert(column.name);
}
has_filters = true;
settings.apply_deleted_mask = true;
}
else
{
if (i > 0)
prepared_stages[i].output_columns = prepared_stages[i - 1].output_columns;
/// Make sure that all updated columns are included into output_columns set.
/// This is important for a "hidden" column like _row_exists gets because it is a virtual column
/// and so it is not in the list of AllPhysical columns.
for (const auto & [column_name, _] : prepared_stages[i].column_to_updated)
{
if (column_name == LightweightDeleteDescription::FILTER_COLUMN.name && has_filters && !deleted_mask_updated)
continue;
prepared_stages[i].output_columns.insert(column_name);
}
}
}
/// Now, calculate `expressions_chain` for each stage except the first.
/// Do it backwards to propagate information about columns required as input for a stage to the previous stage.
for (int64_t i = prepared_stages.size() - 1; i >= 0; --i)
{
auto & stage = prepared_stages[i];
ASTPtr all_asts = std::make_shared<ASTExpressionList>();
for (const auto & ast : stage.filters)
all_asts->children.push_back(ast);
for (const auto & kv : stage.column_to_updated)
all_asts->children.push_back(kv.second);
/// Add all output columns to prevent ExpressionAnalyzer from deleting them from source columns.
for (const auto & column : stage.output_columns)
all_asts->children.push_back(std::make_shared<ASTIdentifier>(column));
/// Executing scalar subquery on that stage can lead to deadlock
/// e.g. ALTER referencing the same table in scalar subquery
bool execute_scalar_subqueries = !dry_run;
auto syntax_result = TreeRewriter(context).analyze(
all_asts, all_columns, source.getStorage(), storage_snapshot,
false, true, execute_scalar_subqueries);
stage.analyzer = std::make_unique<ExpressionAnalyzer>(all_asts, syntax_result, context);
ExpressionActionsChain & actions_chain = stage.expressions_chain;
if (!stage.filters.empty())
{
auto ast = stage.filters.front();
if (stage.filters.size() > 1)
ast = makeASTForLogicalAnd(std::move(stage.filters));
if (!actions_chain.steps.empty())
actions_chain.addStep();
stage.analyzer->appendExpression(actions_chain, ast, dry_run);
stage.filter_column_names.push_back(ast->getColumnName());
}
if (!stage.column_to_updated.empty())
{
if (!actions_chain.steps.empty())
actions_chain.addStep();
for (const auto & kv : stage.column_to_updated)
stage.analyzer->appendExpression(actions_chain, kv.second, dry_run);
auto & actions = actions_chain.getLastStep().actions();
for (const auto & kv : stage.column_to_updated)
{
auto column_name = kv.second->getColumnName();
const auto & dag_node = actions->findInOutputs(column_name);
const auto & alias = actions->addAlias(dag_node, kv.first);
actions->addOrReplaceInOutputs(alias);
}
}
if (i == 0 && actions_chain.steps.empty())
actions_chain.lastStep(syntax_result->required_source_columns);
/// Remove all intermediate columns.
actions_chain.addStep();
actions_chain.getLastStep().required_output.clear();
ActionsDAG::NodeRawConstPtrs new_index;
for (const auto & name : stage.output_columns)
actions_chain.getLastStep().addRequiredOutput(name);
actions_chain.getLastActions();
actions_chain.finalize();
if (i)
{
/// Propagate information about columns needed as input.
for (const auto & column : actions_chain.steps.front()->getRequiredColumns())
prepared_stages[i - 1].output_columns.insert(column.name);
}
}
}
/// This structure re-implements adding virtual columns while reading from MergeTree part.
/// It would be good to unify it with IMergeTreeSelectAlgorithm.
struct VirtualColumns
{
struct ColumnAndPosition
{
ColumnWithTypeAndName column;
size_t position;
};
using Columns = std::vector<ColumnAndPosition>;
Columns virtuals;
Names columns_to_read;
VirtualColumns(Names required_columns, const MergeTreeData::DataPartPtr & part) : columns_to_read(std::move(required_columns))
{
for (size_t i = 0; i < columns_to_read.size(); ++i)
{
if (columns_to_read[i] == LightweightDeleteDescription::FILTER_COLUMN.name)
{
if (!part->getColumns().contains(LightweightDeleteDescription::FILTER_COLUMN.name))
{
ColumnWithTypeAndName mask_column;
mask_column.type = LightweightDeleteDescription::FILTER_COLUMN.type;
mask_column.column = mask_column.type->createColumnConst(0, 1);
mask_column.name = std::move(columns_to_read[i]);
virtuals.emplace_back(ColumnAndPosition{.column = std::move(mask_column), .position = i});
}
}
else if (columns_to_read[i] == "_partition_id")
{
ColumnWithTypeAndName column;
column.type = std::make_shared<DataTypeString>();
column.column = column.type->createColumnConst(0, part->info.partition_id);
column.name = std::move(columns_to_read[i]);
virtuals.emplace_back(ColumnAndPosition{.column = std::move(column), .position = i});
}
else if (columns_to_read[i] == BlockNumberColumn::name)
{
if (!part->getColumns().contains(BlockNumberColumn::name))
{
ColumnWithTypeAndName block_number_column;
block_number_column.type = BlockNumberColumn::type;
block_number_column.column = block_number_column.type->createColumnConst(0, part->info.min_block);
block_number_column.name = std::move(columns_to_read[i]);
virtuals.emplace_back(ColumnAndPosition{.column = std::move(block_number_column), .position = i});
}
}
}
if (!virtuals.empty())
{
Names columns_no_virtuals;
columns_no_virtuals.reserve(columns_to_read.size());
size_t next_virtual = 0;
for (size_t i = 0; i < columns_to_read.size(); ++i)
{
if (next_virtual < virtuals.size() && i == virtuals[next_virtual].position)
++next_virtual;
else
columns_no_virtuals.emplace_back(std::move(columns_to_read[i]));
}
columns_to_read.swap(columns_no_virtuals);
}
}
void addVirtuals(QueryPlan & plan)
{
auto dag = std::make_unique<ActionsDAG>(plan.getCurrentDataStream().header.getColumnsWithTypeAndName());
for (auto & column : virtuals)
{
const auto & adding_const = dag->addColumn(std::move(column.column));
auto & outputs = dag->getOutputs();
outputs.insert(outputs.begin() + column.position, &adding_const);
}
auto step = std::make_unique<ExpressionStep>(plan.getCurrentDataStream(), std::move(dag));
plan.addStep(std::move(step));
}
};
void MutationsInterpreter::Source::read(
Stage & first_stage,
QueryPlan & plan,
const StorageMetadataPtr & snapshot_,
const ContextPtr & context_,
bool apply_deleted_mask_,
bool can_execute_) const
{
auto required_columns = first_stage.expressions_chain.steps.front()->getRequiredColumns().getNames();
auto storage_snapshot = getStorageSnapshot(snapshot_, context_);
if (!can_execute_)
{
auto header = storage_snapshot->getSampleBlockForColumns(required_columns);
auto callback = []()
{
return DB::Exception(ErrorCodes::LOGICAL_ERROR, "Cannot execute a mutation because can_execute flag set to false");
};
Pipe pipe(std::make_shared<ThrowingExceptionSource>(header, callback));
auto read_from_pipe = std::make_unique<ReadFromPreparedSource>(std::move(pipe));
plan.addStep(std::move(read_from_pipe));
return;
}
if (data)
{
const auto & steps = first_stage.expressions_chain.steps;
const auto & names = first_stage.filter_column_names;
size_t num_filters = names.size();
ActionsDAGPtr filter;
if (!first_stage.filter_column_names.empty())
{
ActionsDAG::NodeRawConstPtrs nodes(num_filters);
for (size_t i = 0; i < num_filters; ++i)
nodes[i] = &steps[i]->actions()->findInOutputs(names[i]);
filter = ActionsDAG::buildFilterActionsDAG(nodes);
}
VirtualColumns virtual_columns(std::move(required_columns), part);
createReadFromPartStep(
MergeTreeSequentialSourceType::Mutation,
plan, *data, storage_snapshot, part,
std::move(virtual_columns.columns_to_read),
apply_deleted_mask_, filter, context_,
getLogger("MutationsInterpreter"));
virtual_columns.addVirtuals(plan);
}
else
{
auto select = std::make_shared<ASTSelectQuery>();
select->setExpression(ASTSelectQuery::Expression::SELECT, std::make_shared<ASTExpressionList>());
for (const auto & column_name : first_stage.output_columns)
select->select()->children.push_back(std::make_shared<ASTIdentifier>(column_name));
/// Don't let select list be empty.
if (select->select()->children.empty())
select->select()->children.push_back(std::make_shared<ASTLiteral>(Field(0)));
if (!first_stage.filters.empty())
{
ASTPtr where_expression;
if (first_stage.filters.size() == 1)
where_expression = first_stage.filters[0];
else
{
auto coalesced_predicates = std::make_shared<ASTFunction>();
coalesced_predicates->name = "and";
coalesced_predicates->arguments = std::make_shared<ASTExpressionList>();
coalesced_predicates->children.push_back(coalesced_predicates->arguments);
coalesced_predicates->arguments->children = first_stage.filters;
where_expression = std::move(coalesced_predicates);
}
select->setExpression(ASTSelectQuery::Expression::WHERE, std::move(where_expression));
}
SelectQueryInfo query_info;
query_info.query = std::move(select);
size_t max_block_size = context_->getSettingsRef().max_block_size;
size_t max_streams = 1;
storage->read(plan, required_columns, storage_snapshot, query_info, context_, QueryProcessingStage::FetchColumns, max_block_size, max_streams);
if (!plan.isInitialized())
{
/// It may be possible when there is nothing to read from storage.
auto header = storage_snapshot->getSampleBlockForColumns(required_columns);
auto read_from_pipe = std::make_unique<ReadFromPreparedSource>(Pipe(std::make_shared<NullSource>(header)));
plan.addStep(std::move(read_from_pipe));
}
}
}
void MutationsInterpreter::initQueryPlan(Stage & first_stage, QueryPlan & plan)
{
source.read(first_stage, plan, metadata_snapshot, context, settings.apply_deleted_mask, settings.can_execute);
addCreatingSetsStep(plan, first_stage.analyzer->getPreparedSets(), context);
}
QueryPipelineBuilder MutationsInterpreter::addStreamsForLaterStages(const std::vector<Stage> & prepared_stages, QueryPlan & plan) const
{
for (const Stage & stage : prepared_stages)
{
for (size_t i = 0; i < stage.expressions_chain.steps.size(); ++i)
{
const auto & step = stage.expressions_chain.steps[i];
if (step->actions()->hasArrayJoin())
throw Exception(ErrorCodes::UNEXPECTED_EXPRESSION, "arrayJoin is not allowed in mutations");
if (i < stage.filter_column_names.size())
{
/// Execute DELETEs.
plan.addStep(std::make_unique<FilterStep>(plan.getCurrentDataStream(), step->actions(), stage.filter_column_names[i], false));
}
else
{
/// Execute UPDATE or final projection.
plan.addStep(std::make_unique<ExpressionStep>(plan.getCurrentDataStream(), step->actions()));
}
}
addCreatingSetsStep(plan, stage.analyzer->getPreparedSets(), context);
}
QueryPlanOptimizationSettings do_not_optimize_plan;
do_not_optimize_plan.optimize_plan = false;
auto pipeline = std::move(*plan.buildQueryPipeline(
do_not_optimize_plan,
BuildQueryPipelineSettings::fromContext(context)));
pipeline.addSimpleTransform([&](const Block & header)
{
return std::make_shared<MaterializingTransform>(header);
});
return pipeline;
}
void MutationsInterpreter::validate()
{
/// For Replicated* storages mutations cannot employ non-deterministic functions
/// because that produces inconsistencies between replicas
if (startsWith(source.getStorage()->getName(), "Replicated") && !context->getSettingsRef().allow_nondeterministic_mutations)
{
for (const auto & command : commands)
{
const auto nondeterministic_func_data = findFirstNonDeterministicFunction(command, context);
if (nondeterministic_func_data.subquery)
throw Exception(ErrorCodes::BAD_ARGUMENTS, "ALTER UPDATE/ALTER DELETE statement with subquery may be nondeterministic, "
"see allow_nondeterministic_mutations setting");
if (nondeterministic_func_data.nondeterministic_function_name)
throw Exception(ErrorCodes::BAD_ARGUMENTS,
"ALTER UPDATE/ALTER DELETE statements must use only deterministic functions. "
"Function '{}' is non-deterministic", *nondeterministic_func_data.nondeterministic_function_name);
}
}
QueryPlan plan;
initQueryPlan(stages.front(), plan);
auto pipeline = addStreamsForLaterStages(stages, plan);
}
QueryPipelineBuilder MutationsInterpreter::execute()
{
if (!settings.can_execute)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot execute mutations interpreter because can_execute flag set to false");
QueryPlan plan;
initQueryPlan(stages.front(), plan);
auto builder = addStreamsForLaterStages(stages, plan);
/// Sometimes we update just part of columns (for example UPDATE mutation)
/// in this case we don't read sorting key, so just we don't check anything.
if (auto sort_desc = getStorageSortDescriptionIfPossible(builder.getHeader()))
{
builder.addSimpleTransform([&](const Block & header)
{
return std::make_shared<CheckSortedTransform>(header, *sort_desc);
});
}
if (!updated_header)
updated_header = std::make_unique<Block>(builder.getHeader());
return builder;
}
Block MutationsInterpreter::getUpdatedHeader() const
{
// If it's an index/projection materialization, we don't write any data columns, thus empty header is used
return mutation_kind.mutation_kind == MutationKind::MUTATE_INDEX_STATISTIC_PROJECTION ? Block{} : *updated_header;
}
const ColumnDependencies & MutationsInterpreter::getColumnDependencies() const
{
return dependencies;
}
size_t MutationsInterpreter::evaluateCommandsSize()
{
return prepareQueryAffectedAST(commands, source.getStorage(), context)->size();
}
std::optional<SortDescription> MutationsInterpreter::getStorageSortDescriptionIfPossible(const Block & header) const
{
Names sort_columns = metadata_snapshot->getSortingKeyColumns();
SortDescription sort_description;
size_t sort_columns_size = sort_columns.size();
sort_description.reserve(sort_columns_size);
for (size_t i = 0; i < sort_columns_size; ++i)
{
if (header.has(sort_columns[i]))
sort_description.emplace_back(sort_columns[i], 1, 1);
else
return {};
}
return sort_description;
}
ASTPtr MutationsInterpreter::getPartitionAndPredicateExpressionForMutationCommand(const MutationCommand & command) const
{
return DB::getPartitionAndPredicateExpressionForMutationCommand(command, source.getStorage(), context);
}
bool MutationsInterpreter::Stage::isAffectingAllColumns(const Names & storage_columns) const
{
/// is subset
for (const auto & storage_column : storage_columns)
if (!output_columns.contains(storage_column))
return false;
return true;
}
bool MutationsInterpreter::isAffectingAllColumns() const
{
auto storage_columns = metadata_snapshot->getColumns().getNamesOfPhysical();
if (stages.empty())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Mutation interpreter has no stages");
return stages.back().isAffectingAllColumns(storage_columns);
}
void MutationsInterpreter::MutationKind::set(const MutationKindEnum & kind)
{
if (mutation_kind < kind)
mutation_kind = kind;
}
}