ClickHouse/dbms/src/Dictionaries/TrieDictionary.cpp
Marek Vavruša 2ac5a743cc dbms: fix build with OS X built-in clang
The built-in clang doesn’t support value() for
`std::experimental::optional`. It however supports
dereference operator, which is basically the
same thing:

```
/clickhouse/dbms/src/DataStreams/NullableAdapterBlockInputStream.cpp:83:67: error: call to unavailable member function 'value':
                    res.insert({elem.column, elem.type, rename[i].value()});
                                                        ~~~~~~~~~~^~~~~
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/include/c++/v1/experimental/optional:547:17: note: candidate function has been explicitly made unavailable
    value_type& value()
                ^
/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/include/c++/v1/experimental/optional:539:33: note: candidate function has been explicitly made unavailable
    constexpr value_type const& value() const
```
2017-10-13 18:12:29 -07:00

651 lines
24 KiB
C++

#include <stack>
#include <ext/map.h>
#include <ext/range.h>
#include <Poco/Net/IPAddress.h>
#include <Poco/ByteOrder.h>
#include <Dictionaries/TrieDictionary.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnFixedString.h>
#include <Dictionaries/DictionaryBlockInputStream.h>
#include <DataTypes/DataTypeFixedString.h>
#include <DataTypes/DataTypeString.h>
#include <IO/WriteIntText.h>
#include <Common/formatIPv6.h>
#include <iostream>
#include <btrie.h>
namespace DB
{
namespace ErrorCodes
{
extern const int TYPE_MISMATCH;
extern const int ARGUMENT_OUT_OF_BOUND;
extern const int BAD_ARGUMENTS;
extern const int DICTIONARY_IS_EMPTY;
extern const int NOT_IMPLEMENTED;
}
TrieDictionary::TrieDictionary(
const std::string & name, const DictionaryStructure & dict_struct, DictionarySourcePtr source_ptr,
const DictionaryLifetime dict_lifetime, bool require_nonempty)
: name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime),
require_nonempty(require_nonempty), logger(&Poco::Logger::get("TrieDictionary"))
{
createAttributes();
trie = btrie_create();
try
{
loadData();
calculateBytesAllocated();
}
catch (...)
{
creation_exception = std::current_exception();
}
creation_time = std::chrono::system_clock::now();
}
TrieDictionary::TrieDictionary(const TrieDictionary & other)
: TrieDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.require_nonempty}
{
}
TrieDictionary::~TrieDictionary()
{
btrie_destroy(trie);
}
#define DECLARE(TYPE)\
void TrieDictionary::get##TYPE(\
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,\
PaddedPODArray<TYPE> & out) const\
{\
validateKeyTypes(key_types);\
\
const auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
const auto null_value = std::get<TYPE>(attribute.null_values);\
\
getItemsNumber<TYPE>(attribute, key_columns,\
[&] (const size_t row, const auto value) { out[row] = value; },\
[&] (const size_t) { return null_value; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void TrieDictionary::getString(
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,
ColumnString * out) const
{
validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
const auto & null_value = StringRef{std::get<String>(attribute.null_values)};
getItemsImpl<StringRef, StringRef>(attribute, key_columns,
[&] (const size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const size_t) { return null_value; });
}
#define DECLARE(TYPE)\
void TrieDictionary::get##TYPE(\
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,\
const PaddedPODArray<TYPE> & def, PaddedPODArray<TYPE> & out) const\
{\
validateKeyTypes(key_types);\
\
const auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, key_columns,\
[&] (const size_t row, const auto value) { out[row] = value; },\
[&] (const size_t row) { return def[row]; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void TrieDictionary::getString(
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,
const ColumnString * const def, ColumnString * const out) const
{
validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
getItemsImpl<StringRef, StringRef>(attribute, key_columns,
[&] (const size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const size_t row) { return def->getDataAt(row); });
}
#define DECLARE(TYPE)\
void TrieDictionary::get##TYPE(\
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,\
const TYPE def, PaddedPODArray<TYPE> & out) const\
{\
validateKeyTypes(key_types);\
\
const auto & attribute = getAttribute(attribute_name);\
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\
throw Exception{\
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\
ErrorCodes::TYPE_MISMATCH};\
\
getItemsNumber<TYPE>(attribute, key_columns,\
[&] (const size_t row, const auto value) { out[row] = value; },\
[&] (const size_t) { return def; });\
}
DECLARE(UInt8)
DECLARE(UInt16)
DECLARE(UInt32)
DECLARE(UInt64)
DECLARE(Int8)
DECLARE(Int16)
DECLARE(Int32)
DECLARE(Int64)
DECLARE(Float32)
DECLARE(Float64)
#undef DECLARE
void TrieDictionary::getString(
const std::string & attribute_name, const Columns & key_columns, const DataTypes & key_types,
const String & def, ColumnString * const out) const
{
validateKeyTypes(key_types);
const auto & attribute = getAttribute(attribute_name);
if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String))
throw Exception{
name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),
ErrorCodes::TYPE_MISMATCH};
getItemsImpl<StringRef, StringRef>(attribute, key_columns,
[&] (const size_t row, const StringRef value) { out->insertData(value.data, value.size); },
[&] (const size_t) { return StringRef{def}; });
}
void TrieDictionary::has(const Columns & key_columns, const DataTypes & key_types, PaddedPODArray<UInt8> & out) const
{
validateKeyTypes(key_types);
const auto & attribute = attributes.front();
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: has<UInt8>(attribute, key_columns, out); break;
case AttributeUnderlyingType::UInt16: has<UInt16>(attribute, key_columns, out); break;
case AttributeUnderlyingType::UInt32: has<UInt32>(attribute, key_columns, out); break;
case AttributeUnderlyingType::UInt64: has<UInt64>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int8: has<Int8>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int16: has<Int16>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int32: has<Int32>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Int64: has<Int64>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Float32: has<Float32>(attribute, key_columns, out); break;
case AttributeUnderlyingType::Float64: has<Float64>(attribute, key_columns, out); break;
case AttributeUnderlyingType::String: has<StringRef>(attribute, key_columns, out); break;
}
}
void TrieDictionary::createAttributes()
{
const auto size = dict_struct.attributes.size();
attributes.reserve(size);
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{
name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH};
}
}
void TrieDictionary::loadData()
{
auto stream = source_ptr->loadAll();
stream->readPrefix();
/// created upfront to avoid excess allocations
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
const auto attributes_size = attributes.size();
while (const auto block = stream->read())
{
const auto rows = block.rows();
element_count += rows;
const auto key_column_ptrs = ext::map<Columns>(ext::range(0, keys_size),
[&] (const size_t attribute_idx)
{
return block.safeGetByPosition(attribute_idx).column;
});
const auto attribute_column_ptrs = ext::map<Columns>(ext::range(0, attributes_size),
[&] (const size_t attribute_idx)
{
return block.safeGetByPosition(keys_size + attribute_idx).column;
});
for (const auto row_idx : ext::range(0, rows))
{
/// calculate key once per row
const auto key_column = key_column_ptrs.front();
for (const auto attribute_idx : ext::range(0, attributes_size))
{
const auto & attribute_column = *attribute_column_ptrs[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, key_column->getDataAt(row_idx), attribute_column[row_idx]);
}
}
}
stream->readSuffix();
if (require_nonempty && 0 == element_count)
throw Exception{
name + ": dictionary source is empty and 'require_nonempty' property is set.",
ErrorCodes::DICTIONARY_IS_EMPTY};
}
template <typename T>
void TrieDictionary::addAttributeSize(const Attribute & attribute)
{
const auto & vec = *std::get<ContainerPtrType<T>>(attribute.maps);
bytes_allocated += sizeof(ContainerType<T>) + (vec.capacity() * sizeof(T));
bucket_count = vec.size();
}
void TrieDictionary::calculateBytesAllocated()
{
bytes_allocated += attributes.size() * sizeof(attributes.front());
for (const auto & attribute : attributes)
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: addAttributeSize<UInt8>(attribute); break;
case AttributeUnderlyingType::UInt16: addAttributeSize<UInt16>(attribute); break;
case AttributeUnderlyingType::UInt32: addAttributeSize<UInt32>(attribute); break;
case AttributeUnderlyingType::UInt64: addAttributeSize<UInt64>(attribute); break;
case AttributeUnderlyingType::Int8: addAttributeSize<Int8>(attribute); break;
case AttributeUnderlyingType::Int16: addAttributeSize<Int16>(attribute); break;
case AttributeUnderlyingType::Int32: addAttributeSize<Int32>(attribute); break;
case AttributeUnderlyingType::Int64: addAttributeSize<Int64>(attribute); break;
case AttributeUnderlyingType::Float32: addAttributeSize<Float32>(attribute); break;
case AttributeUnderlyingType::Float64: addAttributeSize<Float64>(attribute); break;
case AttributeUnderlyingType::String:
{
addAttributeSize<StringRef>(attribute);
bytes_allocated += sizeof(Arena) + attribute.string_arena->size();
break;
}
}
}
bytes_allocated += btrie_allocated(trie);
}
void TrieDictionary::validateKeyTypes(const DataTypes & key_types) const
{
if (key_types.size() != 1)
throw Exception{
"Expected a single IP address",
ErrorCodes::TYPE_MISMATCH};
const auto & actual_type = key_types[0]->getName();
if (actual_type != "UInt32" && actual_type != "FixedString(16)")
throw Exception{
"Key does not match, expected either UInt32 or FixedString(16)",
ErrorCodes::TYPE_MISMATCH};
}
template <typename T>
void TrieDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value)
{
std::get<T>(attribute.null_values) = null_value.get<typename NearestFieldType<T>::Type>();
std::get<ContainerPtrType<T>>(attribute.maps) = std::make_unique<ContainerType<T>>();
}
TrieDictionary::Attribute TrieDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
Attribute attr{type};
switch (type)
{
case AttributeUnderlyingType::UInt8: createAttributeImpl<UInt8>(attr, null_value); break;
case AttributeUnderlyingType::UInt16: createAttributeImpl<UInt16>(attr, null_value); break;
case AttributeUnderlyingType::UInt32: createAttributeImpl<UInt32>(attr, null_value); break;
case AttributeUnderlyingType::UInt64: createAttributeImpl<UInt64>(attr, null_value); break;
case AttributeUnderlyingType::Int8: createAttributeImpl<Int8>(attr, null_value); break;
case AttributeUnderlyingType::Int16: createAttributeImpl<Int16>(attr, null_value); break;
case AttributeUnderlyingType::Int32: createAttributeImpl<Int32>(attr, null_value); break;
case AttributeUnderlyingType::Int64: createAttributeImpl<Int64>(attr, null_value); break;
case AttributeUnderlyingType::Float32: createAttributeImpl<Float32>(attr, null_value); break;
case AttributeUnderlyingType::Float64: createAttributeImpl<Float64>(attr, null_value); break;
case AttributeUnderlyingType::String:
{
std::get<String>(attr.null_values) = null_value.get<String>();
std::get<ContainerPtrType<StringRef>>(attr.maps) = std::make_unique<ContainerType<StringRef>>();
attr.string_arena = std::make_unique<Arena>();
break;
}
}
return attr;
}
template <typename OutputType, typename ValueSetter, typename DefaultGetter>
void TrieDictionary::getItemsNumber(
const Attribute & attribute,
const Columns & key_columns,
ValueSetter && set_value,
DefaultGetter && get_default) const
{
if (false) {}
#define DISPATCH(TYPE) \
else if (attribute.type == AttributeUnderlyingType::TYPE) \
getItemsImpl<TYPE, OutputType>(attribute, key_columns, std::forward<ValueSetter>(set_value), std::forward<DefaultGetter>(get_default));
DISPATCH(UInt8)
DISPATCH(UInt16)
DISPATCH(UInt32)
DISPATCH(UInt64)
DISPATCH(Int8)
DISPATCH(Int16)
DISPATCH(Int32)
DISPATCH(Int64)
DISPATCH(Float32)
DISPATCH(Float64)
#undef DISPATCH
else
throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR);
}
template <typename AttributeType, typename OutputType, typename ValueSetter, typename DefaultGetter>
void TrieDictionary::getItemsImpl(
const Attribute & attribute,
const Columns & key_columns,
ValueSetter && set_value,
DefaultGetter && get_default) const
{
auto & vec = *std::get<ContainerPtrType<AttributeType>>(attribute.maps);
const auto first_column = key_columns.front();
const auto rows = first_column->size();
if (first_column->isNumeric())
{
for (const auto i : ext::range(0, rows))
{
auto addr = Int32(first_column->get64(i));
uintptr_t slot = btrie_find(trie, addr);
set_value(i, slot != BTRIE_NULL ? vec[slot] : get_default(i));
}
}
else
{
for (const auto i : ext::range(0, rows))
{
auto addr = first_column->getDataAt(i);
if (addr.size != 16)
throw Exception("Expected key to be FixedString(16)", ErrorCodes::LOGICAL_ERROR);
uintptr_t slot = btrie_find_a6(trie, reinterpret_cast<const UInt8*>(addr.data));
set_value(i, slot != BTRIE_NULL ? vec[slot] : get_default(i));
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
template <typename T>
bool TrieDictionary::setAttributeValueImpl(Attribute & attribute, const StringRef key, const T value)
{
// Insert value into appropriate vector type
auto & vec = *std::get<ContainerPtrType<T>>(attribute.maps);
size_t row = vec.size();
vec.push_back(value);
// Parse IP address and subnet length from string (e.g. 2a02:6b8::3/64)
Poco::Net::IPAddress addr, mask;
std::string addr_str(key.toString());
size_t pos = addr_str.find('/');
if (pos != std::string::npos)
{
addr = Poco::Net::IPAddress(addr_str.substr(0, pos));
mask = Poco::Net::IPAddress(std::stoi(addr_str.substr(pos + 1), nullptr, 10), addr.family());
}
else
{
addr = Poco::Net::IPAddress(addr_str);
mask = Poco::Net::IPAddress(addr.length() * 8, addr.family());
}
/*
* Here we might overwrite the same key with the same slot as each key can map to multiple attributes.
* However, all columns have equal number of rows so it is okay to store only row number for each key
* instead of building a trie for each column. This comes at the cost of additional lookup in attribute
* vector on lookup time to return cell from row + column. The reason for this is to save space,
* and build only single trie instead of trie for each column.
*/
if (addr.family() == Poco::Net::IPAddress::IPv4)
{
UInt32 addr_v4 = Poco::ByteOrder::toNetwork(*reinterpret_cast<const UInt32*>(addr.addr()));
UInt32 mask_v4 = Poco::ByteOrder::toNetwork(*reinterpret_cast<const UInt32*>(mask.addr()));
return btrie_insert(trie, addr_v4, mask_v4, row) == 0;
}
const uint8_t* addr_v6 = reinterpret_cast<const uint8_t*>(addr.addr());
const uint8_t* mask_v6 = reinterpret_cast<const uint8_t*>(mask.addr());
return btrie_insert_a6(trie, addr_v6, mask_v6, row) == 0;
}
bool TrieDictionary::setAttributeValue(Attribute & attribute, const StringRef key, const Field & value)
{
switch (attribute.type)
{
case AttributeUnderlyingType::UInt8: return setAttributeValueImpl<UInt8>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::UInt16: return setAttributeValueImpl<UInt16>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::UInt32: return setAttributeValueImpl<UInt32>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::UInt64: return setAttributeValueImpl<UInt64>(attribute, key, value.get<UInt64>());
case AttributeUnderlyingType::Int8: return setAttributeValueImpl<Int8>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Int16: return setAttributeValueImpl<Int16>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Int32: return setAttributeValueImpl<Int32>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Int64: return setAttributeValueImpl<Int64>(attribute, key, value.get<Int64>());
case AttributeUnderlyingType::Float32: return setAttributeValueImpl<Float32>(attribute, key, value.get<Float64>());
case AttributeUnderlyingType::Float64: return setAttributeValueImpl<Float64>(attribute, key, value.get<Float64>());
case AttributeUnderlyingType::String:
{
const auto & string = value.get<String>();
const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size());
setAttributeValueImpl<StringRef>(attribute, key, StringRef{string_in_arena, string.size()});
return true;
}
}
return {};
}
const TrieDictionary::Attribute & TrieDictionary::getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{
name + ": no such attribute '" + attribute_name + "'",
ErrorCodes::BAD_ARGUMENTS};
return attributes[it->second];
}
template <typename T>
void TrieDictionary::has(const Attribute & attribute, const Columns & key_columns, PaddedPODArray<UInt8> & out) const
{
const auto first_column = key_columns.front();
const auto rows = first_column->size();
if (first_column->isNumeric())
{
for (const auto i : ext::range(0, rows))
{
auto addr = Int32(first_column->get64(i));
uintptr_t slot = btrie_find(trie, addr);
out[i] = (slot != BTRIE_NULL);
}
}
else
{
for (const auto i : ext::range(0, rows))
{
auto addr = first_column->getDataAt(i);
if (unlikely(addr.size != 16))
throw Exception("Expected key to be FixedString(16)", ErrorCodes::LOGICAL_ERROR);
uintptr_t slot = btrie_find_a6(trie, reinterpret_cast<const UInt8*>(addr.data));
out[i] = (slot != BTRIE_NULL);
}
}
query_count.fetch_add(rows, std::memory_order_relaxed);
}
template <typename Getter, typename KeyType>
void TrieDictionary::trieTraverse(const btrie_t * tree, Getter && getter) const
{
KeyType key = 0;
const KeyType high_bit = ~((~key) >> 1);
btrie_node_t * node;
node = tree->root;
std::stack<btrie_node_t *> stack;
while (node)
{
stack.push(node);
node = node->left;
}
auto getBit = [&high_bit](size_t size) { return size ? (high_bit >> (size - 1)) : 0; };
while (!stack.empty())
{
node = stack.top();
stack.pop();
if (node && node->value != BTRIE_NULL)
getter(key, stack.size());
if (node && node->right)
{
stack.push(NULL);
key |= getBit(stack.size());
stack.push(node->right);
while (stack.top()->left)
stack.push(stack.top()->left);
}
else
key &= ~getBit(stack.size());
}
}
Columns TrieDictionary::getKeyColumns() const
{
auto ip_column = std::make_shared<ColumnFixedString>(IPV6_BINARY_LENGTH);
auto mask_column = std::make_shared<ColumnVector<UInt8>>();
#if defined(__SIZEOF_INT128__)
auto getter = [& ip_column, & mask_column](__uint128_t ip, size_t mask) {
UInt64 * ip_array = reinterpret_cast<UInt64 *>(&ip);
ip_array[0] = Poco::ByteOrder::fromNetwork(ip_array[0]);
ip_array[1] = Poco::ByteOrder::fromNetwork(ip_array[1]);
std::swap(ip_array[0], ip_array[1]);
ip_column->insertData(reinterpret_cast<const char *>(ip_array), IPV6_BINARY_LENGTH);
mask_column->insert(static_cast<UInt8>(mask));
};
trieTraverse<decltype(getter), __uint128_t>(trie, std::move(getter));
#else
throw Exception("TrieDictionary::getKeyColumns is not implemented for 32bit arch", ErrorCodes::NOT_IMPLEMENTED);
#endif
return {ip_column, mask_column};
}
BlockInputStreamPtr TrieDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const
{
using BlockInputStreamType = DictionaryBlockInputStream<TrieDictionary, UInt64>;
auto getKeys = [](const Columns& columns, const std::vector<DictionaryAttribute>& attributes)
{
const auto & attr = attributes.front();
return ColumnsWithTypeAndName({ColumnWithTypeAndName(columns.front(),
std::make_shared<DataTypeFixedString>(IPV6_BINARY_LENGTH), attr.name)});
};
auto getView = [](const Columns& columns, const std::vector<DictionaryAttribute>& attributes)
{
auto column = std::make_shared<ColumnString>();
auto ip_column = std::static_pointer_cast<ColumnFixedString>(columns.front());
auto mask_column = std::static_pointer_cast<ColumnVector<UInt8>>(columns.back());
char buffer[48];
for (size_t row : ext::range(0, ip_column->size()))
{
UInt8 mask = mask_column->getElement(row);
char * ptr = buffer;
formatIPv6(reinterpret_cast<const unsigned char *>(ip_column->getDataAt(row).data), ptr);
*(ptr - 1) = '/';
auto size = detail::writeUIntText(mask, ptr);
column->insertData(buffer, size + (ptr - buffer));
}
return ColumnsWithTypeAndName{ColumnWithTypeAndName(column, std::make_shared<DataTypeString>(), attributes.front().name)};
};
return std::make_shared<BlockInputStreamType>(shared_from_this(), max_block_size, getKeyColumns(), column_names,
std::move(getKeys), std::move(getView));
}
}