ClickHouse/src/AggregateFunctions/AggregateFunctionStatisticsSimple.h

287 lines
12 KiB
C++

#pragma once
#include <cmath>
#include <common/arithmeticOverflow.h>
#include <IO/WriteHelpers.h>
#include <IO/ReadHelpers.h>
#include <AggregateFunctions/IAggregateFunction.h>
#include <AggregateFunctions/Moments.h>
#include <DataTypes/DataTypesNumber.h>
#include <DataTypes/DataTypesDecimal.h>
#include <Columns/ColumnVector.h>
#include <Columns/ColumnDecimal.h>
/** This is simple, not numerically stable
* implementations of variance/covariance/correlation functions.
*
* It is about two times faster than stable variants.
* Numerical errors may occur during summation.
*
* This implementation is selected as default,
* because "you don't pay for what you don't need" principle.
*
* For more sophisticated implementation, look at AggregateFunctionStatistics.h
*/
namespace DB
{
struct Settings;
enum class StatisticsFunctionKind
{
varPop, varSamp,
stddevPop, stddevSamp,
skewPop, skewSamp,
kurtPop, kurtSamp,
covarPop, covarSamp,
corr
};
template <typename T, StatisticsFunctionKind _kind, size_t _level>
struct StatFuncOneArg
{
using Type1 = T;
using Type2 = T;
using ResultType = std::conditional_t<std::is_same_v<T, Float32>, Float32, Float64>;
using Data = std::conditional_t<IsDecimalNumber<T>, VarMomentsDecimal<Decimal128, _level>, VarMoments<ResultType, _level>>;
static constexpr StatisticsFunctionKind kind = _kind;
static constexpr UInt32 num_args = 1;
};
template <typename T1, typename T2, StatisticsFunctionKind _kind>
struct StatFuncTwoArg
{
using Type1 = T1;
using Type2 = T2;
using ResultType = std::conditional_t<std::is_same_v<T1, T2> && std::is_same_v<T1, Float32>, Float32, Float64>;
using Data = std::conditional_t<_kind == StatisticsFunctionKind::corr, CorrMoments<ResultType>, CovarMoments<ResultType>>;
static constexpr StatisticsFunctionKind kind = _kind;
static constexpr UInt32 num_args = 2;
};
template <typename StatFunc>
class AggregateFunctionVarianceSimple final
: public IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>
{
public:
using T1 = typename StatFunc::Type1;
using T2 = typename StatFunc::Type2;
using ColVecT1 = std::conditional_t<IsDecimalNumber<T1>, ColumnDecimal<T1>, ColumnVector<T1>>;
using ColVecT2 = std::conditional_t<IsDecimalNumber<T2>, ColumnDecimal<T2>, ColumnVector<T2>>;
using ResultType = typename StatFunc::ResultType;
using ColVecResult = ColumnVector<ResultType>;
AggregateFunctionVarianceSimple(const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>(argument_types_, {})
, src_scale(0)
{}
AggregateFunctionVarianceSimple(const IDataType & data_type, const DataTypes & argument_types_)
: IAggregateFunctionDataHelper<typename StatFunc::Data, AggregateFunctionVarianceSimple<StatFunc>>(argument_types_, {})
, src_scale(getDecimalScale(data_type))
{}
String getName() const override
{
if constexpr (StatFunc::kind == StatisticsFunctionKind::varPop)
return "varPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::varSamp)
return "varSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevPop)
return "stddevPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevSamp)
return "stddevSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewPop)
return "skewPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewSamp)
return "skewSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtPop)
return "kurtPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtSamp)
return "kurtSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarPop)
return "covarPop";
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarSamp)
return "covarSamp";
if constexpr (StatFunc::kind == StatisticsFunctionKind::corr)
return "corr";
__builtin_unreachable();
}
DataTypePtr getReturnType() const override
{
return std::make_shared<DataTypeNumber<ResultType>>();
}
bool allocatesMemoryInArena() const override { return false; }
void add(AggregateDataPtr __restrict place, const IColumn ** columns, size_t row_num, Arena *) const override
{
if constexpr (StatFunc::num_args == 2)
this->data(place).add(
static_cast<ResultType>(static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num]),
static_cast<ResultType>(static_cast<const ColVecT2 &>(*columns[1]).getData()[row_num]));
else
{
if constexpr (std::is_same_v<T1, Decimal256>)
{
this->data(place).add(static_cast<ResultType>(
static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num].value
));
}
else
this->data(place).add(
static_cast<ResultType>(static_cast<const ColVecT1 &>(*columns[0]).getData()[row_num]));
}
}
void merge(AggregateDataPtr __restrict place, ConstAggregateDataPtr rhs, Arena *) const override
{
this->data(place).merge(this->data(rhs));
}
void serialize(ConstAggregateDataPtr __restrict place, WriteBuffer & buf) const override
{
this->data(place).write(buf);
}
void deserialize(AggregateDataPtr __restrict place, ReadBuffer & buf, Arena *) const override
{
this->data(place).read(buf);
}
void insertResultInto(AggregateDataPtr __restrict place, IColumn & to, Arena *) const override
{
const auto & data = this->data(place);
auto & dst = static_cast<ColVecResult &>(to).getData();
if constexpr (IsDecimalNumber<T1>)
{
if constexpr (StatFunc::kind == StatisticsFunctionKind::varPop)
dst.push_back(data.getPopulation(src_scale * 2));
if constexpr (StatFunc::kind == StatisticsFunctionKind::varSamp)
dst.push_back(data.getSample(src_scale * 2));
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevPop)
dst.push_back(sqrt(data.getPopulation(src_scale * 2)));
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevSamp)
dst.push_back(sqrt(data.getSample(src_scale * 2)));
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewPop)
{
Float64 var_value = data.getPopulation(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment3(src_scale * 3) / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewSamp)
{
Float64 var_value = data.getSample(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment3(src_scale * 3) / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtPop)
{
Float64 var_value = data.getPopulation(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment4(src_scale * 4) / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtSamp)
{
Float64 var_value = data.getSample(src_scale * 2);
if (var_value > 0)
dst.push_back(data.getMoment4(src_scale * 4) / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<Float64>::quiet_NaN());
}
}
else
{
if constexpr (StatFunc::kind == StatisticsFunctionKind::varPop)
dst.push_back(data.getPopulation());
if constexpr (StatFunc::kind == StatisticsFunctionKind::varSamp)
dst.push_back(data.getSample());
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevPop)
dst.push_back(sqrt(data.getPopulation()));
if constexpr (StatFunc::kind == StatisticsFunctionKind::stddevSamp)
dst.push_back(sqrt(data.getSample()));
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewPop)
{
ResultType var_value = data.getPopulation();
if (var_value > 0)
dst.push_back(data.getMoment3() / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::skewSamp)
{
ResultType var_value = data.getSample();
if (var_value > 0)
dst.push_back(data.getMoment3() / pow(var_value, 1.5));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtPop)
{
ResultType var_value = data.getPopulation();
if (var_value > 0)
dst.push_back(data.getMoment4() / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::kurtSamp)
{
ResultType var_value = data.getSample();
if (var_value > 0)
dst.push_back(data.getMoment4() / pow(var_value, 2));
else
dst.push_back(std::numeric_limits<ResultType>::quiet_NaN());
}
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarPop)
dst.push_back(data.getPopulation());
if constexpr (StatFunc::kind == StatisticsFunctionKind::covarSamp)
dst.push_back(data.getSample());
if constexpr (StatFunc::kind == StatisticsFunctionKind::corr)
dst.push_back(data.get());
}
}
private:
UInt32 src_scale;
};
template <typename T> using AggregateFunctionVarPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::varPop, 2>>;
template <typename T> using AggregateFunctionVarSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::varSamp, 2>>;
template <typename T> using AggregateFunctionStddevPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::stddevPop, 2>>;
template <typename T> using AggregateFunctionStddevSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::stddevSamp, 2>>;
template <typename T> using AggregateFunctionSkewPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::skewPop, 3>>;
template <typename T> using AggregateFunctionSkewSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::skewSamp, 3>>;
template <typename T> using AggregateFunctionKurtPopSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::kurtPop, 4>>;
template <typename T> using AggregateFunctionKurtSampSimple = AggregateFunctionVarianceSimple<StatFuncOneArg<T, StatisticsFunctionKind::kurtSamp, 4>>;
template <typename T1, typename T2> using AggregateFunctionCovarPopSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::covarPop>>;
template <typename T1, typename T2> using AggregateFunctionCovarSampSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::covarSamp>>;
template <typename T1, typename T2> using AggregateFunctionCorrSimple = AggregateFunctionVarianceSimple<StatFuncTwoArg<T1, T2, StatisticsFunctionKind::corr>>;
}