ClickHouse/src/Interpreters/Aggregator.cpp
Nikita Taranov 9e2265a6ed
Improve hash table preallocation optimisation (#43945)
* do not preallocate if max_size_to_preallocate_for_aggregation is too small

* skip optimisation for aggr without key

* increase default for max_size_to_preallocate_for_aggregation
2022-12-08 00:05:15 +01:00

3338 lines
122 KiB
C++

#include <algorithm>
#include <future>
#include <numeric>
#include <Poco/Util/Application.h>
#ifdef OS_LINUX
# include <unistd.h>
#endif
#include <base/sort.h>
#include <Common/Stopwatch.h>
#include <Common/setThreadName.h>
#include <Common/formatReadable.h>
#include <DataTypes/DataTypeAggregateFunction.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypeLowCardinality.h>
#include <Columns/ColumnArray.h>
#include <Columns/ColumnTuple.h>
#include <Columns/ColumnSparse.h>
#include <Formats/NativeWriter.h>
#include <IO/WriteBufferFromFile.h>
#include <Compression/CompressedWriteBuffer.h>
#include <Interpreters/Aggregator.h>
#include <Common/CacheBase.h>
#include <Common/MemoryTracker.h>
#include <Common/CurrentThread.h>
#include <Common/typeid_cast.h>
#include <Common/assert_cast.h>
#include <Common/JSONBuilder.h>
#include <Common/filesystemHelpers.h>
#include <AggregateFunctions/AggregateFunctionArray.h>
#include <AggregateFunctions/AggregateFunctionState.h>
#include <IO/Operators.h>
#include <Interpreters/JIT/compileFunction.h>
#include <Interpreters/JIT/CompiledExpressionCache.h>
#include <Core/ProtocolDefines.h>
#include <Disks/TemporaryFileOnDisk.h>
#include <Interpreters/TemporaryDataOnDisk.h>
#include <Common/scope_guard_safe.h>
#include <Parsers/ASTSelectQuery.h>
#include <Interpreters/AggregationUtils.h>
namespace ProfileEvents
{
extern const Event ExternalAggregationWritePart;
extern const Event ExternalAggregationCompressedBytes;
extern const Event ExternalAggregationUncompressedBytes;
extern const Event ExternalProcessingCompressedBytesTotal;
extern const Event ExternalProcessingUncompressedBytesTotal;
extern const Event AggregationPreallocatedElementsInHashTables;
extern const Event AggregationHashTablesInitializedAsTwoLevel;
extern const Event OverflowThrow;
extern const Event OverflowBreak;
extern const Event OverflowAny;
}
namespace CurrentMetrics
{
extern const Metric TemporaryFilesForAggregation;
}
namespace DB
{
namespace ErrorCodes
{
extern const int UNKNOWN_AGGREGATED_DATA_VARIANT;
extern const int TOO_MANY_ROWS;
extern const int EMPTY_DATA_PASSED;
extern const int CANNOT_MERGE_DIFFERENT_AGGREGATED_DATA_VARIANTS;
extern const int LOGICAL_ERROR;
}
}
namespace
{
/** Collects observed HashMap-s sizes to avoid redundant intermediate resizes.
*/
class HashTablesStatistics
{
public:
struct Entry
{
size_t sum_of_sizes; // used to determine if it's better to convert aggregation to two-level from the beginning
size_t median_size; // roughly the size we're going to preallocate on each thread
};
using Cache = DB::CacheBase<UInt64, Entry>;
using CachePtr = std::shared_ptr<Cache>;
using Params = DB::Aggregator::Params::StatsCollectingParams;
/// Collection and use of the statistics should be enabled.
std::optional<Entry> getSizeHint(const Params & params)
{
if (!params.isCollectionAndUseEnabled())
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Collection and use of the statistics should be enabled.");
std::lock_guard lock(mutex);
const auto cache = getHashTableStatsCache(params, lock);
if (const auto hint = cache->get(params.key))
{
LOG_TRACE(
&Poco::Logger::get("Aggregator"),
"An entry for key={} found in cache: sum_of_sizes={}, median_size={}",
params.key,
hint->sum_of_sizes,
hint->median_size);
return *hint;
}
return std::nullopt;
}
/// Collection and use of the statistics should be enabled.
void update(size_t sum_of_sizes, size_t median_size, const Params & params)
{
if (!params.isCollectionAndUseEnabled())
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Collection and use of the statistics should be enabled.");
std::lock_guard lock(mutex);
const auto cache = getHashTableStatsCache(params, lock);
const auto hint = cache->get(params.key);
// We'll maintain the maximum among all the observed values until the next prediction turns out to be too wrong.
if (!hint || sum_of_sizes < hint->sum_of_sizes / 2 || hint->sum_of_sizes < sum_of_sizes || median_size < hint->median_size / 2
|| hint->median_size < median_size)
{
LOG_TRACE(
&Poco::Logger::get("Aggregator"),
"Statistics updated for key={}: new sum_of_sizes={}, median_size={}",
params.key,
sum_of_sizes,
median_size);
cache->set(params.key, std::make_shared<Entry>(Entry{.sum_of_sizes = sum_of_sizes, .median_size = median_size}));
}
}
std::optional<DB::HashTablesCacheStatistics> getCacheStats() const
{
std::lock_guard lock(mutex);
if (hash_table_stats)
{
size_t hits = 0, misses = 0;
hash_table_stats->getStats(hits, misses);
return DB::HashTablesCacheStatistics{.entries = hash_table_stats->count(), .hits = hits, .misses = misses};
}
return std::nullopt;
}
static size_t calculateCacheKey(const DB::ASTPtr & select_query)
{
if (!select_query)
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Query ptr cannot be null");
const auto & select = select_query->as<DB::ASTSelectQuery &>();
// It may happen in some corner cases like `select 1 as num group by num`.
if (!select.tables())
return 0;
SipHash hash;
hash.update(select.tables()->getTreeHash());
if (const auto where = select.where())
hash.update(where->getTreeHash());
if (const auto group_by = select.groupBy())
hash.update(group_by->getTreeHash());
return hash.get64();
}
private:
CachePtr getHashTableStatsCache(const Params & params, const std::lock_guard<std::mutex> &)
{
if (!hash_table_stats || hash_table_stats->maxSize() != params.max_entries_for_hash_table_stats)
hash_table_stats = std::make_shared<Cache>(params.max_entries_for_hash_table_stats);
return hash_table_stats;
}
mutable std::mutex mutex;
CachePtr hash_table_stats;
};
HashTablesStatistics & getHashTablesStatistics()
{
static HashTablesStatistics hash_tables_stats;
return hash_tables_stats;
}
bool worthConvertToTwoLevel(
size_t group_by_two_level_threshold, size_t result_size, size_t group_by_two_level_threshold_bytes, auto result_size_bytes)
{
// params.group_by_two_level_threshold will be equal to 0 if we have only one thread to execute aggregation (refer to AggregatingStep::transformPipeline).
return (group_by_two_level_threshold && result_size >= group_by_two_level_threshold)
|| (group_by_two_level_threshold_bytes && result_size_bytes >= static_cast<Int64>(group_by_two_level_threshold_bytes));
}
DB::AggregatedDataVariants::Type convertToTwoLevelTypeIfPossible(DB::AggregatedDataVariants::Type type)
{
using Type = DB::AggregatedDataVariants::Type;
switch (type)
{
#define M(NAME) \
case Type::NAME: \
return Type::NAME##_two_level;
APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M)
#undef M
default:
return type;
}
UNREACHABLE();
}
void initDataVariantsWithSizeHint(
DB::AggregatedDataVariants & result, DB::AggregatedDataVariants::Type method_chosen, const DB::Aggregator::Params & params)
{
const auto & stats_collecting_params = params.stats_collecting_params;
if (stats_collecting_params.isCollectionAndUseEnabled())
{
if (auto hint = getHashTablesStatistics().getSizeHint(stats_collecting_params))
{
const auto max_threads = params.group_by_two_level_threshold != 0 ? std::max(params.max_threads, 1ul) : 1;
const auto lower_limit = hint->sum_of_sizes / max_threads;
const auto upper_limit = stats_collecting_params.max_size_to_preallocate_for_aggregation / max_threads;
if (hint->median_size > upper_limit)
{
/// Since we cannot afford to preallocate as much as we want, we will likely need to do resize anyway.
/// But we will also work with the big (i.e. not so cache friendly) HT from the beginning which may result in a slight slowdown.
/// So let's just do nothing.
LOG_TRACE(
&Poco::Logger::get("Aggregator"),
"No space were preallocated in hash tables because 'max_size_to_preallocate_for_aggregation' has too small value: {}, "
"should be at least {}",
stats_collecting_params.max_size_to_preallocate_for_aggregation,
hint->median_size * max_threads);
}
else
{
const auto adjusted = std::max(lower_limit, hint->median_size);
if (worthConvertToTwoLevel(
params.group_by_two_level_threshold,
hint->sum_of_sizes,
/*group_by_two_level_threshold_bytes*/ 0,
/*result_size_bytes*/ 0))
method_chosen = convertToTwoLevelTypeIfPossible(method_chosen);
result.init(method_chosen, adjusted);
ProfileEvents::increment(ProfileEvents::AggregationHashTablesInitializedAsTwoLevel, result.isTwoLevel());
return;
}
}
}
result.init(method_chosen);
}
/// Collection and use of the statistics should be enabled.
void updateStatistics(const DB::ManyAggregatedDataVariants & data_variants, const DB::Aggregator::Params::StatsCollectingParams & params)
{
if (!params.isCollectionAndUseEnabled())
throw DB::Exception(DB::ErrorCodes::LOGICAL_ERROR, "Collection and use of the statistics should be enabled.");
std::vector<size_t> sizes(data_variants.size());
for (size_t i = 0; i < data_variants.size(); ++i)
sizes[i] = data_variants[i]->size();
const auto median_size = sizes.begin() + sizes.size() / 2; // not precisely though...
std::nth_element(sizes.begin(), median_size, sizes.end());
const auto sum_of_sizes = std::accumulate(sizes.begin(), sizes.end(), 0ull);
getHashTablesStatistics().update(sum_of_sizes, *median_size, params);
}
// The std::is_constructible trait isn't suitable here because some classes have template constructors with semantics different from providing size hints.
// Also string hash table variants are not supported due to the fact that both local perf tests and tests in CI showed slowdowns for them.
template <typename...>
struct HasConstructorOfNumberOfElements : std::false_type
{
};
template <typename... Ts>
struct HasConstructorOfNumberOfElements<HashMapTable<Ts...>> : std::true_type
{
};
template <typename Key, typename Cell, typename Hash, typename Grower, typename Allocator, template <typename...> typename ImplTable>
struct HasConstructorOfNumberOfElements<TwoLevelHashMapTable<Key, Cell, Hash, Grower, Allocator, ImplTable>> : std::true_type
{
};
template <typename... Ts>
struct HasConstructorOfNumberOfElements<HashTable<Ts...>> : std::true_type
{
};
template <typename... Ts>
struct HasConstructorOfNumberOfElements<TwoLevelHashTable<Ts...>> : std::true_type
{
};
template <template <typename> typename Method, typename Base>
struct HasConstructorOfNumberOfElements<Method<Base>> : HasConstructorOfNumberOfElements<Base>
{
};
template <typename Method>
auto constructWithReserveIfPossible(size_t size_hint)
{
if constexpr (HasConstructorOfNumberOfElements<typename Method::Data>::value)
{
ProfileEvents::increment(ProfileEvents::AggregationPreallocatedElementsInHashTables, size_hint);
return std::make_unique<Method>(size_hint);
}
else
return std::make_unique<Method>();
}
DB::ColumnNumbers calculateKeysPositions(const DB::Block & header, const DB::Aggregator::Params & params)
{
DB::ColumnNumbers keys_positions(params.keys_size);
for (size_t i = 0; i < params.keys_size; ++i)
keys_positions[i] = header.getPositionByName(params.keys[i]);
return keys_positions;
}
template <typename HashTable, typename KeyHolder>
concept HasPrefetchMemberFunc = requires
{
{std::declval<HashTable>().prefetch(std::declval<KeyHolder>())};
};
size_t getMinBytesForPrefetch()
{
size_t l2_size = 0;
#if defined(OS_LINUX) && defined(_SC_LEVEL2_CACHE_SIZE)
if (auto ret = sysconf(_SC_LEVEL2_CACHE_SIZE); ret != -1)
l2_size = ret;
#endif
/// 256KB looks like a reasonable default L2 size. 4 is empirical constant.
return 4 * std::max<size_t>(l2_size, 256 * 1024);
}
}
namespace DB
{
AggregatedDataVariants::~AggregatedDataVariants()
{
if (aggregator && !aggregator->all_aggregates_has_trivial_destructor)
{
try
{
aggregator->destroyAllAggregateStates(*this);
}
catch (...)
{
tryLogCurrentException(__PRETTY_FUNCTION__);
}
}
}
std::optional<HashTablesCacheStatistics> getHashTablesCacheStatistics()
{
return getHashTablesStatistics().getCacheStats();
}
void AggregatedDataVariants::convertToTwoLevel()
{
if (aggregator)
LOG_TRACE(aggregator->log, "Converting aggregation data to two-level.");
switch (type)
{
#define M(NAME) \
case Type::NAME: \
NAME ## _two_level = std::make_unique<decltype(NAME ## _two_level)::element_type>(*(NAME)); \
(NAME).reset(); \
type = Type::NAME ## _two_level; \
break;
APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M)
#undef M
default:
throw Exception("Wrong data variant passed.", ErrorCodes::LOGICAL_ERROR);
}
}
void AggregatedDataVariants::init(Type type_, std::optional<size_t> size_hint)
{
switch (type_)
{
case Type::EMPTY:
case Type::without_key:
break;
#define M(NAME, IS_TWO_LEVEL) \
case Type::NAME: \
if (size_hint) \
(NAME) = constructWithReserveIfPossible<decltype(NAME)::element_type>(*size_hint); \
else \
(NAME) = std::make_unique<decltype(NAME)::element_type>(); \
break;
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
type = type_;
}
Aggregator::Params::StatsCollectingParams::StatsCollectingParams() = default;
Aggregator::Params::StatsCollectingParams::StatsCollectingParams(
const ASTPtr & select_query_,
bool collect_hash_table_stats_during_aggregation_,
size_t max_entries_for_hash_table_stats_,
size_t max_size_to_preallocate_for_aggregation_)
: key(collect_hash_table_stats_during_aggregation_ ? HashTablesStatistics::calculateCacheKey(select_query_) : 0)
, max_entries_for_hash_table_stats(max_entries_for_hash_table_stats_)
, max_size_to_preallocate_for_aggregation(max_size_to_preallocate_for_aggregation_)
{
}
Block Aggregator::getHeader(bool final) const
{
return params.getHeader(header, final);
}
Block Aggregator::Params::getHeader(
const Block & header, bool only_merge, const Names & keys, const AggregateDescriptions & aggregates, bool final)
{
Block res;
if (only_merge)
{
NameSet needed_columns(keys.begin(), keys.end());
for (const auto & aggregate : aggregates)
needed_columns.emplace(aggregate.column_name);
for (const auto & column : header)
{
if (needed_columns.contains(column.name))
res.insert(column.cloneEmpty());
}
if (final)
{
for (const auto & aggregate : aggregates)
{
auto & elem = res.getByName(aggregate.column_name);
elem.type = aggregate.function->getReturnType();
elem.column = elem.type->createColumn();
}
}
}
else
{
for (const auto & key : keys)
res.insert(header.getByName(key).cloneEmpty());
for (const auto & aggregate : aggregates)
{
size_t arguments_size = aggregate.argument_names.size();
DataTypes argument_types(arguments_size);
for (size_t j = 0; j < arguments_size; ++j)
argument_types[j] = header.getByName(aggregate.argument_names[j]).type;
DataTypePtr type;
if (final)
type = aggregate.function->getReturnType();
else
type = std::make_shared<DataTypeAggregateFunction>(aggregate.function, argument_types, aggregate.parameters);
res.insert({ type, aggregate.column_name });
}
}
return materializeBlock(res);
}
ColumnRawPtrs Aggregator::Params::makeRawKeyColumns(const Block & block) const
{
ColumnRawPtrs key_columns(keys_size);
for (size_t i = 0; i < keys_size; ++i)
key_columns[i] = block.safeGetByPosition(i).column.get();
return key_columns;
}
Aggregator::AggregateColumnsConstData Aggregator::Params::makeAggregateColumnsData(const Block & block) const
{
AggregateColumnsConstData aggregate_columns(aggregates_size);
for (size_t i = 0; i < aggregates_size; ++i)
{
const auto & aggregate_column_name = aggregates[i].column_name;
aggregate_columns[i] = &typeid_cast<const ColumnAggregateFunction &>(*block.getByName(aggregate_column_name).column).getData();
}
return aggregate_columns;
}
void Aggregator::Params::explain(WriteBuffer & out, size_t indent) const
{
String prefix(indent, ' ');
{
/// Dump keys.
out << prefix << "Keys: ";
bool first = true;
for (const auto & key : keys)
{
if (!first)
out << ", ";
first = false;
out << key;
}
out << '\n';
}
if (!aggregates.empty())
{
out << prefix << "Aggregates:\n";
for (const auto & aggregate : aggregates)
aggregate.explain(out, indent + 4);
}
}
void Aggregator::Params::explain(JSONBuilder::JSONMap & map) const
{
auto keys_array = std::make_unique<JSONBuilder::JSONArray>();
for (const auto & key : keys)
keys_array->add(key);
map.add("Keys", std::move(keys_array));
if (!aggregates.empty())
{
auto aggregates_array = std::make_unique<JSONBuilder::JSONArray>();
for (const auto & aggregate : aggregates)
{
auto aggregate_map = std::make_unique<JSONBuilder::JSONMap>();
aggregate.explain(*aggregate_map);
aggregates_array->add(std::move(aggregate_map));
}
map.add("Aggregates", std::move(aggregates_array));
}
}
#if USE_EMBEDDED_COMPILER
static CHJIT & getJITInstance()
{
static CHJIT jit;
return jit;
}
class CompiledAggregateFunctionsHolder final : public CompiledExpressionCacheEntry
{
public:
explicit CompiledAggregateFunctionsHolder(CompiledAggregateFunctions compiled_function_)
: CompiledExpressionCacheEntry(compiled_function_.compiled_module.size)
, compiled_aggregate_functions(compiled_function_)
{}
~CompiledAggregateFunctionsHolder() override
{
getJITInstance().deleteCompiledModule(compiled_aggregate_functions.compiled_module);
}
CompiledAggregateFunctions compiled_aggregate_functions;
};
#endif
Aggregator::Aggregator(const Block & header_, const Params & params_)
: header(header_)
, keys_positions(calculateKeysPositions(header, params_))
, params(params_)
, tmp_data(params.tmp_data_scope ? std::make_unique<TemporaryDataOnDisk>(params.tmp_data_scope, CurrentMetrics::TemporaryFilesForAggregation) : nullptr)
, min_bytes_for_prefetch(getMinBytesForPrefetch())
{
/// Use query-level memory tracker
if (auto * memory_tracker_child = CurrentThread::getMemoryTracker())
if (auto * memory_tracker = memory_tracker_child->getParent())
memory_usage_before_aggregation = memory_tracker->get();
aggregate_functions.resize(params.aggregates_size);
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i] = params.aggregates[i].function.get();
/// Initialize sizes of aggregation states and its offsets.
offsets_of_aggregate_states.resize(params.aggregates_size);
total_size_of_aggregate_states = 0;
all_aggregates_has_trivial_destructor = true;
// aggregate_states will be aligned as below:
// |<-- state_1 -->|<-- pad_1 -->|<-- state_2 -->|<-- pad_2 -->| .....
//
// pad_N will be used to match alignment requirement for each next state.
// The address of state_1 is aligned based on maximum alignment requirements in states
for (size_t i = 0; i < params.aggregates_size; ++i)
{
offsets_of_aggregate_states[i] = total_size_of_aggregate_states;
total_size_of_aggregate_states += params.aggregates[i].function->sizeOfData();
// aggregate states are aligned based on maximum requirement
align_aggregate_states = std::max(align_aggregate_states, params.aggregates[i].function->alignOfData());
// If not the last aggregate_state, we need pad it so that next aggregate_state will be aligned.
if (i + 1 < params.aggregates_size)
{
size_t alignment_of_next_state = params.aggregates[i + 1].function->alignOfData();
if ((alignment_of_next_state & (alignment_of_next_state - 1)) != 0)
throw Exception("Logical error: alignOfData is not 2^N", ErrorCodes::LOGICAL_ERROR);
/// Extend total_size to next alignment requirement
/// Add padding by rounding up 'total_size_of_aggregate_states' to be a multiplier of alignment_of_next_state.
total_size_of_aggregate_states = (total_size_of_aggregate_states + alignment_of_next_state - 1) / alignment_of_next_state * alignment_of_next_state;
}
if (!params.aggregates[i].function->hasTrivialDestructor())
all_aggregates_has_trivial_destructor = false;
}
method_chosen = chooseAggregationMethod();
HashMethodContext::Settings cache_settings;
cache_settings.max_threads = params.max_threads;
aggregation_state_cache = AggregatedDataVariants::createCache(method_chosen, cache_settings);
#if USE_EMBEDDED_COMPILER
compileAggregateFunctionsIfNeeded();
#endif
}
#if USE_EMBEDDED_COMPILER
void Aggregator::compileAggregateFunctionsIfNeeded()
{
static std::unordered_map<UInt128, UInt64, UInt128Hash> aggregate_functions_description_to_count;
static std::mutex mutex;
if (!params.compile_aggregate_expressions)
return;
std::vector<AggregateFunctionWithOffset> functions_to_compile;
String functions_description;
is_aggregate_function_compiled.resize(aggregate_functions.size());
/// Add values to the aggregate functions.
for (size_t i = 0; i < aggregate_functions.size(); ++i)
{
const auto * function = aggregate_functions[i];
size_t offset_of_aggregate_function = offsets_of_aggregate_states[i];
if (function->isCompilable())
{
AggregateFunctionWithOffset function_to_compile
{
.function = function,
.aggregate_data_offset = offset_of_aggregate_function
};
functions_to_compile.emplace_back(std::move(function_to_compile));
functions_description += function->getDescription();
functions_description += ' ';
functions_description += std::to_string(offset_of_aggregate_function);
functions_description += ' ';
}
is_aggregate_function_compiled[i] = function->isCompilable();
}
if (functions_to_compile.empty())
return;
SipHash aggregate_functions_description_hash;
aggregate_functions_description_hash.update(functions_description);
UInt128 aggregate_functions_description_hash_key;
aggregate_functions_description_hash.get128(aggregate_functions_description_hash_key);
{
std::lock_guard<std::mutex> lock(mutex);
if (aggregate_functions_description_to_count[aggregate_functions_description_hash_key]++ < params.min_count_to_compile_aggregate_expression)
return;
}
if (auto * compilation_cache = CompiledExpressionCacheFactory::instance().tryGetCache())
{
auto [compiled_function_cache_entry, _] = compilation_cache->getOrSet(aggregate_functions_description_hash_key, [&] ()
{
LOG_TRACE(log, "Compile expression {}", functions_description);
auto compiled_aggregate_functions = compileAggregateFunctions(getJITInstance(), functions_to_compile, functions_description);
return std::make_shared<CompiledAggregateFunctionsHolder>(std::move(compiled_aggregate_functions));
});
compiled_aggregate_functions_holder = std::static_pointer_cast<CompiledAggregateFunctionsHolder>(compiled_function_cache_entry);
}
else
{
LOG_TRACE(log, "Compile expression {}", functions_description);
auto compiled_aggregate_functions = compileAggregateFunctions(getJITInstance(), functions_to_compile, functions_description);
compiled_aggregate_functions_holder = std::make_shared<CompiledAggregateFunctionsHolder>(std::move(compiled_aggregate_functions));
}
}
#endif
AggregatedDataVariants::Type Aggregator::chooseAggregationMethod()
{
/// If no keys. All aggregating to single row.
if (params.keys_size == 0)
return AggregatedDataVariants::Type::without_key;
/// Check if at least one of the specified keys is nullable.
DataTypes types_removed_nullable;
types_removed_nullable.reserve(params.keys.size());
bool has_nullable_key = false;
bool has_low_cardinality = false;
for (const auto & key : params.keys)
{
DataTypePtr type = header.getByName(key).type;
if (type->lowCardinality())
{
has_low_cardinality = true;
type = removeLowCardinality(type);
}
if (type->isNullable())
{
has_nullable_key = true;
type = removeNullable(type);
}
types_removed_nullable.push_back(type);
}
/** Returns ordinary (not two-level) methods, because we start from them.
* Later, during aggregation process, data may be converted (partitioned) to two-level structure, if cardinality is high.
*/
size_t keys_bytes = 0;
size_t num_fixed_contiguous_keys = 0;
key_sizes.resize(params.keys_size);
for (size_t j = 0; j < params.keys_size; ++j)
{
if (types_removed_nullable[j]->isValueUnambiguouslyRepresentedInContiguousMemoryRegion())
{
if (types_removed_nullable[j]->isValueUnambiguouslyRepresentedInFixedSizeContiguousMemoryRegion())
{
++num_fixed_contiguous_keys;
key_sizes[j] = types_removed_nullable[j]->getSizeOfValueInMemory();
keys_bytes += key_sizes[j];
}
}
}
if (has_nullable_key)
{
if (params.keys_size == num_fixed_contiguous_keys && !has_low_cardinality)
{
/// Pack if possible all the keys along with information about which key values are nulls
/// into a fixed 16- or 32-byte blob.
if (std::tuple_size<KeysNullMap<UInt128>>::value + keys_bytes <= 16)
return AggregatedDataVariants::Type::nullable_keys128;
if (std::tuple_size<KeysNullMap<UInt256>>::value + keys_bytes <= 32)
return AggregatedDataVariants::Type::nullable_keys256;
}
if (has_low_cardinality && params.keys_size == 1)
{
if (types_removed_nullable[0]->isValueRepresentedByNumber())
{
size_t size_of_field = types_removed_nullable[0]->getSizeOfValueInMemory();
if (size_of_field == 1)
return AggregatedDataVariants::Type::low_cardinality_key8;
if (size_of_field == 2)
return AggregatedDataVariants::Type::low_cardinality_key16;
if (size_of_field == 4)
return AggregatedDataVariants::Type::low_cardinality_key32;
if (size_of_field == 8)
return AggregatedDataVariants::Type::low_cardinality_key64;
}
else if (isString(types_removed_nullable[0]))
return AggregatedDataVariants::Type::low_cardinality_key_string;
else if (isFixedString(types_removed_nullable[0]))
return AggregatedDataVariants::Type::low_cardinality_key_fixed_string;
}
/// Fallback case.
return AggregatedDataVariants::Type::serialized;
}
/// No key has been found to be nullable.
/// Single numeric key.
if (params.keys_size == 1 && types_removed_nullable[0]->isValueRepresentedByNumber())
{
size_t size_of_field = types_removed_nullable[0]->getSizeOfValueInMemory();
if (has_low_cardinality)
{
if (size_of_field == 1)
return AggregatedDataVariants::Type::low_cardinality_key8;
if (size_of_field == 2)
return AggregatedDataVariants::Type::low_cardinality_key16;
if (size_of_field == 4)
return AggregatedDataVariants::Type::low_cardinality_key32;
if (size_of_field == 8)
return AggregatedDataVariants::Type::low_cardinality_key64;
if (size_of_field == 16)
return AggregatedDataVariants::Type::low_cardinality_keys128;
if (size_of_field == 32)
return AggregatedDataVariants::Type::low_cardinality_keys256;
throw Exception("Logical error: low cardinality numeric column has sizeOfField not in 1, 2, 4, 8, 16, 32.", ErrorCodes::LOGICAL_ERROR);
}
if (size_of_field == 1)
return AggregatedDataVariants::Type::key8;
if (size_of_field == 2)
return AggregatedDataVariants::Type::key16;
if (size_of_field == 4)
return AggregatedDataVariants::Type::key32;
if (size_of_field == 8)
return AggregatedDataVariants::Type::key64;
if (size_of_field == 16)
return AggregatedDataVariants::Type::keys128;
if (size_of_field == 32)
return AggregatedDataVariants::Type::keys256;
throw Exception("Logical error: numeric column has sizeOfField not in 1, 2, 4, 8, 16, 32.", ErrorCodes::LOGICAL_ERROR);
}
if (params.keys_size == 1 && isFixedString(types_removed_nullable[0]))
{
if (has_low_cardinality)
return AggregatedDataVariants::Type::low_cardinality_key_fixed_string;
else
return AggregatedDataVariants::Type::key_fixed_string;
}
/// If all keys fits in N bits, will use hash table with all keys packed (placed contiguously) to single N-bit key.
if (params.keys_size == num_fixed_contiguous_keys)
{
if (has_low_cardinality)
{
if (keys_bytes <= 16)
return AggregatedDataVariants::Type::low_cardinality_keys128;
if (keys_bytes <= 32)
return AggregatedDataVariants::Type::low_cardinality_keys256;
}
if (keys_bytes <= 2)
return AggregatedDataVariants::Type::keys16;
if (keys_bytes <= 4)
return AggregatedDataVariants::Type::keys32;
if (keys_bytes <= 8)
return AggregatedDataVariants::Type::keys64;
if (keys_bytes <= 16)
return AggregatedDataVariants::Type::keys128;
if (keys_bytes <= 32)
return AggregatedDataVariants::Type::keys256;
}
/// If single string key - will use hash table with references to it. Strings itself are stored separately in Arena.
if (params.keys_size == 1 && isString(types_removed_nullable[0]))
{
if (has_low_cardinality)
return AggregatedDataVariants::Type::low_cardinality_key_string;
else
return AggregatedDataVariants::Type::key_string;
}
return AggregatedDataVariants::Type::serialized;
}
template <bool skip_compiled_aggregate_functions>
void Aggregator::createAggregateStates(AggregateDataPtr & aggregate_data) const
{
for (size_t j = 0; j < params.aggregates_size; ++j)
{
if constexpr (skip_compiled_aggregate_functions)
if (is_aggregate_function_compiled[j])
continue;
try
{
/** An exception may occur if there is a shortage of memory.
* In order that then everything is properly destroyed, we "roll back" some of the created states.
* The code is not very convenient.
*/
aggregate_functions[j]->create(aggregate_data + offsets_of_aggregate_states[j]);
}
catch (...)
{
for (size_t rollback_j = 0; rollback_j < j; ++rollback_j)
{
if constexpr (skip_compiled_aggregate_functions)
if (is_aggregate_function_compiled[j])
continue;
aggregate_functions[rollback_j]->destroy(aggregate_data + offsets_of_aggregate_states[rollback_j]);
}
throw;
}
}
}
bool Aggregator::hasSparseArguments(AggregateFunctionInstruction * aggregate_instructions)
{
for (auto * inst = aggregate_instructions; inst->that; ++inst)
if (inst->has_sparse_arguments)
return true;
return false;
}
void Aggregator::executeOnBlockSmall(
AggregatedDataVariants & result,
size_t row_begin,
size_t row_end,
ColumnRawPtrs & key_columns,
AggregateFunctionInstruction * aggregate_instructions) const
{
/// `result` will destroy the states of aggregate functions in the destructor
result.aggregator = this;
/// How to perform the aggregation?
if (result.empty())
{
if (method_chosen != AggregatedDataVariants::Type::without_key)
initDataVariantsWithSizeHint(result, method_chosen, params);
else
result.init(method_chosen);
result.keys_size = params.keys_size;
result.key_sizes = key_sizes;
}
executeImpl(result, row_begin, row_end, key_columns, aggregate_instructions);
}
void Aggregator::mergeOnBlockSmall(
AggregatedDataVariants & result,
size_t row_begin,
size_t row_end,
const AggregateColumnsConstData & aggregate_columns_data,
const ColumnRawPtrs & key_columns) const
{
/// `result` will destroy the states of aggregate functions in the destructor
result.aggregator = this;
/// How to perform the aggregation?
if (result.empty())
{
initDataVariantsWithSizeHint(result, method_chosen, params);
result.keys_size = params.keys_size;
result.key_sizes = key_sizes;
}
if (false) {} // NOLINT
#define M(NAME, IS_TWO_LEVEL) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
mergeStreamsImpl(result.aggregates_pool, *result.NAME, result.NAME->data, \
result.without_key, /* no_more_keys= */ false, \
row_begin, row_end, \
aggregate_columns_data, key_columns, result.aggregates_pool);
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
else
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
void Aggregator::executeImpl(
AggregatedDataVariants & result,
size_t row_begin,
size_t row_end,
ColumnRawPtrs & key_columns,
AggregateFunctionInstruction * aggregate_instructions,
bool no_more_keys,
AggregateDataPtr overflow_row) const
{
#define M(NAME, IS_TWO_LEVEL) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
executeImpl(*result.NAME, result.aggregates_pool, row_begin, row_end, key_columns, aggregate_instructions, no_more_keys, overflow_row);
if (false) {} // NOLINT
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
}
/** It's interesting - if you remove `noinline`, then gcc for some reason will inline this function, and the performance decreases (~ 10%).
* (Probably because after the inline of this function, more internal functions no longer be inlined.)
* Inline does not make sense, since the inner loop is entirely inside this function.
*/
template <typename Method>
void NO_INLINE Aggregator::executeImpl(
Method & method,
Arena * aggregates_pool,
size_t row_begin,
size_t row_end,
ColumnRawPtrs & key_columns,
AggregateFunctionInstruction * aggregate_instructions,
bool no_more_keys,
AggregateDataPtr overflow_row) const
{
typename Method::State state(key_columns, key_sizes, aggregation_state_cache);
if (!no_more_keys)
{
/// Prefetching doesn't make sense for small hash tables, because they fit in caches entirely.
const bool prefetch = Method::State::has_cheap_key_calculation && params.enable_prefetch
&& (method.data.getBufferSizeInBytes() > min_bytes_for_prefetch);
#if USE_EMBEDDED_COMPILER
if (compiled_aggregate_functions_holder && !hasSparseArguments(aggregate_instructions))
{
if (prefetch)
executeImplBatch<false, true, true>(
method, state, aggregates_pool, row_begin, row_end, aggregate_instructions, overflow_row);
else
executeImplBatch<false, true, false>(
method, state, aggregates_pool, row_begin, row_end, aggregate_instructions, overflow_row);
}
else
#endif
{
if (prefetch)
executeImplBatch<false, false, true>(
method, state, aggregates_pool, row_begin, row_end, aggregate_instructions, overflow_row);
else
executeImplBatch<false, false, false>(
method, state, aggregates_pool, row_begin, row_end, aggregate_instructions, overflow_row);
}
}
else
{
executeImplBatch<true, false, false>(method, state, aggregates_pool, row_begin, row_end, aggregate_instructions, overflow_row);
}
}
template <bool no_more_keys, bool use_compiled_functions, bool prefetch, typename Method>
void NO_INLINE Aggregator::executeImplBatch(
Method & method,
typename Method::State & state,
Arena * aggregates_pool,
size_t row_begin,
size_t row_end,
AggregateFunctionInstruction * aggregate_instructions,
AggregateDataPtr overflow_row) const
{
using KeyHolder = decltype(state.getKeyHolder(0, std::declval<Arena &>()));
/// During processing of row #i we will prefetch HashTable cell for row #(i + prefetch_look_ahead).
PrefetchingHelper prefetching;
size_t prefetch_look_ahead = prefetching.getInitialLookAheadValue();
/// Optimization for special case when there are no aggregate functions.
if (params.aggregates_size == 0)
{
if constexpr (no_more_keys)
return;
/// For all rows.
AggregateDataPtr place = aggregates_pool->alloc(0);
for (size_t i = row_begin; i < row_end; ++i)
{
if constexpr (prefetch && HasPrefetchMemberFunc<decltype(method.data), KeyHolder>)
{
if (i == row_begin + prefetching.iterationsToMeasure())
prefetch_look_ahead = prefetching.calcPrefetchLookAhead();
if (i + prefetch_look_ahead < row_end)
{
auto && key_holder = state.getKeyHolder(i + prefetch_look_ahead, *aggregates_pool);
method.data.prefetch(std::move(key_holder));
}
}
state.emplaceKey(method.data, i, *aggregates_pool).setMapped(place);
}
return;
}
/// Optimization for special case when aggregating by 8bit key.
if constexpr (!no_more_keys && std::is_same_v<Method, typename decltype(AggregatedDataVariants::key8)::element_type>)
{
/// We use another method if there are aggregate functions with -Array combinator.
bool has_arrays = false;
for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst)
{
if (inst->offsets)
{
has_arrays = true;
break;
}
}
if (!has_arrays && !hasSparseArguments(aggregate_instructions))
{
for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst)
{
inst->batch_that->addBatchLookupTable8(
row_begin,
row_end,
reinterpret_cast<AggregateDataPtr *>(method.data.data()),
inst->state_offset,
[&](AggregateDataPtr & aggregate_data)
{
aggregate_data = aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
createAggregateStates(aggregate_data);
},
state.getKeyData(),
inst->batch_arguments,
aggregates_pool);
}
return;
}
}
/// NOTE: only row_end-row_start is required, but:
/// - this affects only optimize_aggregation_in_order,
/// - this is just a pointer, so it should not be significant,
/// - and plus this will require other changes in the interface.
std::unique_ptr<AggregateDataPtr[]> places(new AggregateDataPtr[row_end]);
/// For all rows.
for (size_t i = row_begin; i < row_end; ++i)
{
AggregateDataPtr aggregate_data = nullptr;
if constexpr (!no_more_keys)
{
if constexpr (prefetch && HasPrefetchMemberFunc<decltype(method.data), KeyHolder>)
{
if (i == row_begin + prefetching.iterationsToMeasure())
prefetch_look_ahead = prefetching.calcPrefetchLookAhead();
if (i + prefetch_look_ahead < row_end)
{
auto && key_holder = state.getKeyHolder(i + prefetch_look_ahead, *aggregates_pool);
method.data.prefetch(std::move(key_holder));
}
}
auto emplace_result = state.emplaceKey(method.data, i, *aggregates_pool);
/// If a new key is inserted, initialize the states of the aggregate functions, and possibly something related to the key.
if (emplace_result.isInserted())
{
/// exception-safety - if you can not allocate memory or create states, then destructors will not be called.
emplace_result.setMapped(nullptr);
aggregate_data = aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
{
const auto & compiled_aggregate_functions = compiled_aggregate_functions_holder->compiled_aggregate_functions;
compiled_aggregate_functions.create_aggregate_states_function(aggregate_data);
if (compiled_aggregate_functions.functions_count != aggregate_functions.size())
{
static constexpr bool skip_compiled_aggregate_functions = true;
createAggregateStates<skip_compiled_aggregate_functions>(aggregate_data);
}
#if defined(MEMORY_SANITIZER)
/// We compile only functions that do not allocate some data in Arena. Only store necessary state in AggregateData place.
for (size_t aggregate_function_index = 0; aggregate_function_index < aggregate_functions.size(); ++aggregate_function_index)
{
if (!is_aggregate_function_compiled[aggregate_function_index])
continue;
auto aggregate_data_with_offset = aggregate_data + offsets_of_aggregate_states[aggregate_function_index];
auto data_size = params.aggregates[aggregate_function_index].function->sizeOfData();
__msan_unpoison(aggregate_data_with_offset, data_size);
}
#endif
}
else
#endif
{
createAggregateStates(aggregate_data);
}
emplace_result.setMapped(aggregate_data);
}
else
aggregate_data = emplace_result.getMapped();
assert(aggregate_data != nullptr);
}
else
{
/// Add only if the key already exists.
auto find_result = state.findKey(method.data, i, *aggregates_pool);
if (find_result.isFound())
aggregate_data = find_result.getMapped();
else
aggregate_data = overflow_row;
}
places[i] = aggregate_data;
}
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
{
std::vector<ColumnData> columns_data;
for (size_t i = 0; i < aggregate_functions.size(); ++i)
{
if (!is_aggregate_function_compiled[i])
continue;
AggregateFunctionInstruction * inst = aggregate_instructions + i;
size_t arguments_size = inst->that->getArgumentTypes().size(); // NOLINT
for (size_t argument_index = 0; argument_index < arguments_size; ++argument_index)
columns_data.emplace_back(getColumnData(inst->batch_arguments[argument_index]));
}
auto add_into_aggregate_states_function = compiled_aggregate_functions_holder->compiled_aggregate_functions.add_into_aggregate_states_function;
add_into_aggregate_states_function(row_begin, row_end, columns_data.data(), places.get());
}
#endif
/// Add values to the aggregate functions.
for (size_t i = 0; i < aggregate_functions.size(); ++i)
{
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
if (is_aggregate_function_compiled[i])
continue;
#endif
AggregateFunctionInstruction * inst = aggregate_instructions + i;
if (inst->offsets)
inst->batch_that->addBatchArray(row_begin, row_end, places.get(), inst->state_offset, inst->batch_arguments, inst->offsets, aggregates_pool);
else if (inst->has_sparse_arguments)
inst->batch_that->addBatchSparse(row_begin, row_end, places.get(), inst->state_offset, inst->batch_arguments, aggregates_pool);
else
inst->batch_that->addBatch(row_begin, row_end, places.get(), inst->state_offset, inst->batch_arguments, aggregates_pool);
}
}
template <bool use_compiled_functions>
void NO_INLINE Aggregator::executeWithoutKeyImpl(
AggregatedDataWithoutKey & res,
size_t row_begin, size_t row_end,
AggregateFunctionInstruction * aggregate_instructions,
Arena * arena) const
{
if (row_begin == row_end)
return;
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
{
std::vector<ColumnData> columns_data;
for (size_t i = 0; i < aggregate_functions.size(); ++i)
{
if (!is_aggregate_function_compiled[i])
continue;
AggregateFunctionInstruction * inst = aggregate_instructions + i;
size_t arguments_size = inst->that->getArgumentTypes().size();
for (size_t argument_index = 0; argument_index < arguments_size; ++argument_index)
{
columns_data.emplace_back(getColumnData(inst->batch_arguments[argument_index]));
}
}
auto add_into_aggregate_states_function_single_place = compiled_aggregate_functions_holder->compiled_aggregate_functions.add_into_aggregate_states_function_single_place;
add_into_aggregate_states_function_single_place(row_begin, row_end, columns_data.data(), res);
#if defined(MEMORY_SANITIZER)
/// We compile only functions that do not allocate some data in Arena. Only store necessary state in AggregateData place.
for (size_t aggregate_function_index = 0; aggregate_function_index < aggregate_functions.size(); ++aggregate_function_index)
{
if (!is_aggregate_function_compiled[aggregate_function_index])
continue;
auto aggregate_data_with_offset = res + offsets_of_aggregate_states[aggregate_function_index];
auto data_size = params.aggregates[aggregate_function_index].function->sizeOfData();
__msan_unpoison(aggregate_data_with_offset, data_size);
}
#endif
}
#endif
/// Adding values
for (size_t i = 0; i < aggregate_functions.size(); ++i)
{
AggregateFunctionInstruction * inst = aggregate_instructions + i;
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
if (is_aggregate_function_compiled[i])
continue;
#endif
if (inst->offsets)
inst->batch_that->addBatchSinglePlace(
inst->offsets[static_cast<ssize_t>(row_begin) - 1],
inst->offsets[row_end - 1],
res + inst->state_offset,
inst->batch_arguments,
arena);
else if (inst->has_sparse_arguments)
inst->batch_that->addBatchSparseSinglePlace(
row_begin, row_end,
res + inst->state_offset,
inst->batch_arguments,
arena);
else
inst->batch_that->addBatchSinglePlace(
row_begin, row_end,
res + inst->state_offset,
inst->batch_arguments,
arena);
}
}
void NO_INLINE Aggregator::executeOnIntervalWithoutKeyImpl(
AggregatedDataVariants & data_variants,
size_t row_begin,
size_t row_end,
AggregateFunctionInstruction * aggregate_instructions) const
{
/// `data_variants` will destroy the states of aggregate functions in the destructor
data_variants.aggregator = this;
data_variants.init(AggregatedDataVariants::Type::without_key);
AggregatedDataWithoutKey & res = data_variants.without_key;
/// Adding values
for (AggregateFunctionInstruction * inst = aggregate_instructions; inst->that; ++inst)
{
if (inst->offsets)
inst->batch_that->addBatchSinglePlaceFromInterval(
inst->offsets[static_cast<ssize_t>(row_begin) - 1],
inst->offsets[row_end - 1],
res + inst->state_offset,
inst->batch_arguments, data_variants.aggregates_pool);
else
inst->batch_that->addBatchSinglePlaceFromInterval(
row_begin,
row_end,
res + inst->state_offset,
inst->batch_arguments,
data_variants.aggregates_pool);
}
}
void NO_INLINE Aggregator::mergeOnIntervalWithoutKeyImpl(
AggregatedDataVariants & data_variants,
size_t row_begin,
size_t row_end,
const AggregateColumnsConstData & aggregate_columns_data) const
{
/// `data_variants` will destroy the states of aggregate functions in the destructor
data_variants.aggregator = this;
data_variants.init(AggregatedDataVariants::Type::without_key);
mergeWithoutKeyStreamsImpl(data_variants, row_begin, row_end, aggregate_columns_data);
}
void Aggregator::prepareAggregateInstructions(
Columns columns,
AggregateColumns & aggregate_columns,
Columns & materialized_columns,
AggregateFunctionInstructions & aggregate_functions_instructions,
NestedColumnsHolder & nested_columns_holder) const
{
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_columns[i].resize(params.aggregates[i].argument_names.size());
aggregate_functions_instructions.resize(params.aggregates_size + 1);
aggregate_functions_instructions[params.aggregates_size].that = nullptr;
for (size_t i = 0; i < params.aggregates_size; ++i)
{
bool allow_sparse_arguments = aggregate_columns[i].size() == 1;
bool has_sparse_arguments = false;
for (size_t j = 0; j < aggregate_columns[i].size(); ++j)
{
const auto pos = header.getPositionByName(params.aggregates[i].argument_names[j]);
materialized_columns.push_back(columns.at(pos)->convertToFullColumnIfConst());
aggregate_columns[i][j] = materialized_columns.back().get();
auto full_column = allow_sparse_arguments
? aggregate_columns[i][j]->getPtr()
: recursiveRemoveSparse(aggregate_columns[i][j]->getPtr());
full_column = recursiveRemoveLowCardinality(full_column);
if (full_column.get() != aggregate_columns[i][j])
{
materialized_columns.emplace_back(std::move(full_column));
aggregate_columns[i][j] = materialized_columns.back().get();
}
if (aggregate_columns[i][j]->isSparse())
has_sparse_arguments = true;
}
aggregate_functions_instructions[i].has_sparse_arguments = has_sparse_arguments;
aggregate_functions_instructions[i].arguments = aggregate_columns[i].data();
aggregate_functions_instructions[i].state_offset = offsets_of_aggregate_states[i];
const auto * that = aggregate_functions[i];
/// Unnest consecutive trailing -State combinators
while (const auto * func = typeid_cast<const AggregateFunctionState *>(that))
that = func->getNestedFunction().get();
aggregate_functions_instructions[i].that = that;
if (const auto * func = typeid_cast<const AggregateFunctionArray *>(that))
{
/// Unnest consecutive -State combinators before -Array
that = func->getNestedFunction().get();
while (const auto * nested_func = typeid_cast<const AggregateFunctionState *>(that))
that = nested_func->getNestedFunction().get();
auto [nested_columns, offsets] = checkAndGetNestedArrayOffset(aggregate_columns[i].data(), that->getArgumentTypes().size());
nested_columns_holder.push_back(std::move(nested_columns));
aggregate_functions_instructions[i].batch_arguments = nested_columns_holder.back().data();
aggregate_functions_instructions[i].offsets = offsets;
}
else
aggregate_functions_instructions[i].batch_arguments = aggregate_columns[i].data();
aggregate_functions_instructions[i].batch_that = that;
}
}
bool Aggregator::executeOnBlock(const Block & block,
AggregatedDataVariants & result,
ColumnRawPtrs & key_columns,
AggregateColumns & aggregate_columns,
bool & no_more_keys) const
{
return executeOnBlock(block.getColumns(),
/* row_begin= */ 0, block.rows(),
result,
key_columns,
aggregate_columns,
no_more_keys);
}
bool Aggregator::executeOnBlock(Columns columns,
size_t row_begin, size_t row_end,
AggregatedDataVariants & result,
ColumnRawPtrs & key_columns,
AggregateColumns & aggregate_columns,
bool & no_more_keys) const
{
/// `result` will destroy the states of aggregate functions in the destructor
result.aggregator = this;
/// How to perform the aggregation?
if (result.empty())
{
initDataVariantsWithSizeHint(result, method_chosen, params);
result.keys_size = params.keys_size;
result.key_sizes = key_sizes;
LOG_TRACE(log, "Aggregation method: {}", result.getMethodName());
}
/** Constant columns are not supported directly during aggregation.
* To make them work anyway, we materialize them.
*/
Columns materialized_columns;
/// Remember the columns we will work with
for (size_t i = 0; i < params.keys_size; ++i)
{
materialized_columns.push_back(recursiveRemoveSparse(columns.at(keys_positions[i]))->convertToFullColumnIfConst());
key_columns[i] = materialized_columns.back().get();
if (!result.isLowCardinality())
{
auto column_no_lc = recursiveRemoveLowCardinality(key_columns[i]->getPtr());
if (column_no_lc.get() != key_columns[i])
{
materialized_columns.emplace_back(std::move(column_no_lc));
key_columns[i] = materialized_columns.back().get();
}
}
}
NestedColumnsHolder nested_columns_holder;
AggregateFunctionInstructions aggregate_functions_instructions;
prepareAggregateInstructions(columns, aggregate_columns, materialized_columns, aggregate_functions_instructions, nested_columns_holder);
if ((params.overflow_row || result.type == AggregatedDataVariants::Type::without_key) && !result.without_key)
{
AggregateDataPtr place = result.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
createAggregateStates(place);
result.without_key = place;
}
/// We select one of the aggregation methods and call it.
/// For the case when there are no keys (all aggregate into one row).
if (result.type == AggregatedDataVariants::Type::without_key)
{
/// TODO: Enable compilation after investigation
// #if USE_EMBEDDED_COMPILER
// if (compiled_aggregate_functions_holder)
// {
// executeWithoutKeyImpl<true>(result.without_key, row_begin, row_end, aggregate_functions_instructions.data(), result.aggregates_pool);
// }
// else
// #endif
{
executeWithoutKeyImpl<false>(result.without_key, row_begin, row_end, aggregate_functions_instructions.data(), result.aggregates_pool);
}
}
else
{
/// This is where data is written that does not fit in `max_rows_to_group_by` with `group_by_overflow_mode = any`.
AggregateDataPtr overflow_row_ptr = params.overflow_row ? result.without_key : nullptr;
executeImpl(result, row_begin, row_end, key_columns, aggregate_functions_instructions.data(), no_more_keys, overflow_row_ptr);
}
size_t result_size = result.sizeWithoutOverflowRow();
Int64 current_memory_usage = 0;
if (auto * memory_tracker_child = CurrentThread::getMemoryTracker())
if (auto * memory_tracker = memory_tracker_child->getParent())
current_memory_usage = memory_tracker->get();
/// Here all the results in the sum are taken into account, from different threads.
auto result_size_bytes = current_memory_usage - memory_usage_before_aggregation;
bool worth_convert_to_two_level = worthConvertToTwoLevel(
params.group_by_two_level_threshold, result_size, params.group_by_two_level_threshold_bytes, result_size_bytes);
/** Converting to a two-level data structure.
* It allows you to make, in the subsequent, an effective merge - either economical from memory or parallel.
*/
if (result.isConvertibleToTwoLevel() && worth_convert_to_two_level)
result.convertToTwoLevel();
/// Checking the constraints.
if (!checkLimits(result_size, no_more_keys))
return false;
/** Flush data to disk if too much RAM is consumed.
* Data can only be flushed to disk if a two-level aggregation structure is used.
*/
if (params.max_bytes_before_external_group_by
&& result.isTwoLevel()
&& current_memory_usage > static_cast<Int64>(params.max_bytes_before_external_group_by)
&& worth_convert_to_two_level)
{
size_t size = current_memory_usage + params.min_free_disk_space;
writeToTemporaryFile(result, size);
}
return true;
}
void Aggregator::writeToTemporaryFile(AggregatedDataVariants & data_variants, size_t max_temp_file_size) const
{
if (!tmp_data)
throw Exception("Cannot write to temporary file because temporary file is not initialized", ErrorCodes::LOGICAL_ERROR);
Stopwatch watch;
size_t rows = data_variants.size();
auto & out_stream = tmp_data->createStream(getHeader(false), max_temp_file_size);
ProfileEvents::increment(ProfileEvents::ExternalAggregationWritePart);
LOG_DEBUG(log, "Writing part of aggregation data into temporary file {}", out_stream.path());
/// Flush only two-level data and possibly overflow data.
#define M(NAME) \
else if (data_variants.type == AggregatedDataVariants::Type::NAME) \
writeToTemporaryFileImpl(data_variants, *data_variants.NAME, out_stream);
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_TWO_LEVEL(M)
#undef M
else
throw Exception("Unknown aggregated data variant", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
/// NOTE Instead of freeing up memory and creating new hash tables and arenas, you can re-use the old ones.
data_variants.init(data_variants.type);
data_variants.aggregates_pools = Arenas(1, std::make_shared<Arena>());
data_variants.aggregates_pool = data_variants.aggregates_pools.back().get();
if (params.overflow_row || data_variants.type == AggregatedDataVariants::Type::without_key)
{
AggregateDataPtr place = data_variants.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
createAggregateStates(place);
data_variants.without_key = place;
}
auto stat = out_stream.finishWriting();
ProfileEvents::increment(ProfileEvents::ExternalAggregationCompressedBytes, stat.compressed_size);
ProfileEvents::increment(ProfileEvents::ExternalAggregationUncompressedBytes, stat.uncompressed_size);
ProfileEvents::increment(ProfileEvents::ExternalProcessingCompressedBytesTotal, stat.compressed_size);
ProfileEvents::increment(ProfileEvents::ExternalProcessingUncompressedBytesTotal, stat.uncompressed_size);
double elapsed_seconds = watch.elapsedSeconds();
double compressed_size = stat.compressed_size;
double uncompressed_size = stat.uncompressed_size;
LOG_DEBUG(log,
"Written part in {:.3f} sec., {} rows, {} uncompressed, {} compressed,"
" {:.3f} uncompressed bytes per row, {:.3f} compressed bytes per row, compression rate: {:.3f}"
" ({:.3f} rows/sec., {}/sec. uncompressed, {}/sec. compressed)",
elapsed_seconds,
rows,
ReadableSize(uncompressed_size),
ReadableSize(compressed_size),
static_cast<double>(uncompressed_size) / rows,
static_cast<double>(compressed_size) / rows,
static_cast<double>(uncompressed_size) / compressed_size,
static_cast<double>(rows) / elapsed_seconds,
ReadableSize(static_cast<double>(uncompressed_size) / elapsed_seconds),
ReadableSize(static_cast<double>(compressed_size) / elapsed_seconds));
}
template <typename Method>
Block Aggregator::convertOneBucketToBlock(
AggregatedDataVariants & data_variants,
Method & method,
Arena * arena,
bool final,
Int32 bucket) const
{
// Used in ConvertingAggregatedToChunksSource -> ConvertingAggregatedToChunksTransform (expects single chunk for each bucket_id).
constexpr bool return_single_block = true;
Block block = convertToBlockImpl<return_single_block>(
method, method.data.impls[bucket], arena, data_variants.aggregates_pools, final, method.data.impls[bucket].size());
block.info.bucket_num = static_cast<int>(bucket);
return block;
}
Block Aggregator::mergeAndConvertOneBucketToBlock(
ManyAggregatedDataVariants & variants,
Arena * arena,
bool final,
Int32 bucket,
std::atomic<bool> * is_cancelled) const
{
auto & merged_data = *variants[0];
auto method = merged_data.type;
Block block;
if (false) {} // NOLINT
#define M(NAME) \
else if (method == AggregatedDataVariants::Type::NAME) \
{ \
mergeBucketImpl<decltype(merged_data.NAME)::element_type>(variants, bucket, arena); \
if (is_cancelled && is_cancelled->load(std::memory_order_seq_cst)) \
return {}; \
block = convertOneBucketToBlock(merged_data, *merged_data.NAME, arena, final, bucket); \
}
APPLY_FOR_VARIANTS_TWO_LEVEL(M)
#undef M
return block;
}
template <typename Method>
void Aggregator::writeToTemporaryFileImpl(
AggregatedDataVariants & data_variants,
Method & method,
TemporaryFileStream & out) const
{
size_t max_temporary_block_size_rows = 0;
size_t max_temporary_block_size_bytes = 0;
auto update_max_sizes = [&](const Block & block)
{
size_t block_size_rows = block.rows();
size_t block_size_bytes = block.bytes();
if (block_size_rows > max_temporary_block_size_rows)
max_temporary_block_size_rows = block_size_rows;
if (block_size_bytes > max_temporary_block_size_bytes)
max_temporary_block_size_bytes = block_size_bytes;
};
for (UInt32 bucket = 0; bucket < Method::Data::NUM_BUCKETS; ++bucket)
{
Block block = convertOneBucketToBlock(data_variants, method, data_variants.aggregates_pool, false, bucket);
out.write(block);
update_max_sizes(block);
}
if (params.overflow_row)
{
Block block = prepareBlockAndFillWithoutKey(data_variants, false, true);
out.write(block);
update_max_sizes(block);
}
/// Pass ownership of the aggregate functions states:
/// `data_variants` will not destroy them in the destructor, they are now owned by ColumnAggregateFunction objects.
data_variants.aggregator = nullptr;
LOG_DEBUG(log, "Max size of temporary block: {} rows, {}.", max_temporary_block_size_rows, ReadableSize(max_temporary_block_size_bytes));
}
bool Aggregator::checkLimits(size_t result_size, bool & no_more_keys) const
{
if (!no_more_keys && params.max_rows_to_group_by && result_size > params.max_rows_to_group_by)
{
switch (params.group_by_overflow_mode)
{
case OverflowMode::THROW:
ProfileEvents::increment(ProfileEvents::OverflowThrow);
throw Exception("Limit for rows to GROUP BY exceeded: has " + toString(result_size)
+ " rows, maximum: " + toString(params.max_rows_to_group_by),
ErrorCodes::TOO_MANY_ROWS);
case OverflowMode::BREAK:
ProfileEvents::increment(ProfileEvents::OverflowBreak);
return false;
case OverflowMode::ANY:
ProfileEvents::increment(ProfileEvents::OverflowAny);
no_more_keys = true;
break;
}
}
/// Some aggregate functions cannot throw exceptions on allocations (e.g. from C malloc)
/// but still tracks memory. Check it here.
CurrentMemoryTracker::check();
return true;
}
template <bool return_single_block, typename Method, typename Table>
Aggregator::ConvertToBlockRes<return_single_block>
Aggregator::convertToBlockImpl(Method & method, Table & data, Arena * arena, Arenas & aggregates_pools, bool final, size_t rows) const
{
if (data.empty())
{
auto && out_cols = prepareOutputBlockColumns(params, aggregate_functions, getHeader(final), aggregates_pools, final, rows);
return {finalizeBlock(params, getHeader(final), std::move(out_cols), final, rows)};
}
ConvertToBlockRes<return_single_block> res;
if (final)
{
#if USE_EMBEDDED_COMPILER
if (compiled_aggregate_functions_holder)
{
static constexpr bool use_compiled_functions = !Method::low_cardinality_optimization;
res = convertToBlockImplFinal<Method, use_compiled_functions, return_single_block>(method, data, arena, aggregates_pools, rows);
}
else
#endif
{
res = convertToBlockImplFinal<Method, false, return_single_block>(method, data, arena, aggregates_pools, rows);
}
}
else
{
res = convertToBlockImplNotFinal<return_single_block>(method, data, aggregates_pools, rows);
}
/// In order to release memory early.
data.clearAndShrink();
return res;
}
template <typename Mapped>
inline void Aggregator::insertAggregatesIntoColumns(Mapped & mapped, MutableColumns & final_aggregate_columns, Arena * arena) const
{
/** Final values of aggregate functions are inserted to columns.
* Then states of aggregate functions, that are not longer needed, are destroyed.
*
* We mark already destroyed states with "nullptr" in data,
* so they will not be destroyed in destructor of Aggregator
* (other values will be destroyed in destructor in case of exception).
*
* But it becomes tricky, because we have multiple aggregate states pointed by a single pointer in data.
* So, if exception is thrown in the middle of moving states for different aggregate functions,
* we have to catch exceptions and destroy all the states that are no longer needed,
* to keep the data in consistent state.
*
* It is also tricky, because there are aggregate functions with "-State" modifier.
* When we call "insertResultInto" for them, they insert a pointer to the state to ColumnAggregateFunction
* and ColumnAggregateFunction will take ownership of this state.
* So, for aggregate functions with "-State" modifier, only states of all combinators that are used
* after -State will be destroyed after result has been transferred to ColumnAggregateFunction.
* For example, if we have function `uniqStateForEachMap` after aggregation we should destroy all states that
* were created by combinators `-ForEach` and `-Map`, because resulting ColumnAggregateFunction will be
* responsible only for destruction of the states created by `uniq` function.
* But we should mark that the data no longer owns these states.
*/
size_t insert_i = 0;
std::exception_ptr exception;
try
{
/// Insert final values of aggregate functions into columns.
for (; insert_i < params.aggregates_size; ++insert_i)
aggregate_functions[insert_i]->insertResultInto(
mapped + offsets_of_aggregate_states[insert_i],
*final_aggregate_columns[insert_i],
arena);
}
catch (...)
{
exception = std::current_exception();
}
/** Destroy states that are no longer needed. This loop does not throw.
*
* For functions with -State combinator we destroy only states of all combinators that are used
* after -State, because the ownership of the rest states is transferred to ColumnAggregateFunction
* and ColumnAggregateFunction will take care.
*
* But it's only for states that has been transferred to ColumnAggregateFunction
* before exception has been thrown;
*/
for (size_t destroy_i = 0; destroy_i < params.aggregates_size; ++destroy_i)
{
if (destroy_i < insert_i)
aggregate_functions[destroy_i]->destroyUpToState(mapped + offsets_of_aggregate_states[destroy_i]);
else
aggregate_functions[destroy_i]->destroy(mapped + offsets_of_aggregate_states[destroy_i]);
}
/// Mark the cell as destroyed so it will not be destroyed in destructor.
mapped = nullptr;
if (exception)
std::rethrow_exception(exception);
}
template <bool use_compiled_functions>
Block Aggregator::insertResultsIntoColumns(PaddedPODArray<AggregateDataPtr> & places, OutputBlockColumns && out_cols, Arena * arena) const
{
std::exception_ptr exception;
size_t aggregate_functions_destroy_index = 0;
try
{
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
{
/** For JIT compiled functions we need to resize columns before pass them into compiled code.
* insert_aggregates_into_columns_function function does not throw exception.
*/
std::vector<ColumnData> columns_data;
auto compiled_functions = compiled_aggregate_functions_holder->compiled_aggregate_functions;
for (size_t i = 0; i < params.aggregates_size; ++i)
{
if (!is_aggregate_function_compiled[i])
continue;
auto & final_aggregate_column = out_cols.final_aggregate_columns[i];
final_aggregate_column = final_aggregate_column->cloneResized(places.size());
columns_data.emplace_back(getColumnData(final_aggregate_column.get()));
}
auto insert_aggregates_into_columns_function = compiled_functions.insert_aggregates_into_columns_function;
insert_aggregates_into_columns_function(0, places.size(), columns_data.data(), places.data());
}
#endif
for (; aggregate_functions_destroy_index < params.aggregates_size;)
{
if constexpr (use_compiled_functions)
{
if (is_aggregate_function_compiled[aggregate_functions_destroy_index])
{
++aggregate_functions_destroy_index;
continue;
}
}
auto & final_aggregate_column = out_cols.final_aggregate_columns[aggregate_functions_destroy_index];
size_t offset = offsets_of_aggregate_states[aggregate_functions_destroy_index];
/** We increase aggregate_functions_destroy_index because by function contract if insertResultIntoBatch
* throws exception, it also must destroy all necessary states.
* Then code need to continue to destroy other aggregate function states with next function index.
*/
size_t destroy_index = aggregate_functions_destroy_index;
++aggregate_functions_destroy_index;
aggregate_functions[destroy_index]->insertResultIntoBatch(0, places.size(), places.data(), offset, *final_aggregate_column, arena);
}
}
catch (...)
{
exception = std::current_exception();
}
for (; aggregate_functions_destroy_index < params.aggregates_size; ++aggregate_functions_destroy_index)
{
if constexpr (use_compiled_functions)
{
if (is_aggregate_function_compiled[aggregate_functions_destroy_index])
{
++aggregate_functions_destroy_index;
continue;
}
}
size_t offset = offsets_of_aggregate_states[aggregate_functions_destroy_index];
aggregate_functions[aggregate_functions_destroy_index]->destroyBatch(0, places.size(), places.data(), offset);
}
if (exception)
std::rethrow_exception(exception);
return finalizeBlock(params, getHeader(/* final */ true), std::move(out_cols), /* final */ true, places.size());
}
template <typename Method, bool use_compiled_functions, bool return_single_block, typename Table>
Aggregator::ConvertToBlockRes<return_single_block> NO_INLINE
Aggregator::convertToBlockImplFinal(Method & method, Table & data, Arena * arena, Arenas & aggregates_pools, size_t) const
{
const size_t max_block_size = params.max_block_size;
const bool final = true;
ConvertToBlockRes<return_single_block> res;
std::optional<OutputBlockColumns> out_cols;
std::optional<Sizes> shuffled_key_sizes;
PaddedPODArray<AggregateDataPtr> places;
auto init_out_cols = [&]()
{
out_cols = prepareOutputBlockColumns(params, aggregate_functions, getHeader(final), aggregates_pools, final, max_block_size);
if constexpr (Method::low_cardinality_optimization)
{
if (data.hasNullKeyData())
{
out_cols->key_columns[0]->insertDefault();
insertAggregatesIntoColumns(data.getNullKeyData(), out_cols->final_aggregate_columns, arena);
data.hasNullKeyData() = false;
}
}
shuffled_key_sizes = method.shuffleKeyColumns(out_cols->raw_key_columns, key_sizes);
places.reserve(max_block_size);
};
// should be invoked at least once, because null data might be the only content of the `data`
init_out_cols();
data.forEachValue(
[&](const auto & key, auto & mapped)
{
if (!out_cols.has_value())
init_out_cols();
const auto & key_sizes_ref = shuffled_key_sizes ? *shuffled_key_sizes : key_sizes;
method.insertKeyIntoColumns(key, out_cols->raw_key_columns, key_sizes_ref);
places.emplace_back(mapped);
/// Mark the cell as destroyed so it will not be destroyed in destructor.
mapped = nullptr;
if constexpr (!return_single_block)
{
if (places.size() >= max_block_size)
{
res.emplace_back(insertResultsIntoColumns<use_compiled_functions>(places, std::move(out_cols.value()), arena));
places.clear();
out_cols.reset();
}
}
});
if constexpr (return_single_block)
{
return insertResultsIntoColumns<use_compiled_functions>(places, std::move(out_cols.value()), arena);
}
else
{
if (out_cols.has_value())
res.emplace_back(insertResultsIntoColumns<use_compiled_functions>(places, std::move(out_cols.value()), arena));
return res;
}
}
template <bool return_single_block, typename Method, typename Table>
Aggregator::ConvertToBlockRes<return_single_block> NO_INLINE
Aggregator::convertToBlockImplNotFinal(Method & method, Table & data, Arenas & aggregates_pools, size_t) const
{
const size_t max_block_size = params.max_block_size;
const bool final = false;
ConvertToBlockRes<return_single_block> res;
std::optional<OutputBlockColumns> out_cols;
std::optional<Sizes> shuffled_key_sizes;
auto init_out_cols = [&]()
{
out_cols = prepareOutputBlockColumns(params, aggregate_functions, getHeader(final), aggregates_pools, final, max_block_size);
if constexpr (Method::low_cardinality_optimization)
{
if (data.hasNullKeyData())
{
out_cols->raw_key_columns[0]->insertDefault();
for (size_t i = 0; i < params.aggregates_size; ++i)
out_cols->aggregate_columns_data[i]->push_back(data.getNullKeyData() + offsets_of_aggregate_states[i]);
data.getNullKeyData() = nullptr;
data.hasNullKeyData() = false;
}
}
shuffled_key_sizes = method.shuffleKeyColumns(out_cols->raw_key_columns, key_sizes);
};
// should be invoked at least once, because null data might be the only content of the `data`
init_out_cols();
size_t rows_in_current_block = 0;
data.forEachValue(
[&](const auto & key, auto & mapped)
{
if (!out_cols.has_value())
init_out_cols();
const auto & key_sizes_ref = shuffled_key_sizes ? *shuffled_key_sizes : key_sizes;
method.insertKeyIntoColumns(key, out_cols->raw_key_columns, key_sizes_ref);
/// reserved, so push_back does not throw exceptions
for (size_t i = 0; i < params.aggregates_size; ++i)
out_cols->aggregate_columns_data[i]->push_back(mapped + offsets_of_aggregate_states[i]);
mapped = nullptr;
++rows_in_current_block;
if constexpr (!return_single_block)
{
if (rows_in_current_block >= max_block_size)
{
res.emplace_back(finalizeBlock(params, getHeader(final), std::move(out_cols.value()), final, rows_in_current_block));
out_cols.reset();
rows_in_current_block = 0;
}
}
});
if constexpr (return_single_block)
{
return finalizeBlock(params, getHeader(final), std::move(out_cols).value(), final, rows_in_current_block);
}
else
{
if (rows_in_current_block)
res.emplace_back(finalizeBlock(params, getHeader(final), std::move(out_cols).value(), final, rows_in_current_block));
return res;
}
return res;
}
void Aggregator::addSingleKeyToAggregateColumns(
AggregatedDataVariants & data_variants,
MutableColumns & aggregate_columns) const
{
auto & data = data_variants.without_key;
size_t i = 0;
try
{
for (i = 0; i < params.aggregates_size; ++i)
{
auto & column_aggregate_func = assert_cast<ColumnAggregateFunction &>(*aggregate_columns[i]);
column_aggregate_func.getData().push_back(data + offsets_of_aggregate_states[i]);
}
}
catch (...)
{
/// Rollback
for (size_t rollback_i = 0; rollback_i < i; ++rollback_i)
{
auto & column_aggregate_func = assert_cast<ColumnAggregateFunction &>(*aggregate_columns[rollback_i]);
column_aggregate_func.getData().pop_back();
}
throw;
}
data = nullptr;
}
void Aggregator::addArenasToAggregateColumns(
const AggregatedDataVariants & data_variants,
MutableColumns & aggregate_columns) const
{
for (size_t i = 0; i < params.aggregates_size; ++i)
{
auto & column_aggregate_func = assert_cast<ColumnAggregateFunction &>(*aggregate_columns[i]);
for (const auto & pool : data_variants.aggregates_pools)
column_aggregate_func.addArena(pool);
}
}
void Aggregator::createStatesAndFillKeyColumnsWithSingleKey(
AggregatedDataVariants & data_variants,
Columns & key_columns,
size_t key_row,
MutableColumns & final_key_columns) const
{
AggregateDataPtr place = data_variants.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
createAggregateStates(place);
data_variants.without_key = place;
for (size_t i = 0; i < params.keys_size; ++i)
{
final_key_columns[i]->insertFrom(*key_columns[i].get(), key_row);
}
}
Block Aggregator::prepareBlockAndFillWithoutKey(AggregatedDataVariants & data_variants, bool final, bool is_overflows) const
{
size_t rows = 1;
auto && out_cols
= prepareOutputBlockColumns(params, aggregate_functions, getHeader(final), data_variants.aggregates_pools, final, rows);
auto && [key_columns, raw_key_columns, aggregate_columns, final_aggregate_columns, aggregate_columns_data] = out_cols;
if (data_variants.type == AggregatedDataVariants::Type::without_key || params.overflow_row)
{
AggregatedDataWithoutKey & data = data_variants.without_key;
if (!data)
throw Exception("Wrong data variant passed.", ErrorCodes::LOGICAL_ERROR);
if (!final)
{
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_columns_data[i]->push_back(data + offsets_of_aggregate_states[i]);
data = nullptr;
}
else
{
/// Always single-thread. It's safe to pass current arena from 'aggregates_pool'.
insertAggregatesIntoColumns(data, final_aggregate_columns, data_variants.aggregates_pool);
}
if (params.overflow_row)
for (size_t i = 0; i < params.keys_size; ++i)
key_columns[i]->insertDefault();
}
Block block = finalizeBlock(params, getHeader(final), std::move(out_cols), final, rows);
if (is_overflows)
block.info.is_overflows = true;
if (final)
destroyWithoutKey(data_variants);
return block;
}
template <bool return_single_block>
Aggregator::ConvertToBlockRes<return_single_block>
Aggregator::prepareBlockAndFillSingleLevel(AggregatedDataVariants & data_variants, bool final) const
{
const size_t rows = data_variants.sizeWithoutOverflowRow();
#define M(NAME) \
else if (data_variants.type == AggregatedDataVariants::Type::NAME) \
{ \
return convertToBlockImpl<return_single_block>( \
*data_variants.NAME, data_variants.NAME->data, data_variants.aggregates_pool, data_variants.aggregates_pools, final, rows); \
}
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_SINGLE_LEVEL(M)
#undef M
else throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
BlocksList Aggregator::prepareBlocksAndFillTwoLevel(AggregatedDataVariants & data_variants, bool final, ThreadPool * thread_pool) const
{
#define M(NAME) \
else if (data_variants.type == AggregatedDataVariants::Type::NAME) \
return prepareBlocksAndFillTwoLevelImpl(data_variants, *data_variants.NAME, final, thread_pool);
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_TWO_LEVEL(M)
#undef M
else
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
template <typename Method>
BlocksList Aggregator::prepareBlocksAndFillTwoLevelImpl(
AggregatedDataVariants & data_variants,
Method & method,
bool final,
ThreadPool * thread_pool) const
{
size_t max_threads = thread_pool ? thread_pool->getMaxThreads() : 1;
if (max_threads > data_variants.aggregates_pools.size())
for (size_t i = data_variants.aggregates_pools.size(); i < max_threads; ++i)
data_variants.aggregates_pools.push_back(std::make_shared<Arena>());
std::atomic<UInt32> next_bucket_to_merge = 0;
auto converter = [&](size_t thread_id, ThreadGroupStatusPtr thread_group)
{
SCOPE_EXIT_SAFE(
if (thread_group)
CurrentThread::detachQueryIfNotDetached();
);
if (thread_group)
CurrentThread::attachToIfDetached(thread_group);
BlocksList blocks;
while (true)
{
UInt32 bucket = next_bucket_to_merge.fetch_add(1);
if (bucket >= Method::Data::NUM_BUCKETS)
break;
if (method.data.impls[bucket].empty())
continue;
/// Select Arena to avoid race conditions
Arena * arena = data_variants.aggregates_pools.at(thread_id).get();
blocks.emplace_back(convertOneBucketToBlock(data_variants, method, arena, final, bucket));
}
return blocks;
};
/// packaged_task is used to ensure that exceptions are automatically thrown into the main stream.
std::vector<std::packaged_task<BlocksList()>> tasks(max_threads);
try
{
for (size_t thread_id = 0; thread_id < max_threads; ++thread_id)
{
tasks[thread_id] = std::packaged_task<BlocksList()>(
[group = CurrentThread::getGroup(), thread_id, &converter] { return converter(thread_id, group); });
if (thread_pool)
thread_pool->scheduleOrThrowOnError([thread_id, &tasks] { tasks[thread_id](); });
else
tasks[thread_id]();
}
}
catch (...)
{
/// If this is not done, then in case of an exception, tasks will be destroyed before the threads are completed, and it will be bad.
if (thread_pool)
thread_pool->wait();
throw;
}
if (thread_pool)
thread_pool->wait();
BlocksList blocks;
for (auto & task : tasks)
{
if (!task.valid())
continue;
blocks.splice(blocks.end(), task.get_future().get());
}
return blocks;
}
BlocksList Aggregator::convertToBlocks(AggregatedDataVariants & data_variants, bool final, size_t max_threads) const
{
LOG_TRACE(log, "Converting aggregated data to blocks");
Stopwatch watch;
BlocksList blocks;
/// In what data structure is the data aggregated?
if (data_variants.empty())
return blocks;
std::unique_ptr<ThreadPool> thread_pool;
if (max_threads > 1 && data_variants.sizeWithoutOverflowRow() > 100000 /// TODO Make a custom threshold.
&& data_variants.isTwoLevel()) /// TODO Use the shared thread pool with the `merge` function.
thread_pool = std::make_unique<ThreadPool>(max_threads);
if (data_variants.without_key)
blocks.emplace_back(prepareBlockAndFillWithoutKey(
data_variants, final, data_variants.type != AggregatedDataVariants::Type::without_key));
if (data_variants.type != AggregatedDataVariants::Type::without_key)
{
if (!data_variants.isTwoLevel())
blocks.splice(blocks.end(), prepareBlockAndFillSingleLevel</* return_single_block */ false>(data_variants, final));
else
blocks.splice(blocks.end(), prepareBlocksAndFillTwoLevel(data_variants, final, thread_pool.get()));
}
if (!final)
{
/// data_variants will not destroy the states of aggregate functions in the destructor.
/// Now ColumnAggregateFunction owns the states.
data_variants.aggregator = nullptr;
}
size_t rows = 0;
size_t bytes = 0;
for (const auto & block : blocks)
{
rows += block.rows();
bytes += block.bytes();
}
double elapsed_seconds = watch.elapsedSeconds();
LOG_DEBUG(log,
"Converted aggregated data to blocks. {} rows, {} in {} sec. ({:.3f} rows/sec., {}/sec.)",
rows, ReadableSize(bytes),
elapsed_seconds, rows / elapsed_seconds,
ReadableSize(bytes / elapsed_seconds));
return blocks;
}
template <typename Method, typename Table>
void NO_INLINE Aggregator::mergeDataNullKey(
Table & table_dst,
Table & table_src,
Arena * arena) const
{
if constexpr (Method::low_cardinality_optimization)
{
if (table_src.hasNullKeyData())
{
if (!table_dst.hasNullKeyData())
{
table_dst.hasNullKeyData() = true;
table_dst.getNullKeyData() = table_src.getNullKeyData();
}
else
{
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->merge(
table_dst.getNullKeyData() + offsets_of_aggregate_states[i],
table_src.getNullKeyData() + offsets_of_aggregate_states[i],
arena);
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(
table_src.getNullKeyData() + offsets_of_aggregate_states[i]);
}
table_src.hasNullKeyData() = false;
table_src.getNullKeyData() = nullptr;
}
}
}
template <typename Method, bool use_compiled_functions, bool prefetch, typename Table>
void NO_INLINE Aggregator::mergeDataImpl(Table & table_dst, Table & table_src, Arena * arena) const
{
if constexpr (Method::low_cardinality_optimization)
mergeDataNullKey<Method, Table>(table_dst, table_src, arena);
auto merge = [&](AggregateDataPtr & __restrict dst, AggregateDataPtr & __restrict src, bool inserted)
{
if (!inserted)
{
#if USE_EMBEDDED_COMPILER
if constexpr (use_compiled_functions)
{
const auto & compiled_functions = compiled_aggregate_functions_holder->compiled_aggregate_functions;
compiled_functions.merge_aggregate_states_function(dst, src);
if (compiled_aggregate_functions_holder->compiled_aggregate_functions.functions_count != params.aggregates_size)
{
for (size_t i = 0; i < params.aggregates_size; ++i)
{
if (!is_aggregate_function_compiled[i])
aggregate_functions[i]->merge(
dst + offsets_of_aggregate_states[i], src + offsets_of_aggregate_states[i], arena);
}
for (size_t i = 0; i < params.aggregates_size; ++i)
{
if (!is_aggregate_function_compiled[i])
aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]);
}
}
}
else
#endif
{
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->merge(dst + offsets_of_aggregate_states[i], src + offsets_of_aggregate_states[i], arena);
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]);
}
}
else
{
dst = src;
}
src = nullptr;
};
table_src.template mergeToViaEmplace<decltype(merge), prefetch>(table_dst, std::move(merge));
table_src.clearAndShrink();
}
template <typename Method, typename Table>
void NO_INLINE Aggregator::mergeDataNoMoreKeysImpl(
Table & table_dst,
AggregatedDataWithoutKey & overflows,
Table & table_src,
Arena * arena) const
{
/// Note : will create data for NULL key if not exist
if constexpr (Method::low_cardinality_optimization)
mergeDataNullKey<Method, Table>(table_dst, table_src, arena);
table_src.mergeToViaFind(table_dst, [&](AggregateDataPtr dst, AggregateDataPtr & src, bool found)
{
AggregateDataPtr res_data = found ? dst : overflows;
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->merge(
res_data + offsets_of_aggregate_states[i],
src + offsets_of_aggregate_states[i],
arena);
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]);
src = nullptr;
});
table_src.clearAndShrink();
}
template <typename Method, typename Table>
void NO_INLINE Aggregator::mergeDataOnlyExistingKeysImpl(
Table & table_dst,
Table & table_src,
Arena * arena) const
{
/// Note : will create data for NULL key if not exist
if constexpr (Method::low_cardinality_optimization)
mergeDataNullKey<Method, Table>(table_dst, table_src, arena);
table_src.mergeToViaFind(table_dst,
[&](AggregateDataPtr dst, AggregateDataPtr & src, bool found)
{
if (!found)
return;
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->merge(
dst + offsets_of_aggregate_states[i],
src + offsets_of_aggregate_states[i],
arena);
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(src + offsets_of_aggregate_states[i]);
src = nullptr;
});
table_src.clearAndShrink();
}
void NO_INLINE Aggregator::mergeWithoutKeyDataImpl(
ManyAggregatedDataVariants & non_empty_data) const
{
ThreadPool thread_pool{params.max_threads};
AggregatedDataVariantsPtr & res = non_empty_data[0];
/// We merge all aggregation results to the first.
for (size_t result_num = 1, size = non_empty_data.size(); result_num < size; ++result_num)
{
AggregatedDataWithoutKey & res_data = res->without_key;
AggregatedDataWithoutKey & current_data = non_empty_data[result_num]->without_key;
for (size_t i = 0; i < params.aggregates_size; ++i)
if (aggregate_functions[i]->isAbleToParallelizeMerge())
aggregate_functions[i]->merge(
res_data + offsets_of_aggregate_states[i],
current_data + offsets_of_aggregate_states[i],
thread_pool,
res->aggregates_pool);
else
aggregate_functions[i]->merge(
res_data + offsets_of_aggregate_states[i], current_data + offsets_of_aggregate_states[i], res->aggregates_pool);
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(current_data + offsets_of_aggregate_states[i]);
current_data = nullptr;
}
}
template <typename Method>
void NO_INLINE Aggregator::mergeSingleLevelDataImpl(
ManyAggregatedDataVariants & non_empty_data) const
{
AggregatedDataVariantsPtr & res = non_empty_data[0];
bool no_more_keys = false;
const bool prefetch = Method::State::has_cheap_key_calculation && params.enable_prefetch
&& (getDataVariant<Method>(*res).data.getBufferSizeInBytes() > min_bytes_for_prefetch);
/// We merge all aggregation results to the first.
for (size_t result_num = 1, size = non_empty_data.size(); result_num < size; ++result_num)
{
if (!checkLimits(res->sizeWithoutOverflowRow(), no_more_keys))
break;
AggregatedDataVariants & current = *non_empty_data[result_num];
if (!no_more_keys)
{
#if USE_EMBEDDED_COMPILER
if (compiled_aggregate_functions_holder)
{
if (prefetch)
mergeDataImpl<Method, true, true>(
getDataVariant<Method>(*res).data, getDataVariant<Method>(current).data, res->aggregates_pool);
else
mergeDataImpl<Method, true, false>(
getDataVariant<Method>(*res).data, getDataVariant<Method>(current).data, res->aggregates_pool);
}
else
#endif
{
if (prefetch)
mergeDataImpl<Method, false, true>(
getDataVariant<Method>(*res).data, getDataVariant<Method>(current).data, res->aggregates_pool);
else
mergeDataImpl<Method, false, false>(
getDataVariant<Method>(*res).data, getDataVariant<Method>(current).data, res->aggregates_pool);
}
}
else if (res->without_key)
{
mergeDataNoMoreKeysImpl<Method>(
getDataVariant<Method>(*res).data,
res->without_key,
getDataVariant<Method>(current).data,
res->aggregates_pool);
}
else
{
mergeDataOnlyExistingKeysImpl<Method>(
getDataVariant<Method>(*res).data,
getDataVariant<Method>(current).data,
res->aggregates_pool);
}
/// `current` will not destroy the states of aggregate functions in the destructor
current.aggregator = nullptr;
}
}
#define M(NAME) \
template void NO_INLINE Aggregator::mergeSingleLevelDataImpl<decltype(AggregatedDataVariants::NAME)::element_type>( \
ManyAggregatedDataVariants & non_empty_data) const;
APPLY_FOR_VARIANTS_SINGLE_LEVEL(M)
#undef M
template <typename Method>
void NO_INLINE Aggregator::mergeBucketImpl(
ManyAggregatedDataVariants & data, Int32 bucket, Arena * arena, std::atomic<bool> * is_cancelled) const
{
/// We merge all aggregation results to the first.
AggregatedDataVariantsPtr & res = data[0];
const bool prefetch = Method::State::has_cheap_key_calculation && params.enable_prefetch
&& (Method::Data::NUM_BUCKETS * getDataVariant<Method>(*res).data.impls[bucket].getBufferSizeInBytes() > min_bytes_for_prefetch);
for (size_t result_num = 1, size = data.size(); result_num < size; ++result_num)
{
if (is_cancelled && is_cancelled->load(std::memory_order_seq_cst))
return;
AggregatedDataVariants & current = *data[result_num];
#if USE_EMBEDDED_COMPILER
if (compiled_aggregate_functions_holder)
{
if (prefetch)
mergeDataImpl<Method, true, true>(
getDataVariant<Method>(*res).data.impls[bucket], getDataVariant<Method>(current).data.impls[bucket], arena);
else
mergeDataImpl<Method, true, false>(
getDataVariant<Method>(*res).data.impls[bucket], getDataVariant<Method>(current).data.impls[bucket], arena);
}
else
#endif
{
if (prefetch)
mergeDataImpl<Method, false, true>(
getDataVariant<Method>(*res).data.impls[bucket], getDataVariant<Method>(current).data.impls[bucket], arena);
else
mergeDataImpl<Method, false, false>(
getDataVariant<Method>(*res).data.impls[bucket], getDataVariant<Method>(current).data.impls[bucket], arena);
}
}
}
ManyAggregatedDataVariants Aggregator::prepareVariantsToMerge(ManyAggregatedDataVariants & data_variants) const
{
if (data_variants.empty())
throw Exception("Empty data passed to Aggregator::prepareVariantsToMerge.", ErrorCodes::EMPTY_DATA_PASSED);
LOG_TRACE(log, "Merging aggregated data");
if (params.stats_collecting_params.isCollectionAndUseEnabled())
updateStatistics(data_variants, params.stats_collecting_params);
ManyAggregatedDataVariants non_empty_data;
non_empty_data.reserve(data_variants.size());
for (auto & data : data_variants)
if (!data->empty())
non_empty_data.push_back(data);
if (non_empty_data.empty())
return {};
if (non_empty_data.size() > 1)
{
/// Sort the states in descending order so that the merge is more efficient (since all states are merged into the first).
::sort(non_empty_data.begin(), non_empty_data.end(),
[](const AggregatedDataVariantsPtr & lhs, const AggregatedDataVariantsPtr & rhs)
{
return lhs->sizeWithoutOverflowRow() > rhs->sizeWithoutOverflowRow();
});
}
/// If at least one of the options is two-level, then convert all the options into two-level ones, if there are not such.
/// Note - perhaps it would be more optimal not to convert single-level versions before the merge, but merge them separately, at the end.
bool has_at_least_one_two_level = false;
for (const auto & variant : non_empty_data)
{
if (variant->isTwoLevel())
{
has_at_least_one_two_level = true;
break;
}
}
if (has_at_least_one_two_level)
for (auto & variant : non_empty_data)
if (!variant->isTwoLevel())
variant->convertToTwoLevel();
AggregatedDataVariantsPtr & first = non_empty_data[0];
for (size_t i = 1, size = non_empty_data.size(); i < size; ++i)
{
if (first->type != non_empty_data[i]->type)
throw Exception("Cannot merge different aggregated data variants.", ErrorCodes::CANNOT_MERGE_DIFFERENT_AGGREGATED_DATA_VARIANTS);
/** Elements from the remaining sets can be moved to the first data set.
* Therefore, it must own all the arenas of all other sets.
*/
first->aggregates_pools.insert(first->aggregates_pools.end(),
non_empty_data[i]->aggregates_pools.begin(), non_empty_data[i]->aggregates_pools.end());
}
return non_empty_data;
}
template <bool no_more_keys, typename Method, typename Table>
void NO_INLINE Aggregator::mergeStreamsImplCase(
Arena * aggregates_pool,
Method & method [[maybe_unused]],
Table & data,
AggregateDataPtr overflow_row,
size_t row_begin,
size_t row_end,
const AggregateColumnsConstData & aggregate_columns_data,
const ColumnRawPtrs & key_columns,
Arena * arena_for_keys) const
{
typename Method::State state(key_columns, key_sizes, aggregation_state_cache);
std::unique_ptr<AggregateDataPtr[]> places(new AggregateDataPtr[row_end]);
if (!arena_for_keys)
arena_for_keys = aggregates_pool;
for (size_t i = row_begin; i < row_end; ++i)
{
AggregateDataPtr aggregate_data = nullptr;
if (!no_more_keys)
{
auto emplace_result = state.emplaceKey(data, i, *arena_for_keys); // NOLINT
if (emplace_result.isInserted())
{
emplace_result.setMapped(nullptr);
aggregate_data = aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
createAggregateStates(aggregate_data);
emplace_result.setMapped(aggregate_data);
}
else
aggregate_data = emplace_result.getMapped();
}
else
{
auto find_result = state.findKey(data, i, *arena_for_keys);
if (find_result.isFound())
aggregate_data = find_result.getMapped();
}
/// aggregate_date == nullptr means that the new key did not fit in the hash table because of no_more_keys.
AggregateDataPtr value = aggregate_data ? aggregate_data : overflow_row;
places[i] = value;
}
for (size_t j = 0; j < params.aggregates_size; ++j)
{
/// Merge state of aggregate functions.
aggregate_functions[j]->mergeBatch(
row_begin, row_end,
places.get(), offsets_of_aggregate_states[j],
aggregate_columns_data[j]->data(),
aggregates_pool);
}
}
template <typename Method, typename Table>
void NO_INLINE Aggregator::mergeStreamsImpl(
Block block,
Arena * aggregates_pool,
Method & method,
Table & data,
AggregateDataPtr overflow_row,
bool no_more_keys,
Arena * arena_for_keys) const
{
const AggregateColumnsConstData & aggregate_columns_data = params.makeAggregateColumnsData(block);
const ColumnRawPtrs & key_columns = params.makeRawKeyColumns(block);
mergeStreamsImpl<Method, Table>(
aggregates_pool, method, data, overflow_row, no_more_keys, 0, block.rows(), aggregate_columns_data, key_columns, arena_for_keys);
}
template <typename Method, typename Table>
void NO_INLINE Aggregator::mergeStreamsImpl(
Arena * aggregates_pool,
Method & method,
Table & data,
AggregateDataPtr overflow_row,
bool no_more_keys,
size_t row_begin,
size_t row_end,
const AggregateColumnsConstData & aggregate_columns_data,
const ColumnRawPtrs & key_columns,
Arena * arena_for_keys) const
{
if (!no_more_keys)
mergeStreamsImplCase<false>(
aggregates_pool, method, data, overflow_row, row_begin, row_end, aggregate_columns_data, key_columns, arena_for_keys);
else
mergeStreamsImplCase<true>(
aggregates_pool, method, data, overflow_row, row_begin, row_end, aggregate_columns_data, key_columns, arena_for_keys);
}
void NO_INLINE Aggregator::mergeBlockWithoutKeyStreamsImpl(
Block block,
AggregatedDataVariants & result) const
{
AggregateColumnsConstData aggregate_columns = params.makeAggregateColumnsData(block);
mergeWithoutKeyStreamsImpl(result, 0, block.rows(), aggregate_columns);
}
void NO_INLINE Aggregator::mergeWithoutKeyStreamsImpl(
AggregatedDataVariants & result,
size_t row_begin,
size_t row_end,
const AggregateColumnsConstData & aggregate_columns_data) const
{
AggregatedDataWithoutKey & res = result.without_key;
if (!res)
{
AggregateDataPtr place = result.aggregates_pool->alignedAlloc(total_size_of_aggregate_states, align_aggregate_states);
createAggregateStates(place);
res = place;
}
for (size_t row = row_begin; row < row_end; ++row)
{
/// Adding Values
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->merge(res + offsets_of_aggregate_states[i], (*aggregate_columns_data[i])[row], result.aggregates_pool);
}
}
bool Aggregator::mergeOnBlock(Block block, AggregatedDataVariants & result, bool & no_more_keys) const
{
/// `result` will destroy the states of aggregate functions in the destructor
result.aggregator = this;
/// How to perform the aggregation?
if (result.empty())
{
result.init(method_chosen);
result.keys_size = params.keys_size;
result.key_sizes = key_sizes;
LOG_TRACE(log, "Aggregation method: {}", result.getMethodName());
}
if (result.type == AggregatedDataVariants::Type::without_key || block.info.is_overflows)
mergeBlockWithoutKeyStreamsImpl(std::move(block), result);
#define M(NAME, IS_TWO_LEVEL) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
mergeStreamsImpl(std::move(block), result.aggregates_pool, *result.NAME, result.NAME->data, result.without_key, no_more_keys);
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
else if (result.type != AggregatedDataVariants::Type::without_key)
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
size_t result_size = result.sizeWithoutOverflowRow();
Int64 current_memory_usage = 0;
if (auto * memory_tracker_child = CurrentThread::getMemoryTracker())
if (auto * memory_tracker = memory_tracker_child->getParent())
current_memory_usage = memory_tracker->get();
/// Here all the results in the sum are taken into account, from different threads.
auto result_size_bytes = current_memory_usage - memory_usage_before_aggregation;
bool worth_convert_to_two_level = worthConvertToTwoLevel(
params.group_by_two_level_threshold, result_size, params.group_by_two_level_threshold_bytes, result_size_bytes);
/** Converting to a two-level data structure.
* It allows you to make, in the subsequent, an effective merge - either economical from memory or parallel.
*/
if (result.isConvertibleToTwoLevel() && worth_convert_to_two_level)
result.convertToTwoLevel();
/// Checking the constraints.
if (!checkLimits(result_size, no_more_keys))
return false;
/** Flush data to disk if too much RAM is consumed.
* Data can only be flushed to disk if a two-level aggregation structure is used.
*/
if (params.max_bytes_before_external_group_by
&& result.isTwoLevel()
&& current_memory_usage > static_cast<Int64>(params.max_bytes_before_external_group_by)
&& worth_convert_to_two_level)
{
size_t size = current_memory_usage + params.min_free_disk_space;
writeToTemporaryFile(result, size);
}
return true;
}
void Aggregator::mergeBlocks(BucketToBlocks bucket_to_blocks, AggregatedDataVariants & result, size_t max_threads)
{
if (bucket_to_blocks.empty())
return;
UInt64 total_input_rows = 0;
for (auto & bucket : bucket_to_blocks)
for (auto & block : bucket.second)
total_input_rows += block.rows();
/** `minus one` means the absence of information about the bucket
* - in the case of single-level aggregation, as well as for blocks with "overflowing" values.
* If there is at least one block with a bucket number greater or equal than zero, then there was a two-level aggregation.
*/
auto max_bucket = bucket_to_blocks.rbegin()->first;
bool has_two_level = max_bucket >= 0;
if (has_two_level)
{
#define M(NAME) \
if (method_chosen == AggregatedDataVariants::Type::NAME) \
method_chosen = AggregatedDataVariants::Type::NAME ## _two_level;
APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M)
#undef M
}
/// result will destroy the states of aggregate functions in the destructor
result.aggregator = this;
result.init(method_chosen);
result.keys_size = params.keys_size;
result.key_sizes = key_sizes;
bool has_blocks_with_unknown_bucket = bucket_to_blocks.contains(-1);
/// First, parallel the merge for the individual buckets. Then we continue merge the data not allocated to the buckets.
if (has_two_level)
{
/** In this case, no_more_keys is not supported due to the fact that
* from different threads it is difficult to update the general state for "other" keys (overflows).
* That is, the keys in the end can be significantly larger than max_rows_to_group_by.
*/
LOG_TRACE(log, "Merging partially aggregated two-level data.");
auto merge_bucket = [&bucket_to_blocks, &result, this](Int32 bucket, Arena * aggregates_pool, ThreadGroupStatusPtr thread_group)
{
SCOPE_EXIT_SAFE(
if (thread_group)
CurrentThread::detachQueryIfNotDetached();
);
if (thread_group)
CurrentThread::attachToIfDetached(thread_group);
for (Block & block : bucket_to_blocks[bucket])
{
#define M(NAME) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
mergeStreamsImpl(std::move(block), aggregates_pool, *result.NAME, result.NAME->data.impls[bucket], nullptr, false);
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_TWO_LEVEL(M)
#undef M
else
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
};
std::unique_ptr<ThreadPool> thread_pool;
if (max_threads > 1 && total_input_rows > 100000) /// TODO Make a custom threshold.
thread_pool = std::make_unique<ThreadPool>(max_threads);
for (const auto & bucket_blocks : bucket_to_blocks)
{
const auto bucket = bucket_blocks.first;
if (bucket == -1)
continue;
result.aggregates_pools.push_back(std::make_shared<Arena>());
Arena * aggregates_pool = result.aggregates_pools.back().get();
auto task = [group = CurrentThread::getGroup(), bucket, &merge_bucket, aggregates_pool]{ return merge_bucket(bucket, aggregates_pool, group); };
if (thread_pool)
thread_pool->scheduleOrThrowOnError(task);
else
task();
}
if (thread_pool)
thread_pool->wait();
LOG_TRACE(log, "Merged partially aggregated two-level data.");
}
if (has_blocks_with_unknown_bucket)
{
LOG_TRACE(log, "Merging partially aggregated single-level data.");
bool no_more_keys = false;
BlocksList & blocks = bucket_to_blocks[-1];
for (Block & block : blocks)
{
if (!checkLimits(result.sizeWithoutOverflowRow(), no_more_keys))
break;
if (result.type == AggregatedDataVariants::Type::without_key || block.info.is_overflows)
mergeBlockWithoutKeyStreamsImpl(std::move(block), result);
#define M(NAME, IS_TWO_LEVEL) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
mergeStreamsImpl(std::move(block), result.aggregates_pool, *result.NAME, result.NAME->data, result.without_key, no_more_keys);
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
else if (result.type != AggregatedDataVariants::Type::without_key)
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
LOG_TRACE(log, "Merged partially aggregated single-level data.");
}
}
Block Aggregator::mergeBlocks(BlocksList & blocks, bool final)
{
if (blocks.empty())
return {};
auto bucket_num = blocks.front().info.bucket_num;
bool is_overflows = blocks.front().info.is_overflows;
LOG_TRACE(log, "Merging partially aggregated blocks (bucket = {}).", bucket_num);
Stopwatch watch;
/** If possible, change 'method' to some_hash64. Otherwise, leave as is.
* Better hash function is needed because during external aggregation,
* we may merge partitions of data with total number of keys far greater than 4 billion.
*/
auto merge_method = method_chosen;
#define APPLY_FOR_VARIANTS_THAT_MAY_USE_BETTER_HASH_FUNCTION(M) \
M(key64) \
M(key_string) \
M(key_fixed_string) \
M(keys128) \
M(keys256) \
M(serialized) \
#define M(NAME) \
if (merge_method == AggregatedDataVariants::Type::NAME) \
merge_method = AggregatedDataVariants::Type::NAME ## _hash64; \
APPLY_FOR_VARIANTS_THAT_MAY_USE_BETTER_HASH_FUNCTION(M)
#undef M
#undef APPLY_FOR_VARIANTS_THAT_MAY_USE_BETTER_HASH_FUNCTION
/// Temporary data for aggregation.
AggregatedDataVariants result;
/// result will destroy the states of aggregate functions in the destructor
result.aggregator = this;
result.init(merge_method);
result.keys_size = params.keys_size;
result.key_sizes = key_sizes;
size_t source_rows = 0;
/// In some aggregation methods (e.g. serialized) aggregates pools are used also to store serialized aggregation keys.
/// Memory occupied by them will have the same lifetime as aggregate function states, while it is not actually necessary and leads to excessive memory consumption.
/// To avoid this we use a separate arena to allocate memory for aggregation keys. Its memory will be freed at this function return.
auto arena_for_keys = std::make_shared<Arena>();
for (Block & block : blocks)
{
source_rows += block.rows();
if (bucket_num >= 0 && block.info.bucket_num != bucket_num)
bucket_num = -1;
if (result.type == AggregatedDataVariants::Type::without_key || is_overflows)
mergeBlockWithoutKeyStreamsImpl(std::move(block), result);
#define M(NAME, IS_TWO_LEVEL) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
mergeStreamsImpl(std::move(block), result.aggregates_pool, *result.NAME, result.NAME->data, nullptr, false, arena_for_keys.get());
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
else if (result.type != AggregatedDataVariants::Type::without_key)
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
Block block;
if (result.type == AggregatedDataVariants::Type::without_key || is_overflows)
{
block = prepareBlockAndFillWithoutKey(result, final, is_overflows);
}
else
{
// Used during memory efficient merging (SortingAggregatedTransform expects single chunk for each bucket_id).
constexpr bool return_single_block = true;
block = prepareBlockAndFillSingleLevel<return_single_block>(result, final);
}
/// NOTE: two-level data is not possible here - chooseAggregationMethod chooses only among single-level methods.
if (!final)
{
/// Pass ownership of aggregate function states from result to ColumnAggregateFunction objects in the resulting block.
result.aggregator = nullptr;
}
size_t rows = block.rows();
size_t bytes = block.bytes();
double elapsed_seconds = watch.elapsedSeconds();
LOG_DEBUG(
log,
"Merged partially aggregated blocks for bucket #{}. Got {} rows, {} from {} source rows in {} sec. ({:.3f} rows/sec., {}/sec.)",
bucket_num,
rows,
ReadableSize(bytes),
source_rows,
elapsed_seconds,
rows / elapsed_seconds,
ReadableSize(bytes / elapsed_seconds));
block.info.bucket_num = bucket_num;
return block;
}
template <typename Method>
void NO_INLINE Aggregator::convertBlockToTwoLevelImpl(
Method & method,
Arena * pool,
ColumnRawPtrs & key_columns,
const Block & source,
std::vector<Block> & destinations) const
{
typename Method::State state(key_columns, key_sizes, aggregation_state_cache);
size_t rows = source.rows();
size_t columns = source.columns();
/// Create a 'selector' that will contain bucket index for every row. It will be used to scatter rows to buckets.
IColumn::Selector selector(rows);
/// For every row.
for (size_t i = 0; i < rows; ++i)
{
if constexpr (Method::low_cardinality_optimization)
{
if (state.isNullAt(i))
{
selector[i] = 0;
continue;
}
}
/// Calculate bucket number from row hash.
auto hash = state.getHash(method.data, i, *pool);
auto bucket = method.data.getBucketFromHash(hash);
selector[i] = bucket;
}
UInt32 num_buckets = static_cast<UInt32>(destinations.size());
for (size_t column_idx = 0; column_idx < columns; ++column_idx)
{
const ColumnWithTypeAndName & src_col = source.getByPosition(column_idx);
MutableColumns scattered_columns = src_col.column->scatter(num_buckets, selector);
for (UInt32 bucket = 0, size = num_buckets; bucket < size; ++bucket)
{
if (!scattered_columns[bucket]->empty())
{
Block & dst = destinations[bucket];
dst.info.bucket_num = static_cast<int>(bucket);
dst.insert({std::move(scattered_columns[bucket]), src_col.type, src_col.name});
}
/** Inserted columns of type ColumnAggregateFunction will own states of aggregate functions
* by holding shared_ptr to source column. See ColumnAggregateFunction.h
*/
}
}
}
std::vector<Block> Aggregator::convertBlockToTwoLevel(const Block & block) const
{
if (!block)
return {};
AggregatedDataVariants data;
ColumnRawPtrs key_columns(params.keys_size);
/// Remember the columns we will work with
for (size_t i = 0; i < params.keys_size; ++i)
key_columns[i] = block.safeGetByPosition(i).column.get();
AggregatedDataVariants::Type type = method_chosen;
data.keys_size = params.keys_size;
data.key_sizes = key_sizes;
#define M(NAME) \
else if (type == AggregatedDataVariants::Type::NAME) \
type = AggregatedDataVariants::Type::NAME ## _two_level;
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_CONVERTIBLE_TO_TWO_LEVEL(M)
#undef M
else
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
data.init(type);
size_t num_buckets = 0;
#define M(NAME) \
else if (data.type == AggregatedDataVariants::Type::NAME) \
num_buckets = data.NAME->data.NUM_BUCKETS;
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_TWO_LEVEL(M)
#undef M
else
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
std::vector<Block> splitted_blocks(num_buckets);
#define M(NAME) \
else if (data.type == AggregatedDataVariants::Type::NAME) \
convertBlockToTwoLevelImpl(*data.NAME, data.aggregates_pool, \
key_columns, block, splitted_blocks);
if (false) {} // NOLINT
APPLY_FOR_VARIANTS_TWO_LEVEL(M)
#undef M
else
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
return splitted_blocks;
}
template <typename Method, typename Table>
void NO_INLINE Aggregator::destroyImpl(Table & table) const
{
table.forEachMapped([&](AggregateDataPtr & data)
{
/** If an exception (usually a lack of memory, the MemoryTracker throws) arose
* after inserting the key into a hash table, but before creating all states of aggregate functions,
* then data will be equal nullptr.
*/
if (nullptr == data)
return;
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(data + offsets_of_aggregate_states[i]);
data = nullptr;
});
}
void Aggregator::destroyWithoutKey(AggregatedDataVariants & result) const
{
AggregatedDataWithoutKey & res_data = result.without_key;
if (nullptr != res_data)
{
for (size_t i = 0; i < params.aggregates_size; ++i)
aggregate_functions[i]->destroy(res_data + offsets_of_aggregate_states[i]);
res_data = nullptr;
}
}
void Aggregator::destroyAllAggregateStates(AggregatedDataVariants & result) const
{
if (result.empty())
return;
/// In what data structure is the data aggregated?
if (result.type == AggregatedDataVariants::Type::without_key || params.overflow_row)
destroyWithoutKey(result);
#define M(NAME, IS_TWO_LEVEL) \
else if (result.type == AggregatedDataVariants::Type::NAME) \
destroyImpl<decltype(result.NAME)::element_type>(result.NAME->data);
if (false) {} // NOLINT
APPLY_FOR_AGGREGATED_VARIANTS(M)
#undef M
else if (result.type != AggregatedDataVariants::Type::without_key)
throw Exception("Unknown aggregated data variant.", ErrorCodes::UNKNOWN_AGGREGATED_DATA_VARIANT);
}
template Aggregator::ConvertToBlockRes<false>
Aggregator::prepareBlockAndFillSingleLevel<false>(AggregatedDataVariants & data_variants, bool final) const;
}