ClickHouse/src/Interpreters/TreeRewriter.cpp

1607 lines
62 KiB
C++

#include <algorithm>
#include <memory>
#include <set>
#include <Core/Settings.h>
#include <Core/NamesAndTypes.h>
#include <Core/SettingsEnums.h>
#include <Interpreters/ArrayJoinedColumnsVisitor.h>
#include <Interpreters/CollectJoinOnKeysVisitor.h>
#include <Interpreters/ComparisonTupleEliminationVisitor.h>
#include <Interpreters/Context.h>
#include <Interpreters/ExecuteScalarSubqueriesVisitor.h>
#include <Interpreters/ExpressionActions.h> /// getSmallestColumn()
#include <Interpreters/FunctionNameNormalizer.h>
#include <Interpreters/GetAggregatesVisitor.h>
#include <Interpreters/GroupingSetsRewriterVisitor.h>
#include <Interpreters/LogicalExpressionsOptimizer.h>
#include <Interpreters/MarkTableIdentifiersVisitor.h>
#include <Interpreters/PredicateExpressionsOptimizer.h>
#include <Interpreters/QueryAliasesVisitor.h>
#include <Interpreters/QueryNormalizer.h>
#include <Interpreters/RequiredSourceColumnsVisitor.h>
#include <Interpreters/RewriteOrderByVisitor.hpp>
#include <Interpreters/TableJoin.h>
#include <Interpreters/TranslateQualifiedNamesVisitor.h>
#include <Interpreters/TreeOptimizer.h>
#include <Interpreters/TreeRewriter.h>
#include <Interpreters/evaluateConstantExpression.h>
#include <Interpreters/getTableExpressions.h>
#include <Interpreters/replaceAliasColumnsInQuery.h>
#include <Interpreters/replaceForPositionalArguments.h>
#include <Interpreters/replaceMissedSubcolumnsInQuery.h>
#include <Functions/UserDefined/UserDefinedSQLFunctionFactory.h>
#include <Functions/UserDefined/UserDefinedSQLFunctionVisitor.h>
#include <Parsers/IAST_fwd.h>
#include <Parsers/ASTExpressionList.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTSelectQuery.h>
#include <Parsers/ASTSelectWithUnionQuery.h>
#include <Parsers/ASTTablesInSelectQuery.h>
#include <Parsers/ASTInterpolateElement.h>
#include <Parsers/ASTOrderByElement.h>
#include <Parsers/queryToString.h>
#include <Parsers/ASTCreateQuery.h>
#include <DataTypes/NestedUtils.h>
#include <DataTypes/DataTypeNullable.h>
#include <DataTypes/DataTypeObject.h>
#include <DataTypes/DataTypeLowCardinality.h>
#include <IO/WriteHelpers.h>
#include <Storages/IStorage.h>
#include <Storages/StorageJoin.h>
#include <Common/checkStackSize.h>
#include <Storages/MergeTree/MergeTreeData.h>
#include <Storages/StorageView.h>
#include <AggregateFunctions/AggregateFunctionFactory.h>
#include <boost/algorithm/string.hpp>
namespace DB
{
namespace ErrorCodes
{
extern const int EMPTY_LIST_OF_COLUMNS_QUERIED;
extern const int EMPTY_NESTED_TABLE;
extern const int EXPECTED_ALL_OR_ANY;
extern const int INVALID_JOIN_ON_EXPRESSION;
extern const int LOGICAL_ERROR;
extern const int NOT_IMPLEMENTED;
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int UNKNOWN_IDENTIFIER;
extern const int UNEXPECTED_EXPRESSION;
}
namespace
{
using LogAST = DebugASTLog<false>; /// set to true to enable logs
void optimizeGroupingSets(ASTPtr & query)
{
GroupingSetsRewriterVisitor::Data data;
GroupingSetsRewriterVisitor(data).visit(query);
}
/// Select implementation of a function based on settings.
/// Important that it is done as query rewrite. It means rewritten query
/// will be sent to remote servers during distributed query execution,
/// and on all remote servers, function implementation will be same.
template <char const * func_name>
struct CustomizeFunctionsData
{
using TypeToVisit = ASTFunction;
const String & customized_func_name;
void visit(ASTFunction & func, ASTPtr &) const
{
if (Poco::toLower(func.name) == func_name)
{
func.name = customized_func_name;
}
}
};
char countdistinct[] = "countdistinct";
using CustomizeCountDistinctVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<countdistinct>>, true>;
char countifdistinct[] = "countifdistinct";
using CustomizeCountIfDistinctVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<countifdistinct>>, true>;
char countdistinctif[] = "countdistinctif";
using CustomizeCountDistinctIfVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<countdistinctif>>, true>;
char in[] = "in";
using CustomizeInVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<in>>, true>;
char notIn[] = "notin";
using CustomizeNotInVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<notIn>>, true>;
char globalIn[] = "globalin";
using CustomizeGlobalInVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<globalIn>>, true>;
char globalNotIn[] = "globalnotin";
using CustomizeGlobalNotInVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsData<globalNotIn>>, true>;
template <char const * func_suffix>
struct CustomizeFunctionsSuffixData
{
using TypeToVisit = ASTFunction;
const String & customized_func_suffix;
void visit(ASTFunction & func, ASTPtr &) const
{
if (endsWith(Poco::toLower(func.name), func_suffix))
{
size_t prefix_len = func.name.length() - strlen(func_suffix);
func.name = func.name.substr(0, prefix_len) + customized_func_suffix;
}
}
};
/// Swap 'if' and 'distinct' suffixes to make execution more optimal.
char ifDistinct[] = "ifdistinct";
using CustomizeIfDistinctVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeFunctionsSuffixData<ifDistinct>>, true>;
/// Used to rewrite all aggregate functions to add -OrNull suffix to them if setting `aggregate_functions_null_for_empty` is set.
struct CustomizeAggregateFunctionsSuffixData
{
using TypeToVisit = ASTFunction;
const String & customized_func_suffix;
void visit(ASTFunction & func, ASTPtr &) const
{
const auto & instance = AggregateFunctionFactory::instance();
if (instance.isAggregateFunctionName(func.name) && !endsWith(func.name, customized_func_suffix) && !endsWith(func.name, customized_func_suffix + "If"))
{
auto properties = instance.tryGetProperties(func.name, func.nulls_action);
if (properties && !properties->returns_default_when_only_null)
{
func.name += customized_func_suffix;
}
}
}
};
// Used to rewrite aggregate functions with -OrNull suffix in some cases, such as sumIfOrNull, we should rewrite to sumOrNullIf
struct CustomizeAggregateFunctionsMoveSuffixData
{
using TypeToVisit = ASTFunction;
const String & customized_func_suffix;
String moveSuffixAhead(const String & name) const
{
auto prefix = name.substr(0, name.size() - customized_func_suffix.size());
auto prefix_size = prefix.size();
if (endsWith(prefix, "MergeState"))
return prefix.substr(0, prefix_size - 10) + customized_func_suffix + "MergeState";
if (endsWith(prefix, "Merge"))
return prefix.substr(0, prefix_size - 5) + customized_func_suffix + "Merge";
if (endsWith(prefix, "State"))
return prefix.substr(0, prefix_size - 5) + customized_func_suffix + "State";
if (endsWith(prefix, "If"))
return prefix.substr(0, prefix_size - 2) + customized_func_suffix + "If";
return name;
}
void visit(ASTFunction & func, ASTPtr &) const
{
const auto & instance = AggregateFunctionFactory::instance();
if (instance.isAggregateFunctionName(func.name))
{
if (endsWith(func.name, customized_func_suffix))
{
auto properties = instance.tryGetProperties(func.name, func.nulls_action);
if (properties && !properties->returns_default_when_only_null)
{
func.name = moveSuffixAhead(func.name);
}
}
}
}
};
using CustomizeAggregateFunctionsOrNullVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeAggregateFunctionsSuffixData>, true>;
using CustomizeAggregateFunctionsMoveOrNullVisitor = InDepthNodeVisitor<OneTypeMatcher<CustomizeAggregateFunctionsMoveSuffixData>, true>;
struct ExistsExpressionData
{
using TypeToVisit = ASTFunction;
static void visit(ASTFunction & func, ASTPtr)
{
bool exists_expression = func.name == "exists"
&& func.arguments && func.arguments->children.size() == 1
&& typeid_cast<const ASTSubquery *>(func.arguments->children[0].get());
if (!exists_expression)
return;
/// EXISTS(subquery) --> 1 IN (SELECT 1 FROM subquery LIMIT 1)
auto subquery_node = func.arguments->children[0];
auto table_expression = std::make_shared<ASTTableExpression>();
table_expression->subquery = std::move(subquery_node);
table_expression->children.push_back(table_expression->subquery);
auto tables_in_select_element = std::make_shared<ASTTablesInSelectQueryElement>();
tables_in_select_element->table_expression = std::move(table_expression);
tables_in_select_element->children.push_back(tables_in_select_element->table_expression);
auto tables_in_select = std::make_shared<ASTTablesInSelectQuery>();
tables_in_select->children.push_back(std::move(tables_in_select_element));
auto select_expr_list = std::make_shared<ASTExpressionList>();
select_expr_list->children.push_back(std::make_shared<ASTLiteral>(1u));
auto select_query = std::make_shared<ASTSelectQuery>();
select_query->children.push_back(select_expr_list);
select_query->setExpression(ASTSelectQuery::Expression::SELECT, select_expr_list);
select_query->setExpression(ASTSelectQuery::Expression::TABLES, tables_in_select);
ASTPtr limit_length_ast = std::make_shared<ASTLiteral>(Field(static_cast<UInt64>(1)));
select_query->setExpression(ASTSelectQuery::Expression::LIMIT_LENGTH, std::move(limit_length_ast));
auto select_with_union_query = std::make_shared<ASTSelectWithUnionQuery>();
select_with_union_query->list_of_selects = std::make_shared<ASTExpressionList>();
select_with_union_query->list_of_selects->children.push_back(std::move(select_query));
select_with_union_query->children.push_back(select_with_union_query->list_of_selects);
auto new_subquery = std::make_shared<ASTSubquery>(std::move(select_with_union_query));
auto function = makeASTFunction("in", std::make_shared<ASTLiteral>(1u), new_subquery);
func = *function;
}
};
using ExistsExpressionVisitor = InDepthNodeVisitor<OneTypeMatcher<ExistsExpressionData>, false>;
struct ReplacePositionalArgumentsData
{
using TypeToVisit = ASTSelectQuery;
static void visit(ASTSelectQuery & select_query, ASTPtr &)
{
if (select_query.groupBy())
{
for (auto & expr : select_query.groupBy()->children)
replaceForPositionalArguments(expr, &select_query, ASTSelectQuery::Expression::GROUP_BY);
}
if (select_query.orderBy())
{
for (auto & expr : select_query.orderBy()->children)
{
auto & elem = assert_cast<ASTOrderByElement &>(*expr).children.at(0);
replaceForPositionalArguments(elem, &select_query, ASTSelectQuery::Expression::ORDER_BY);
}
}
if (select_query.limitBy())
{
for (auto & expr : select_query.limitBy()->children)
replaceForPositionalArguments(expr, &select_query, ASTSelectQuery::Expression::LIMIT_BY);
}
}
};
using ReplacePositionalArgumentsVisitor = InDepthNodeVisitor<OneTypeMatcher<ReplacePositionalArgumentsData>, false>;
/// Translate qualified names such as db.table.column, table.column, table_alias.column to names' normal form.
/// Expand asterisks and qualified asterisks with column names.
/// There would be columns in normal form & column aliases after translation. Column & column alias would be normalized in QueryNormalizer.
void translateQualifiedNames(ASTPtr & query, const ASTSelectQuery & select_query, const NameSet & source_columns_set,
const TablesWithColumns & tables_with_columns)
{
LogAST log;
TranslateQualifiedNamesVisitor::Data visitor_data(source_columns_set, tables_with_columns, true/* has_columns */);
TranslateQualifiedNamesVisitor visitor(visitor_data, log.stream());
visitor.visit(query);
/// This may happen after expansion of COLUMNS('regexp').
if (select_query.select()->children.empty())
throw Exception(ErrorCodes::EMPTY_LIST_OF_COLUMNS_QUERIED, "Empty list of columns in SELECT query");
}
bool hasArrayJoin(const ASTPtr & ast)
{
if (const ASTFunction * function = ast->as<ASTFunction>())
if (function->name == "arrayJoin")
return true;
for (const auto & child : ast->children)
if (!child->as<ASTSelectQuery>() && hasArrayJoin(child))
return true;
return false;
}
/// Keep number of columns for 'GLOBAL IN (SELECT 1 AS a, a)'
void renameDuplicatedColumns(const ASTSelectQuery * select_query)
{
ASTs & elements = select_query->select()->children;
std::set<String> all_column_names;
std::set<String> assigned_column_names;
for (auto & expr : elements)
all_column_names.insert(expr->getAliasOrColumnName());
for (auto & expr : elements)
{
auto name = expr->getAliasOrColumnName();
if (!assigned_column_names.insert(name).second)
{
size_t i = 1;
while (all_column_names.end() != all_column_names.find(name + "_" + toString(i)))
++i;
name = name + "_" + toString(i);
expr = expr->clone(); /// Cancels fuse of the same expressions in the tree.
expr->setAlias(name);
all_column_names.insert(name);
assigned_column_names.insert(name);
}
}
}
/// Sometimes we have to calculate more columns in SELECT clause than will be returned from query.
/// This is the case when we have DISTINCT or arrayJoin: we require more columns in SELECT even if we need less columns in result.
/// Also we have to remove duplicates in case of GLOBAL subqueries. Their results are placed into tables so duplicates are impossible.
/// Also remove all INTERPOLATE columns which are not in SELECT anymore.
void removeUnneededColumnsFromSelectClause(ASTSelectQuery * select_query, const Names & required_result_columns, bool remove_dups)
{
ASTs & elements = select_query->select()->children;
std::map<String, size_t> required_columns_with_duplicate_count;
if (!required_result_columns.empty())
{
/// Some columns may be queried multiple times, like SELECT x, y, y FROM table.
for (const auto & name : required_result_columns)
{
if (remove_dups)
required_columns_with_duplicate_count[name] = 1;
else
++required_columns_with_duplicate_count[name];
}
}
else if (remove_dups)
{
/// Even if we have no requirements there could be duplicates cause of asterisks. SELECT *, t.*
for (const auto & elem : elements)
required_columns_with_duplicate_count.emplace(elem->getAliasOrColumnName(), 1);
}
else
return;
NameSet required_by_interpolate;
if (select_query->interpolate())
{
auto & children = select_query->interpolate()->children;
if (!children.empty())
{
NameToNameSetMap expressions;
auto interpolate_visitor = [](const ASTPtr ast, NameSet & columns) -> void
{
auto interpolate_visitor_impl = [](const ASTPtr node, NameSet & cols, auto self) -> void
{
if (const auto * ident = node->as<ASTIdentifier>())
cols.insert(ident->name());
else if (const auto * func = node->as<ASTFunction>())
for (const auto & elem : func->arguments->children)
self(elem, cols, self);
};
interpolate_visitor_impl(ast, columns, interpolate_visitor_impl);
};
for (const auto & elem : children)
{
if (auto * interpolate = elem->as<ASTInterpolateElement>())
{
NameSet needed_columns;
interpolate_visitor(interpolate->expr, needed_columns);
expressions.emplace(interpolate->column, std::move(needed_columns));
}
}
for (const auto & name : required_result_columns)
if (const auto it = expressions.find(name); it != expressions.end())
required_by_interpolate.insert(it->second.begin(), it->second.end());
}
}
ASTs new_elements;
new_elements.reserve(elements.size());
NameSet remove_columns;
for (const auto & elem : elements)
{
String name = elem->getAliasOrColumnName();
auto it = required_columns_with_duplicate_count.find(name);
if (required_columns_with_duplicate_count.end() != it && it->second)
{
new_elements.push_back(elem);
--it->second;
}
else if (required_by_interpolate.contains(name))
{
/// Columns required by interpolate expression are not always in the required_result_columns
new_elements.push_back(elem);
}
else if (select_query->distinct || hasArrayJoin(elem))
{
/// ARRAY JOIN cannot be optimized out since it may change number of rows,
/// so as DISTINCT.
new_elements.push_back(elem);
}
else
{
remove_columns.insert(name);
ASTFunction * func = elem->as<ASTFunction>();
/// Never remove untuple. It's result column may be in required columns.
/// It is not easy to analyze untuple here, because types were not calculated yet.
if (func && func->name == "untuple")
new_elements.push_back(elem);
/// removing aggregation can change number of rows, so `count()` result in outer sub-query would be wrong
if (func && !select_query->groupBy())
{
GetAggregatesVisitor::Data data = {};
GetAggregatesVisitor(data).visit(elem);
if (!data.aggregates.empty())
new_elements.push_back(elem);
}
}
}
if (select_query->interpolate())
{
auto & children = select_query->interpolate()->children;
if (!children.empty())
{
for (auto * it = children.begin(); it != children.end();)
{
if (remove_columns.contains((*it)->as<ASTInterpolateElement>()->column))
it = select_query->interpolate()->children.erase(it);
else
++it;
}
if (children.empty())
select_query->setExpression(ASTSelectQuery::Expression::INTERPOLATE, nullptr);
}
}
elements = std::move(new_elements);
}
/// Replacing scalar subqueries with constant values.
void executeScalarSubqueries(
ASTPtr & query, ContextPtr context, size_t subquery_depth, Scalars & scalars, Scalars & local_scalars, bool only_analyze, bool is_create_parameterized_view)
{
LogAST log;
ExecuteScalarSubqueriesVisitor::Data visitor_data{
WithContext{context}, subquery_depth, scalars,
local_scalars, only_analyze, is_create_parameterized_view,
/*replace_only_to_literals=*/ false, /*max_literal_size=*/ std::nullopt};
ExecuteScalarSubqueriesVisitor(visitor_data, log.stream()).visit(query);
}
void getArrayJoinedColumns(ASTPtr & query, TreeRewriterResult & result, const ASTSelectQuery * select_query,
const NamesAndTypesList & source_columns, const NameSet & source_columns_set)
{
if (!select_query->arrayJoinExpressionList().first)
return;
ArrayJoinedColumnsVisitor::Data visitor_data{
result.aliases, result.array_join_name_to_alias, result.array_join_alias_to_name, result.array_join_result_to_source};
ArrayJoinedColumnsVisitor(visitor_data).visit(query);
/// If the result of ARRAY JOIN is not used, it is necessary to ARRAY-JOIN any column,
/// to get the correct number of rows.
if (result.array_join_result_to_source.empty())
{
if (select_query->arrayJoinExpressionList().first->children.empty())
throw DB::Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH, "ARRAY JOIN requires an argument");
ASTPtr expr = select_query->arrayJoinExpressionList().first->children.at(0);
String source_name = expr->getColumnName();
String result_name = expr->getAliasOrColumnName();
/// This is an array.
if (!expr->as<ASTIdentifier>() || source_columns_set.contains(source_name))
{
result.array_join_result_to_source[result_name] = source_name;
}
else /// This is a nested table.
{
bool found = false;
for (const auto & column : source_columns)
{
auto split = Nested::splitName(column.name, /*reverse=*/ true);
if (split.first == source_name && !split.second.empty())
{
result.array_join_result_to_source[Nested::concatenateName(result_name, split.second)] = column.name;
found = true;
break;
}
}
if (!found)
throw Exception(ErrorCodes::EMPTY_NESTED_TABLE, "No columns in nested table {}", source_name);
}
}
}
void setJoinStrictness(ASTSelectQuery & select_query, JoinStrictness join_default_strictness, bool old_any, std::shared_ptr<TableJoin> & analyzed_join)
{
const ASTTablesInSelectQueryElement * node = select_query.join();
if (!node)
return;
auto & table_join = const_cast<ASTTablesInSelectQueryElement *>(node)->table_join->as<ASTTableJoin &>();
if (table_join.strictness == JoinStrictness::Unspecified &&
table_join.kind != JoinKind::Cross)
{
if (join_default_strictness == JoinStrictness::Any)
table_join.strictness = JoinStrictness::Any;
else if (join_default_strictness == JoinStrictness::All)
table_join.strictness = JoinStrictness::All;
else
throw Exception(DB::ErrorCodes::EXPECTED_ALL_OR_ANY,
"Expected ANY or ALL in JOIN section, because setting (join_default_strictness) is empty");
}
if (old_any)
{
if (table_join.strictness == JoinStrictness::Any &&
table_join.kind == JoinKind::Inner)
{
table_join.strictness = JoinStrictness::Semi;
table_join.kind = JoinKind::Left;
}
if (table_join.strictness == JoinStrictness::Any)
table_join.strictness = JoinStrictness::RightAny;
}
else
{
if (table_join.strictness == JoinStrictness::Any && table_join.kind == JoinKind::Full)
throw Exception(ErrorCodes::NOT_IMPLEMENTED, "ANY FULL JOINs are not implemented");
}
analyzed_join->getTableJoin() = table_join;
}
/// Evaluate expression and return boolean value if it can be interpreted as bool.
/// Only UInt8 or NULL are allowed.
/// Returns `false` for 0 or NULL values, `true` for any non-negative value.
std::optional<bool> tryEvaluateConstCondition(ASTPtr expr, ContextPtr context)
{
if (!expr)
return {};
Field eval_res;
DataTypePtr eval_res_type;
{
auto constant_expression_result = tryEvaluateConstantExpression(expr, context);
if (!constant_expression_result)
return {};
std::tie(eval_res, eval_res_type) = std::move(constant_expression_result.value());
}
/// UInt8, maybe Nullable, maybe LowCardinality, and NULL are allowed
eval_res_type = removeNullable(removeLowCardinality(eval_res_type));
if (auto which = WhichDataType(eval_res_type); !which.isUInt8() && !which.isNothing())
return {};
if (eval_res.isNull())
return false;
UInt8 res = eval_res.template safeGet<UInt8>();
return res > 0;
}
bool tryJoinOnConst(TableJoin & analyzed_join, const ASTPtr & on_expression, ContextPtr context)
{
if (!analyzed_join.isEnabledAlgorithm(JoinAlgorithm::HASH))
return false;
if (analyzed_join.strictness() == JoinStrictness::Asof)
return false;
if (analyzed_join.isSpecialStorage())
return false;
if (auto eval_const_res = tryEvaluateConstCondition(on_expression, context))
{
if (eval_const_res.value())
{
/// JOIN ON 1 == 1
LOG_DEBUG(getLogger("TreeRewriter"), "Join on constant executed as cross join");
analyzed_join.resetToCross();
}
else
{
/// JOIN ON 1 != 1
LOG_DEBUG(getLogger("TreeRewriter"), "Join on constant executed as empty join");
analyzed_join.resetKeys();
}
return true;
}
return false;
}
/// Find the columns that are obtained by JOIN.
void collectJoinedColumns(TableJoin & analyzed_join, ASTTableJoin & table_join,
const TablesWithColumns & tables, const Aliases & aliases, ContextPtr context)
{
assert(tables.size() >= 2);
if (table_join.using_expression_list)
{
const auto & keys = table_join.using_expression_list->as<ASTExpressionList &>();
analyzed_join.addDisjunct();
for (const auto & key : keys.children)
analyzed_join.addUsingKey(key);
}
else if (table_join.on_expression)
{
bool join_on_const_ok = tryJoinOnConst(analyzed_join, table_join.on_expression, context);
if (join_on_const_ok)
return;
bool is_asof = (table_join.strictness == JoinStrictness::Asof);
CollectJoinOnKeysVisitor::Data data{analyzed_join, tables[0], tables[1], aliases, is_asof};
if (auto * or_func = table_join.on_expression->as<ASTFunction>(); or_func && or_func->name == "or")
{
for (auto & disjunct : or_func->arguments->children)
{
analyzed_join.addDisjunct();
CollectJoinOnKeysVisitor(data).visit(disjunct);
}
assert(analyzed_join.getClauses().size() == or_func->arguments->children.size());
}
else
{
analyzed_join.addDisjunct();
CollectJoinOnKeysVisitor(data).visit(table_join.on_expression);
assert(analyzed_join.oneDisjunct());
}
auto check_keys_empty = [] (auto e) { return e.key_names_left.empty(); };
bool any_keys_empty = std::any_of(analyzed_join.getClauses().begin(), analyzed_join.getClauses().end(), check_keys_empty);
if (any_keys_empty)
throw DB::Exception(ErrorCodes::INVALID_JOIN_ON_EXPRESSION,
"Cannot get JOIN keys from JOIN ON section: '{}', found keys: {}",
queryToString(table_join.on_expression), TableJoin::formatClauses(analyzed_join.getClauses()));
if (is_asof)
{
if (!analyzed_join.oneDisjunct())
throw DB::Exception(ErrorCodes::NOT_IMPLEMENTED, "ASOF join doesn't support multiple ORs for keys in JOIN ON section");
data.asofToJoinKeys();
}
if (!analyzed_join.oneDisjunct() && !analyzed_join.isEnabledAlgorithm(JoinAlgorithm::HASH))
throw DB::Exception(ErrorCodes::NOT_IMPLEMENTED, "Only `hash` join supports multiple ORs for keys in JOIN ON section");
}
}
std::pair<bool, UInt64> recursivelyCollectMaxOrdinaryExpressions(const ASTPtr & expr, ASTExpressionList & into)
{
checkStackSize();
if (expr->as<ASTIdentifier>())
{
into.children.push_back(expr);
return {false, 1};
}
auto * function = expr->as<ASTFunction>();
if (!function)
return {false, 0};
if (AggregateUtils::isAggregateFunction(*function))
return {true, 0};
UInt64 pushed_children = 0;
bool has_aggregate = false;
for (const auto & child : function->arguments->children)
{
auto [child_has_aggregate, child_pushed_children] = recursivelyCollectMaxOrdinaryExpressions(child, into);
has_aggregate |= child_has_aggregate;
pushed_children += child_pushed_children;
}
/// The current function is not aggregate function and there is no aggregate function in its arguments,
/// so use the current function to replace its arguments
if (!has_aggregate)
{
for (UInt64 i = 0; i < pushed_children; i++)
into.children.pop_back();
into.children.push_back(expr);
pushed_children = 1;
}
return {has_aggregate, pushed_children};
}
/** Expand GROUP BY ALL by extracting all the SELECT-ed expressions that are not aggregate functions.
*
* For a special case that if there is a function having both aggregate functions and other fields as its arguments,
* the `GROUP BY` keys will contain the maximum non-aggregate fields we can extract from it.
*
* Example:
* SELECT substring(a, 4, 2), substring(substring(a, 1, 2), 1, count(b)) FROM t GROUP BY ALL
* will expand as
* SELECT substring(a, 4, 2), substring(substring(a, 1, 2), 1, count(b)) FROM t GROUP BY substring(a, 4, 2), substring(a, 1, 2)
*/
void expandGroupByAll(ASTSelectQuery * select_query)
{
auto group_expression_list = std::make_shared<ASTExpressionList>();
for (const auto & expr : select_query->select()->children)
recursivelyCollectMaxOrdinaryExpressions(expr, *group_expression_list);
select_query->setExpression(ASTSelectQuery::Expression::GROUP_BY, group_expression_list);
}
void expandOrderByAll(ASTSelectQuery * select_query, [[maybe_unused]] const TablesWithColumns & tables_with_columns)
{
auto * all_elem = select_query->orderBy()->children[0]->as<ASTOrderByElement>();
if (!all_elem)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Select analyze for not order by asts.");
auto order_expression_list = std::make_shared<ASTExpressionList>();
for (const auto & expr : select_query->select()->children)
{
/// Detect and reject ambiguous statements:
/// E.g. for a table with columns "all", "a", "b":
/// - SELECT all, a, b ORDER BY all; -- should we sort by all columns in SELECT or by column "all"?
/// - SELECT a, b AS all ORDER BY all; -- like before but "all" as alias
/// - SELECT func(...) AS all ORDER BY all; -- like before but "all" as function
/// - SELECT a, b ORDER BY all; -- tricky in other way: does the user want to sort by columns in SELECT clause or by not SELECTed column "all"?
static const String all = "all";
if (auto * identifier = expr->as<ASTIdentifier>(); identifier != nullptr)
if (boost::iequals(identifier->name(), all) || boost::iequals(identifier->alias, all))
throw Exception(ErrorCodes::UNEXPECTED_EXPRESSION,
"Cannot use ORDER BY ALL to sort a column with name 'all', please disable setting `enable_order_by_all` and try again");
if (auto * function = expr->as<ASTFunction>(); function != nullptr)
if (boost::iequals(function->alias, all))
throw Exception(ErrorCodes::UNEXPECTED_EXPRESSION,
"Cannot use ORDER BY ALL to sort a column with name 'all', please disable setting `enable_order_by_all` and try again");
for (const auto & table_with_columns : tables_with_columns)
{
const auto & columns = table_with_columns.columns;
if (columns.containsCaseInsensitive(all))
throw Exception(ErrorCodes::UNEXPECTED_EXPRESSION,
"Cannot use ORDER BY ALL to sort a column with name 'all', please disable setting `enable_order_by_all` and try again");
}
auto elem = std::make_shared<ASTOrderByElement>();
elem->direction = all_elem->direction;
elem->nulls_direction = all_elem->nulls_direction;
elem->nulls_direction_was_explicitly_specified = all_elem->nulls_direction_was_explicitly_specified;
elem->children.push_back(expr);
order_expression_list->children.push_back(elem);
}
select_query->setExpression(ASTSelectQuery::Expression::ORDER_BY, order_expression_list);
}
ASTs getAggregates(ASTPtr & query, const ASTSelectQuery & select_query)
{
/// There can not be aggregate functions inside the WHERE and PREWHERE.
if (select_query.where())
assertNoAggregates(select_query.where(), "in WHERE");
if (select_query.prewhere())
assertNoAggregates(select_query.prewhere(), "in PREWHERE");
GetAggregatesVisitor::Data data;
GetAggregatesVisitor(data).visit(query);
/// There can not be other aggregate functions within the aggregate functions.
for (const ASTPtr & ast : data.aggregates)
{
const ASTFunction & node = typeid_cast<const ASTFunction &>(*ast);
if (node.arguments)
{
for (auto & arg : node.arguments->children)
{
assertNoAggregates(arg, "inside another aggregate function");
// We also can't have window functions inside aggregate functions,
// because the window functions are calculated later.
assertNoWindows(arg, "inside an aggregate function");
}
}
}
return data.aggregates;
}
ASTs getWindowFunctions(ASTPtr & query, const ASTSelectQuery & select_query)
{
/// There can not be window functions inside the WHERE, PREWHERE and HAVING
if (select_query.having())
assertNoWindows(select_query.having(), "in HAVING");
if (select_query.where())
assertNoWindows(select_query.where(), "in WHERE");
if (select_query.prewhere())
assertNoWindows(select_query.prewhere(), "in PREWHERE");
if (select_query.window())
assertNoWindows(select_query.window(), "in WINDOW");
GetAggregatesVisitor::Data data;
GetAggregatesVisitor(data).visit(query);
/// Window functions cannot be inside aggregates or other window functions.
/// Aggregate functions can be inside window functions because they are
/// calculated earlier.
for (const ASTPtr & ast : data.window_functions)
{
const ASTFunction & node = typeid_cast<const ASTFunction &>(*ast);
if (node.arguments)
for (auto & arg : node.arguments->children)
assertNoWindows(arg, "inside another window function");
if (node.window_definition)
assertNoWindows(node.window_definition, "inside window definition");
}
return data.window_functions;
}
class MarkTupleLiteralsAsLegacyData
{
public:
struct Data
{
};
static void visitLiteral(ASTLiteral & literal, ASTPtr &)
{
if (literal.value.getType() == Field::Types::Tuple)
literal.use_legacy_column_name_of_tuple = true;
}
static void visitFunction(ASTFunction & func, ASTPtr &ast)
{
if (func.name == "tuple" && func.arguments && !func.arguments->children.empty())
{
// re-write tuple() function as literal
if (auto literal = func.toLiteral())
{
ast = literal;
visitLiteral(*typeid_cast<ASTLiteral *>(ast.get()), ast);
}
}
}
static void visit(ASTPtr & ast, Data &)
{
if (auto * identifier = typeid_cast<ASTFunction *>(ast.get()))
visitFunction(*identifier, ast);
if (auto * identifier = typeid_cast<ASTLiteral *>(ast.get()))
visitLiteral(*identifier, ast);
}
static bool needChildVisit(const ASTPtr & /*parent*/, const ASTPtr & /*child*/)
{
return true;
}
};
using MarkTupleLiteralsAsLegacyVisitor = InDepthNodeVisitor<MarkTupleLiteralsAsLegacyData, true>;
void markTupleLiteralsAsLegacy(ASTPtr & query)
{
MarkTupleLiteralsAsLegacyVisitor::Data data;
MarkTupleLiteralsAsLegacyVisitor(data).visit(query);
}
/// Rewrite _shard_num -> shardNum() AS _shard_num
struct RewriteShardNum
{
struct Data
{
};
static bool needChildVisit(const ASTPtr & parent, const ASTPtr & /*child*/)
{
/// ON section should not be rewritten.
return typeid_cast<ASTTableJoin *>(parent.get()) == nullptr;
}
static void visit(ASTPtr & ast, Data &)
{
if (auto * identifier = typeid_cast<ASTIdentifier *>(ast.get()))
visit(*identifier, ast);
}
static void visit(ASTIdentifier & identifier, ASTPtr & ast)
{
if (identifier.shortName() != "_shard_num")
return;
String alias = identifier.tryGetAlias();
if (alias.empty())
alias = "_shard_num";
ast = makeASTFunction("shardNum");
ast->setAlias(alias);
}
};
using RewriteShardNumVisitor = InDepthNodeVisitor<RewriteShardNum, true>;
}
TreeRewriterResult::TreeRewriterResult(
const NamesAndTypesList & source_columns_,
ConstStoragePtr storage_,
const StorageSnapshotPtr & storage_snapshot_,
bool add_special)
: storage(storage_)
, storage_snapshot(storage_snapshot_)
, source_columns(source_columns_)
{
collectSourceColumns(add_special);
is_remote_storage = storage && storage->isRemote();
}
/// Add columns from storage to source_columns list. Deduplicate resulted list.
/// Special columns are non physical columns, for example ALIAS
void TreeRewriterResult::collectSourceColumns(bool add_special)
{
if (storage)
{
auto options = GetColumnsOptions(add_special ? GetColumnsOptions::All : GetColumnsOptions::AllPhysical);
options.withExtendedObjects();
options.withSubcolumns(storage->supportsSubcolumns());
auto columns_from_storage = storage_snapshot->getColumns(options);
if (source_columns.empty())
source_columns.swap(columns_from_storage);
else
source_columns.insert(source_columns.end(), columns_from_storage.begin(), columns_from_storage.end());
auto metadata_snapshot = storage->getInMemoryMetadataPtr();
source_columns_ordinary = metadata_snapshot->getColumns().getOrdinary();
}
source_columns_set = removeDuplicateColumns(source_columns);
}
/// Calculate which columns are required to execute the expression.
/// Then, delete all other columns from the list of available columns.
/// After execution, columns will only contain the list of columns needed to read from the table.
bool TreeRewriterResult::collectUsedColumns(const ASTPtr & query, bool is_select, bool no_throw)
{
/// We calculate required_source_columns with source_columns modifications and swap them on exit
required_source_columns = source_columns;
RequiredSourceColumnsVisitor::Data columns_context;
RequiredSourceColumnsVisitor(columns_context).visit(query);
NameSet source_column_names;
for (const auto & column : source_columns)
source_column_names.insert(column.name);
NameSet required = columns_context.requiredColumns();
if (columns_context.has_table_join)
{
NameSet available_columns;
for (const auto & name : source_columns)
available_columns.insert(name.name);
/// Add columns obtained by JOIN (if needed).
for (const auto & joined_column : analyzed_join->columnsFromJoinedTable())
{
const auto & name = joined_column.name;
if (available_columns.contains(name))
continue;
if (required.contains(name))
{
/// Optimization: do not add columns needed only in JOIN ON section.
if (columns_context.nameInclusion(name) > analyzed_join->rightKeyInclusion(name))
analyzed_join->addJoinedColumn(joined_column);
required.erase(name);
}
}
}
NameSet array_join_sources;
if (columns_context.has_array_join)
{
/// Insert the columns required for the ARRAY JOIN calculation into the required columns list.
for (const auto & result_source : array_join_result_to_source)
array_join_sources.insert(result_source.second);
for (const auto & column_name_type : source_columns)
if (array_join_sources.contains(column_name_type.name))
required.insert(column_name_type.name);
}
/// Figure out if we're able to use the trivial count optimization.
has_explicit_columns = !required.empty();
if (is_select && !has_explicit_columns)
{
optimize_trivial_count = !columns_context.has_array_join;
/// You need to read at least one column to find the number of rows.
/// We will find a column with minimum <compressed_size, type_size, uncompressed_size>.
/// Because it is the column that is cheapest to read.
struct ColumnSizeTuple
{
size_t compressed_size;
size_t type_size;
size_t uncompressed_size;
String name;
bool operator<(const ColumnSizeTuple & that) const
{
return std::tie(compressed_size, type_size, uncompressed_size)
< std::tie(that.compressed_size, that.type_size, that.uncompressed_size);
}
};
std::vector<ColumnSizeTuple> columns;
if (storage)
{
auto column_sizes = storage->getColumnSizes();
for (auto & source_column : source_columns)
{
auto c = column_sizes.find(source_column.name);
if (c == column_sizes.end())
continue;
size_t type_size = source_column.type->haveMaximumSizeOfValue() ? source_column.type->getMaximumSizeOfValueInMemory() : 100;
columns.emplace_back(ColumnSizeTuple{c->second.data_compressed, type_size, c->second.data_uncompressed, source_column.name});
}
}
if (!columns.empty())
required.insert(std::min_element(columns.begin(), columns.end())->name);
else if (!source_columns.empty())
/// If we have no information about columns sizes, choose a column of minimum size of its data type.
required.insert(ExpressionActions::getSmallestColumn(source_columns).name);
}
else if (is_select && storage_snapshot && !columns_context.has_array_join)
{
const auto & partition_desc = storage_snapshot->metadata->getPartitionKey();
if (partition_desc.expression)
{
auto partition_columns = partition_desc.expression->getRequiredColumns();
NameSet partition_columns_set(partition_columns.begin(), partition_columns.end());
const auto & parititon_virtuals = MergeTreeData::virtuals_useful_for_filter;
partition_columns_set.insert(parititon_virtuals.begin(), parititon_virtuals.end());
optimize_trivial_count = true;
for (const auto & required_column : required)
{
if (!partition_columns_set.contains(required_column))
{
optimize_trivial_count = false;
break;
}
}
}
}
NameSet unknown_required_source_columns = required;
for (auto it = source_columns.begin(); it != source_columns.end();)
{
const String & column_name = it->name;
unknown_required_source_columns.erase(column_name);
if (!required.contains(column_name))
it = source_columns.erase(it);
else
++it;
}
has_virtual_shard_num = false;
/// If there are virtual columns among the unknown columns. Remove them from the list of unknown and add
/// in columns list, so that when further processing they are also considered.
if (storage_snapshot)
{
const auto & virtuals = storage_snapshot->virtual_columns;
for (auto it = unknown_required_source_columns.begin(); it != unknown_required_source_columns.end();)
{
if (auto column = virtuals->tryGet(*it))
{
source_columns.push_back(*column);
it = unknown_required_source_columns.erase(it);
}
else
{
++it;
}
}
has_virtual_shard_num = is_remote_storage && storage->isVirtualColumn("_shard_num", storage_snapshot->getMetadataForQuery()) && virtuals->has("_shard_num");
}
/// Collect missed object subcolumns
if (!unknown_required_source_columns.empty())
{
for (const NameAndTypePair & pair : source_columns_ordinary)
{
for (auto it = unknown_required_source_columns.begin(); it != unknown_required_source_columns.end();)
{
size_t object_pos = it->find('.');
if (object_pos != std::string::npos)
{
String object_name = it->substr(0, object_pos);
if (pair.name == object_name && pair.type->getTypeId() == TypeIndex::Object)
{
const auto * object_type = typeid_cast<const DataTypeObject *>(pair.type.get());
if (object_type->getSchemaFormat() == "json" && object_type->hasNullableSubcolumns())
{
missed_subcolumns.insert(*it);
it = unknown_required_source_columns.erase(it);
continue;
}
}
}
++it;
}
}
}
if (!unknown_required_source_columns.empty())
{
constexpr auto format_string = "Missing columns: {} while processing query: '{}', required columns:{}{}";
WriteBufferFromOwnString ss;
ss << "Missing columns:";
for (const auto & name : unknown_required_source_columns)
ss << " '" << name << "'";
ss << " while processing query: '" << queryToString(query) << "'";
ss << ", required columns:";
for (const auto & name : columns_context.requiredColumns())
ss << " '" << name << "'";
if (storage)
{
std::vector<String> hint_name{};
std::set<String> helper_hint_name{};
for (const auto & name : columns_context.requiredColumns())
{
auto hints = storage->getHints(name);
for (const auto & hint : hints)
{
// We want to preserve the ordering of the hints
// (as they are ordered by Levenshtein distance)
auto [_, inserted] = helper_hint_name.insert(hint);
if (inserted)
hint_name.push_back(hint);
}
}
if (!hint_name.empty())
{
ss << ", maybe you meant: ";
ss << toStringWithFinalSeparator(hint_name, " or ");
}
}
else
{
if (!source_column_names.empty())
for (const auto & name : columns_context.requiredColumns())
ss << " '" << name << "'";
else
ss << ", no source columns";
}
if (columns_context.has_table_join)
{
ss << ", joined columns:";
for (const auto & column : analyzed_join->columnsFromJoinedTable())
ss << " '" << column.name << "'";
}
if (!array_join_sources.empty())
{
ss << ", arrayJoin columns:";
for (const auto & name : array_join_sources)
ss << " '" << name << "'";
}
if (no_throw)
return false;
throw Exception(PreformattedMessage{ss.str(), format_string, std::vector<std::string>{}}, ErrorCodes::UNKNOWN_IDENTIFIER);
}
required_source_columns.swap(source_columns);
for (const auto & column : required_source_columns)
{
source_column_names.insert(column.name);
}
return true;
}
NameSet TreeRewriterResult::getArrayJoinSourceNameSet() const
{
NameSet forbidden_columns;
for (const auto & elem : array_join_result_to_source)
forbidden_columns.insert(elem.first);
return forbidden_columns;
}
TreeRewriterResultPtr TreeRewriter::analyzeSelect(
ASTPtr & query,
TreeRewriterResult && result,
const SelectQueryOptions & select_options,
const TablesWithColumns & tables_with_columns,
const Names & required_result_columns,
std::shared_ptr<TableJoin> table_join) const
{
auto * select_query = query->as<ASTSelectQuery>();
if (!select_query)
throw Exception(ErrorCodes::LOGICAL_ERROR, "Select analyze for not select asts.");
size_t subquery_depth = select_options.subquery_depth;
bool remove_duplicates = select_options.remove_duplicates;
const auto & settings = getContext()->getSettingsRef();
const NameSet & source_columns_set = result.source_columns_set;
if (table_join)
{
result.analyzed_join = table_join;
result.analyzed_join->resetCollected();
}
else /// TODO: remove. For now ExpressionAnalyzer expects some not empty object here
result.analyzed_join = std::make_shared<TableJoin>();
if (remove_duplicates)
renameDuplicatedColumns(select_query);
/// Perform it before analyzing JOINs, because it may change number of columns with names unique and break some logic inside JOINs
if (settings.optimize_normalize_count_variants)
TreeOptimizer::optimizeCountConstantAndSumOne(query, getContext());
if (tables_with_columns.size() > 1)
{
const auto & right_table = tables_with_columns[1];
auto columns_from_joined_table = right_table.columns;
/// query can use materialized or aliased columns from right joined table,
/// we want to request it for right table
columns_from_joined_table.insert(columns_from_joined_table.end(), right_table.hidden_columns.begin(), right_table.hidden_columns.end());
result.analyzed_join->setColumnsFromJoinedTable(std::move(columns_from_joined_table), source_columns_set, right_table.table.getQualifiedNamePrefix());
}
translateQualifiedNames(query, *select_query, source_columns_set, tables_with_columns);
/// Optimizes logical expressions.
LogicalExpressionsOptimizer(select_query, tables_with_columns, settings.optimize_min_equality_disjunction_chain_length.value).perform();
NameSet all_source_columns_set = source_columns_set;
if (table_join)
{
for (const auto & [name, _] : table_join->columnsFromJoinedTable())
all_source_columns_set.insert(name);
}
normalize(query, result.aliases, all_source_columns_set, select_options.ignore_alias, settings, /* allow_self_aliases = */ true, getContext(), select_options.is_create_parameterized_view);
// expand GROUP BY ALL
if (select_query->group_by_all)
expandGroupByAll(select_query);
// expand ORDER BY ALL
if (settings.enable_order_by_all && select_query->order_by_all)
expandOrderByAll(select_query, tables_with_columns);
/// Remove unneeded columns according to 'required_result_columns'.
/// Leave all selected columns in case of DISTINCT; columns that contain arrayJoin function inside.
/// Must be after 'normalizeTree' (after expanding aliases, for aliases not get lost)
/// and before 'executeScalarSubqueries', 'analyzeAggregation', etc. to avoid excessive calculations.
removeUnneededColumnsFromSelectClause(select_query, required_result_columns, remove_duplicates);
/// Executing scalar subqueries - replacing them with constant values.
Scalars scalars;
Scalars local_scalars;
executeScalarSubqueries(
query,
getContext(),
subquery_depth,
scalars,
local_scalars,
select_options.only_analyze,
select_options.is_create_parameterized_view);
/// Save scalar sub queries's results in the query context
/// Note that we are only saving scalars and not local_scalars since the latter can't be safely shared across contexts
if (!select_options.only_analyze && getContext()->hasQueryContext())
{
for (const auto & it : scalars)
getContext()->getQueryContext()->addScalar(it.first, it.second);
}
if (settings.legacy_column_name_of_tuple_literal)
markTupleLiteralsAsLegacy(query);
/// Push the predicate expression down to subqueries. The optimization should be applied to both initial and secondary queries.
result.rewrite_subqueries = PredicateExpressionsOptimizer(getContext(), tables_with_columns, settings).optimize(*select_query);
/// Only apply AST optimization for initial queries.
const bool ast_optimizations_allowed =
getContext()->getClientInfo().query_kind != ClientInfo::QueryKind::SECONDARY_QUERY
&& !select_options.ignore_ast_optimizations;
bool optimize_multiif_to_if = ast_optimizations_allowed && settings.optimize_multiif_to_if;
TreeOptimizer::optimizeIf(query, result.aliases, settings.optimize_if_chain_to_multiif, optimize_multiif_to_if);
if (ast_optimizations_allowed)
TreeOptimizer::apply(query, result, tables_with_columns, getContext());
/// array_join_alias_to_name, array_join_result_to_source.
getArrayJoinedColumns(query, result, select_query, result.source_columns, source_columns_set);
setJoinStrictness(
*select_query, settings.join_default_strictness, settings.any_join_distinct_right_table_keys, result.analyzed_join);
auto * table_join_ast = select_query->join() ? select_query->join()->table_join->as<ASTTableJoin>() : nullptr;
if (table_join_ast && tables_with_columns.size() >= 2)
collectJoinedColumns(*result.analyzed_join, *table_join_ast, tables_with_columns, result.aliases, getContext());
result.aggregates = getAggregates(query, *select_query);
result.window_function_asts = getWindowFunctions(query, *select_query);
result.expressions_with_window_function = getExpressionsWithWindowFunctions(query);
result.collectUsedColumns(query, true);
if (!result.missed_subcolumns.empty())
{
for (const String & column_name : result.missed_subcolumns)
replaceMissedSubcolumnsInQuery(query, column_name);
result.missed_subcolumns.clear();
}
result.required_source_columns_before_expanding_alias_columns = result.required_source_columns.getNames();
/// rewrite filters for select query, must go after getArrayJoinedColumns
bool is_initiator = getContext()->getClientInfo().distributed_depth == 0;
if (settings.optimize_respect_aliases && result.storage_snapshot && is_initiator)
{
std::unordered_set<IAST *> excluded_nodes;
{
/// Do not replace ALIASed columns in JOIN ON/USING sections
if (table_join_ast && table_join_ast->on_expression)
excluded_nodes.insert(table_join_ast->on_expression.get());
if (table_join_ast && table_join_ast->using_expression_list)
excluded_nodes.insert(table_join_ast->using_expression_list.get());
}
bool is_changed = replaceAliasColumnsInQuery(query, result.storage_snapshot->metadata->getColumns(),
result.array_join_result_to_source, getContext(), excluded_nodes);
/// If query is changed, we need to redo some work to correct name resolution.
if (is_changed)
{
/// We should re-apply the optimization, because an expression substituted from alias column might be a function of a group key.
if (ast_optimizations_allowed && settings.optimize_group_by_function_keys)
TreeOptimizer::optimizeGroupByFunctionKeys(select_query);
result.aggregates = getAggregates(query, *select_query);
result.window_function_asts = getWindowFunctions(query, *select_query);
result.expressions_with_window_function = getExpressionsWithWindowFunctions(query);
result.collectUsedColumns(query, true);
}
}
/// Rewrite _shard_num to shardNum()
if (result.has_virtual_shard_num)
{
RewriteShardNumVisitor::Data data_rewrite_shard_num;
RewriteShardNumVisitor(data_rewrite_shard_num).visit(query);
}
result.ast_join = select_query->join();
if (result.optimize_trivial_count)
result.optimize_trivial_count = settings.optimize_trivial_count_query &&
!select_query->groupBy() && !select_query->having() &&
!select_query->sampleSize() && !select_query->sampleOffset() && !select_query->final() &&
(tables_with_columns.size() < 2 || isLeft(result.analyzed_join->kind()));
// remove outer braces in order by
RewriteOrderByVisitor::Data data;
RewriteOrderByVisitor(data).visit(query);
return std::make_shared<const TreeRewriterResult>(result);
}
TreeRewriterResultPtr TreeRewriter::analyze(
ASTPtr & query,
const NamesAndTypesList & source_columns,
ConstStoragePtr storage,
const StorageSnapshotPtr & storage_snapshot,
bool allow_aggregations,
bool allow_self_aliases,
bool execute_scalar_subqueries,
bool is_create_parameterized_view) const
{
if (query->as<ASTSelectQuery>())
throw Exception(ErrorCodes::LOGICAL_ERROR, "Not select analyze for select asts.");
const auto & settings = getContext()->getSettingsRef();
TreeRewriterResult result(source_columns, storage, storage_snapshot, false);
normalize(query, result.aliases, result.source_columns_set, false, settings, allow_self_aliases, getContext(), is_create_parameterized_view);
/// Executing scalar subqueries. Column defaults could be a scalar subquery.
Scalars scalars;
Scalars local_scalars;
executeScalarSubqueries(query, getContext(), 0, scalars, local_scalars, !execute_scalar_subqueries, is_create_parameterized_view);
/// Save scalar sub queries's results in the query context
/// Note that we are only saving scalars and not local_scalars since the latter can't be safely shared across contexts
if (execute_scalar_subqueries && getContext()->hasQueryContext())
{
for (const auto & it : scalars)
getContext()->getQueryContext()->addScalar(it.first, it.second);
}
if (settings.legacy_column_name_of_tuple_literal)
markTupleLiteralsAsLegacy(query);
TreeOptimizer::optimizeIf(query, result.aliases, settings.optimize_if_chain_to_multiif, false);
if (allow_aggregations)
{
GetAggregatesVisitor::Data data;
GetAggregatesVisitor(data).visit(query);
/// There can not be other aggregate functions within the aggregate functions.
for (const ASTPtr & node : data.aggregates)
for (auto & arg : typeid_cast<const ASTFunction &>(*node).arguments->children)
assertNoAggregates(arg, "inside another aggregate function");
result.aggregates = data.aggregates;
}
else
assertNoAggregates(query, "in wrong place");
bool is_ok = result.collectUsedColumns(query, false, no_throw);
if (!is_ok)
return {};
if (!result.missed_subcolumns.empty())
{
for (const String & column_name : result.missed_subcolumns)
replaceMissedSubcolumnsInQuery(query, column_name);
result.missed_subcolumns.clear();
}
return std::make_shared<const TreeRewriterResult>(result);
}
void TreeRewriter::normalize(
ASTPtr & query, Aliases & aliases, const NameSet & source_columns_set, bool ignore_alias, const Settings & settings, bool allow_self_aliases, ContextPtr context_, bool is_create_parameterized_view)
{
if (!UserDefinedSQLFunctionFactory::instance().empty())
UserDefinedSQLFunctionVisitor::visit(query);
CustomizeCountDistinctVisitor::Data data_count_distinct{settings.count_distinct_implementation};
CustomizeCountDistinctVisitor(data_count_distinct).visit(query);
CustomizeCountIfDistinctVisitor::Data data_count_if_distinct{settings.count_distinct_implementation.toString() + "If"};
CustomizeCountIfDistinctVisitor(data_count_if_distinct).visit(query);
CustomizeIfDistinctVisitor::Data data_distinct_if{"DistinctIf"};
CustomizeIfDistinctVisitor(data_distinct_if).visit(query);
if (settings.rewrite_count_distinct_if_with_count_distinct_implementation)
{
CustomizeCountDistinctIfVisitor::Data data_count_distinct_if{settings.count_distinct_implementation.toString() + "If"};
CustomizeCountDistinctIfVisitor(data_count_distinct_if).visit(query);
}
ExistsExpressionVisitor::Data exists;
ExistsExpressionVisitor(exists).visit(query);
if (context_->getSettingsRef().enable_positional_arguments)
{
ReplacePositionalArgumentsVisitor::Data data_replace_positional_arguments;
ReplacePositionalArgumentsVisitor(data_replace_positional_arguments).visit(query);
}
if (settings.transform_null_in)
{
CustomizeInVisitor::Data data_null_in{"nullIn"};
CustomizeInVisitor(data_null_in).visit(query);
CustomizeNotInVisitor::Data data_not_null_in{"notNullIn"};
CustomizeNotInVisitor(data_not_null_in).visit(query);
CustomizeGlobalInVisitor::Data data_global_null_in{"globalNullIn"};
CustomizeGlobalInVisitor(data_global_null_in).visit(query);
CustomizeGlobalNotInVisitor::Data data_global_not_null_in{"globalNotNullIn"};
CustomizeGlobalNotInVisitor(data_global_not_null_in).visit(query);
}
/// Rewrite all aggregate functions to add -OrNull suffix to them
if (settings.aggregate_functions_null_for_empty)
{
CustomizeAggregateFunctionsOrNullVisitor::Data data_or_null{"OrNull"};
CustomizeAggregateFunctionsOrNullVisitor(data_or_null).visit(query);
}
/// Move -OrNull suffix ahead, this should execute after add -OrNull suffix
CustomizeAggregateFunctionsMoveOrNullVisitor::Data data_or_null{"OrNull"};
CustomizeAggregateFunctionsMoveOrNullVisitor(data_or_null).visit(query);
/// Creates a dictionary `aliases`: alias -> ASTPtr
QueryAliasesVisitor(aliases).visit(query);
/// Mark table ASTIdentifiers with not a column marker
MarkTableIdentifiersVisitor::Data identifiers_data{aliases};
MarkTableIdentifiersVisitor(identifiers_data).visit(query);
/// Rewrite function names to their canonical ones.
/// Notice: function name normalization is disabled when it's a secondary query, because queries are either
/// already normalized on initiator node, or not normalized and should remain unnormalized for
/// compatibility.
if (context_->getClientInfo().query_kind != ClientInfo::QueryKind::SECONDARY_QUERY && settings.normalize_function_names)
FunctionNameNormalizer::visit(query.get());
if (settings.optimize_move_to_prewhere)
{
/// Required for PREWHERE
ComparisonTupleEliminationVisitor::Data data_comparison_tuple_elimination;
ComparisonTupleEliminationVisitor(data_comparison_tuple_elimination).visit(query);
}
/// Common subexpression elimination. Rewrite rules.
QueryNormalizer::Data normalizer_data(aliases, source_columns_set, ignore_alias, settings, allow_self_aliases, is_create_parameterized_view);
QueryNormalizer(normalizer_data).visit(query);
optimizeGroupingSets(query);
}
}