ClickHouse/src/Dictionaries/ComplexKeyCacheDictionary.cpp
2021-01-27 16:25:27 +03:00

916 lines
33 KiB
C++

#include "ComplexKeyCacheDictionary.h"
#include <Common/Arena.h>
#include <Common/BitHelpers.h>
#include <Common/CurrentMetrics.h>
#include <Common/ProfileEvents.h>
#include <Common/ProfilingScopedRWLock.h>
#include <Common/Stopwatch.h>
#include <Common/randomSeed.h>
#include <ext/map.h>
#include <ext/range.h>
#include "DictionaryBlockInputStream.h"
#include "DictionaryFactory.h"
#include <Functions/FunctionHelpers.h>
#include <DataTypes/DataTypesDecimal.h>
namespace ProfileEvents
{
extern const Event DictCacheKeysRequested;
extern const Event DictCacheKeysRequestedMiss;
extern const Event DictCacheKeysRequestedFound;
extern const Event DictCacheKeysExpired;
extern const Event DictCacheKeysNotFound;
extern const Event DictCacheKeysHit;
extern const Event DictCacheRequestTimeNs;
extern const Event DictCacheLockWriteNs;
extern const Event DictCacheLockReadNs;
}
namespace CurrentMetrics
{
extern const Metric DictCacheRequests;
}
namespace DB
{
namespace ErrorCodes
{
extern const int TYPE_MISMATCH;
extern const int BAD_ARGUMENTS;
extern const int UNSUPPORTED_METHOD;
extern const int TOO_SMALL_BUFFER_SIZE;
}
inline UInt64 ComplexKeyCacheDictionary::getCellIdx(const StringRef key) const
{
const auto hash = StringRefHash{}(key);
const auto idx = hash & size_overlap_mask;
return idx;
}
ComplexKeyCacheDictionary::ComplexKeyCacheDictionary(
const StorageID & dict_id_,
const DictionaryStructure & dict_struct_,
DictionarySourcePtr source_ptr_,
const DictionaryLifetime dict_lifetime_,
const size_t size_)
: IDictionaryBase(dict_id_)
, dict_struct(dict_struct_)
, source_ptr{std::move(source_ptr_)}
, dict_lifetime(dict_lifetime_)
, size{roundUpToPowerOfTwoOrZero(std::max(size_, size_t(max_collision_length)))}
, size_overlap_mask{this->size - 1}
, rnd_engine(randomSeed())
{
if (!this->source_ptr->supportsSelectiveLoad())
throw Exception{full_name + ": source cannot be used with ComplexKeyCacheDictionary", ErrorCodes::UNSUPPORTED_METHOD};
createAttributes();
}
ColumnPtr ComplexKeyCacheDictionary::getColumn(
const std::string & attribute_name,
const DataTypePtr & result_type,
const Columns & key_columns,
const DataTypes & key_types,
const ColumnPtr default_values_column) const
{
dict_struct.validateKeyTypes(key_types);
ColumnPtr result;
auto & attribute = getAttribute(attribute_name);
const auto & dictionary_attribute = dict_struct.getAttribute(attribute_name, result_type);
auto keys_size = key_columns.front()->size();
auto type_call = [&](const auto &dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
using ColumnProvider = DictionaryAttributeColumnProvider<AttributeType>;
const auto & null_value = std::get<AttributeType>(attribute.null_values);
DictionaryDefaultValueExtractor<AttributeType> default_value_extractor(null_value, default_values_column);
auto column = ColumnProvider::getColumn(dictionary_attribute, keys_size);
if constexpr (std::is_same_v<AttributeType, String>)
{
auto * out = column.get();
getItemsString(attribute, key_columns, out, default_value_extractor);
}
else
{
auto & out = column->getData();
getItemsNumberImpl<AttributeType, AttributeType>(attribute, key_columns, out, default_value_extractor);
}
result = std::move(column);
};
callOnDictionaryAttributeType(attribute.type, type_call);
return result;
}
/// returns cell_idx (always valid for replacing), 'cell is valid' flag, 'cell is outdated' flag,
/// true false found and valid
/// false true not found (something outdated, maybe our cell)
/// false false not found (other id stored with valid data)
/// true true impossible
///
/// todo: split this func to two: find_for_get and find_for_set
ComplexKeyCacheDictionary::FindResult
ComplexKeyCacheDictionary::findCellIdx(const StringRef & key, const CellMetadata::time_point_t now, const size_t hash) const
{
auto pos = hash;
auto oldest_id = pos;
auto oldest_time = CellMetadata::time_point_t::max();
const auto stop = pos + max_collision_length;
for (; pos < stop; ++pos)
{
const auto cell_idx = pos & size_overlap_mask;
const auto & cell = cells[cell_idx];
if (cell.hash != hash || cell.key != key)
{
/// maybe we already found nearest expired cell
if (oldest_time > now && oldest_time > cell.expiresAt())
{
oldest_time = cell.expiresAt();
oldest_id = cell_idx;
}
continue;
}
if (cell.expiresAt() < now)
{
return {cell_idx, false, true};
}
return {cell_idx, true, false};
}
oldest_id &= size_overlap_mask;
return {oldest_id, false, false};
}
ColumnUInt8::Ptr ComplexKeyCacheDictionary::hasKeys(const Columns & key_columns, const DataTypes & key_types) const
{
dict_struct.validateKeyTypes(key_types);
const auto rows_num = key_columns.front()->size();
auto result = ColumnUInt8::create(rows_num);
auto& out = result->getData();
for (const auto row : ext::range(0, rows_num))
out[row] = false;
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows_num);
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
const auto & cell_idx = find_result.cell_idx;
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell = cells[cell_idx];
out[row] = !cell.isDefault();
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return result;
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(
std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows), [](auto & pair) { return pair.getMapped().front(); });
/// request new values
update(
key_columns,
keys_array,
required_rows,
[&](const StringRef key, const auto)
{
for (const auto out_idx : outdated_keys[key])
out[out_idx] = true;
},
[&](const StringRef key, const auto)
{
for (const auto out_idx : outdated_keys[key])
out[out_idx] = false;
});
return result;
}
template <typename AttributeType, typename OutputType, typename DefaultValueExtractor>
void ComplexKeyCacheDictionary::getItemsNumberImpl(
Attribute & attribute,
const Columns & key_columns,
PaddedPODArray<OutputType> & out,
DefaultValueExtractor & default_value_extractor) const
{
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
auto & attribute_array = std::get<ContainerPtrType<AttributeType>>(attribute.arrays);
const auto rows_num = key_columns.front()->size();
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
PODArray<StringRef> keys_array(rows_num);
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, decide which ones require update
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
/** cell should be updated if either:
* 1. keys (or hash) do not match,
* 2. cell has expired,
* 3. explicit defaults were specified and cell was set default. */
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
out[row] = cell.isDefault() ? default_value_extractor[row] : static_cast<OutputType>(attribute_array[cell_idx]);
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
if (outdated_keys.empty())
return;
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows), [](auto & pair)
{
return pair.getMapped().front();
});
/// request new values
update(
key_columns,
keys_array,
required_rows,
[&](const StringRef key, const size_t cell_idx)
{
for (const auto row : outdated_keys[key])
out[row] = static_cast<OutputType>(attribute_array[cell_idx]);
},
[&](const StringRef key, const size_t)
{
for (const auto row : outdated_keys[key])
out[row] = default_value_extractor[row];
});
}
void ComplexKeyCacheDictionary::getItemsString(
Attribute & attribute,
const Columns & key_columns,
ColumnString * out,
DictionaryDefaultValueExtractor<String> & default_value_extractor) const
{
const auto rows_num = key_columns.front()->size();
/// save on some allocations
out->getOffsets().reserve(rows_num);
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
Arena temporary_keys_pool;
auto & attribute_array = std::get<ContainerPtrType<StringRef>>(attribute.arrays);
auto found_outdated_values = false;
/// perform optimistic version, fallback to pessimistic if failed
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
/// fetch up-to-date values, discard on fail
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
SCOPE_EXIT(temporary_keys_pool.rollback(key.size));
const auto find_result = findCellIdx(key, now);
if (!find_result.valid)
{
found_outdated_values = true;
break;
}
else
{
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? default_value_extractor[row] : attribute_array[cell_idx];
out->insertData(string_ref.data, string_ref.size);
}
}
}
/// optimistic code completed successfully
if (!found_outdated_values)
{
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num, std::memory_order_release);
return;
}
/// now onto the pessimistic one, discard possible partial results from the optimistic path
out->getChars().resize_assume_reserved(0);
out->getOffsets().resize_assume_reserved(0);
/// Mapping: <key> -> { all indices `i` of `key_columns` such that `key_columns[i]` = <key> }
MapType<std::vector<size_t>> outdated_keys;
/// we are going to store every string separately
MapType<StringRef> map;
PODArray<StringRef> keys_array(rows_num);
size_t total_length = 0;
size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
const auto now = std::chrono::system_clock::now();
for (const auto row : ext::range(0, rows_num))
{
const StringRef key = placeKeysInPool(row, key_columns, keys, *dict_struct.key, temporary_keys_pool);
keys_array[row] = key;
const auto find_result = findCellIdx(key, now);
if (!find_result.valid)
{
outdated_keys[key].push_back(row);
if (find_result.outdated)
++cache_expired;
else
++cache_not_found;
}
else
{
++cache_hit;
const auto & cell_idx = find_result.cell_idx;
const auto & cell = cells[cell_idx];
const auto string_ref = cell.isDefault() ? default_value_extractor[row] : attribute_array[cell_idx];
if (!cell.isDefault())
map[key] = copyIntoArena(string_ref, temporary_keys_pool);
total_length += string_ref.size + 1;
}
}
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired);
ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found);
ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit);
query_count.fetch_add(rows_num, std::memory_order_relaxed);
hit_count.fetch_add(rows_num - outdated_keys.size(), std::memory_order_release);
/// request new values
if (!outdated_keys.empty())
{
std::vector<size_t> required_rows(outdated_keys.size());
std::transform(std::begin(outdated_keys), std::end(outdated_keys), std::begin(required_rows), [](auto & pair)
{
return pair.getMapped().front();
});
update(
key_columns,
keys_array,
required_rows,
[&](const StringRef key, const size_t cell_idx)
{
const StringRef attribute_value = attribute_array[cell_idx];
/// We must copy key and value to own memory, because it may be replaced with another
/// in next iterations of inner loop of update.
const StringRef copied_key = copyIntoArena(key, temporary_keys_pool);
const StringRef copied_value = copyIntoArena(attribute_value, temporary_keys_pool);
map[copied_key] = copied_value;
total_length += (attribute_value.size + 1) * outdated_keys[key].size();
},
[&](const StringRef key, const size_t)
{
for (const auto row : outdated_keys[key])
total_length += default_value_extractor[row].size + 1;
});
}
out->getChars().reserve(total_length);
for (const auto row : ext::range(0, ext::size(keys_array)))
{
const StringRef key = keys_array[row];
auto * const it = map.find(key);
const auto string_ref = it ? it->getMapped() : default_value_extractor[row];
out->insertData(string_ref.data, string_ref.size);
}
}
template <typename PresentKeyHandler, typename AbsentKeyHandler>
void ComplexKeyCacheDictionary::update(
const Columns & in_key_columns,
const PODArray<StringRef> & in_keys,
const std::vector<size_t> & in_requested_rows,
PresentKeyHandler && on_cell_updated,
AbsentKeyHandler && on_key_not_found) const
{
MapType<bool> remaining_keys{in_requested_rows.size()};
for (const auto row : in_requested_rows)
remaining_keys.insert({in_keys[row], false});
std::uniform_int_distribution<UInt64> distribution(dict_lifetime.min_sec, dict_lifetime.max_sec);
const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs};
{
Stopwatch watch;
auto stream = source_ptr->loadKeys(in_key_columns, in_requested_rows);
stream->readPrefix();
const auto keys_size = dict_struct.key->size();
StringRefs keys(keys_size);
const auto attributes_size = attributes.size();
const auto now = std::chrono::system_clock::now();
while (const auto block = stream->read())
{
/// cache column pointers
const auto key_columns = ext::map<Columns>(
ext::range(0, keys_size), [&](const size_t attribute_idx) { return block.safeGetByPosition(attribute_idx).column; });
const auto attribute_columns = ext::map<Columns>(ext::range(0, attributes_size), [&](const size_t attribute_idx)
{
return block.safeGetByPosition(keys_size + attribute_idx).column;
});
const auto rows_num = block.rows();
for (const auto row : ext::range(0, rows_num))
{
auto key = allocKey(row, key_columns, keys);
const auto hash = StringRefHash{}(key);
const auto find_result = findCellIdx(key, now, hash);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
for (const auto attribute_idx : ext::range(0, attributes.size()))
{
const auto & attribute_column = *attribute_columns[attribute_idx];
auto & attribute = attributes[attribute_idx];
setAttributeValue(attribute, cell_idx, attribute_column[row]);
}
/// if cell id is zero and zero does not map to this cell, then the cell is unused
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
/// handle memory allocated for old key
if (key == cell.key)
{
freeKey(key);
key = cell.key;
}
else
{
/// new key is different from the old one
if (cell.key.data)
freeKey(cell.key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
/// inform caller
on_cell_updated(key, cell_idx);
/// mark corresponding id as found
remaining_keys[key] = true;
}
}
stream->readSuffix();
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, in_requested_rows.size());
ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed());
}
size_t found_num = 0;
size_t not_found_num = 0;
const auto now = std::chrono::system_clock::now();
/// Check which ids have not been found and require setting null_value
for (const auto & key_found_pair : remaining_keys)
{
if (key_found_pair.getMapped())
{
++found_num;
continue;
}
++not_found_num;
auto key = key_found_pair.getKey();
const auto hash = StringRefHash{}(key);
const auto find_result = findCellIdx(key, now, hash);
const auto & cell_idx = find_result.cell_idx;
auto & cell = cells[cell_idx];
/// Set null_value for each attribute
for (auto & attribute : attributes)
setDefaultAttributeValue(attribute, cell_idx);
/// Check if cell had not been occupied before and increment element counter if it hadn't
if (cell.key == StringRef{} && cell_idx != zero_cell_idx)
element_count.fetch_add(1, std::memory_order_relaxed);
if (key == cell.key)
key = cell.key;
else
{
if (cell.key.data)
freeKey(cell.key);
/// copy key from temporary pool
key = copyKey(key);
cell.key = key;
}
cell.hash = hash;
if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0)
cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)});
else
cell.setExpiresAt(std::chrono::time_point<std::chrono::system_clock>::max());
cell.setDefault();
/// inform caller that the cell has not been found
on_key_not_found(key, cell_idx);
}
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedFound, found_num);
ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num);
}
void ComplexKeyCacheDictionary::createAttributes()
{
const auto attributes_size = dict_struct.attributes.size();
attributes.reserve(attributes_size);
bytes_allocated += size * sizeof(CellMetadata);
bytes_allocated += attributes_size * sizeof(attributes.front());
for (const auto & attribute : dict_struct.attributes)
{
attribute_index_by_name.emplace(attribute.name, attributes.size());
attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value));
if (attribute.hierarchical)
throw Exception{full_name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(),
ErrorCodes::TYPE_MISMATCH};
}
}
ComplexKeyCacheDictionary::Attribute & ComplexKeyCacheDictionary::getAttribute(const std::string & attribute_name) const
{
const auto it = attribute_index_by_name.find(attribute_name);
if (it == std::end(attribute_index_by_name))
throw Exception{full_name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS};
return attributes[it->second];
}
void ComplexKeyCacheDictionary::setDefaultAttributeValue(Attribute & attribute, const size_t idx) const
{
auto type_call = [&](const auto &dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
if constexpr (std::is_same_v<AttributeType, String>)
{
const auto & null_value_ref = std::get<String>(attribute.null_values);
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
if (string_ref.data != null_value_ref.data())
{
if (string_ref.data)
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
string_ref = StringRef{null_value_ref};
}
}
else
{
std::get<ContainerPtrType<AttributeType>>(attribute.arrays)[idx] = std::get<AttributeType>(attribute.null_values);
}
};
callOnDictionaryAttributeType(attribute.type, type_call);
}
ComplexKeyCacheDictionary::Attribute
ComplexKeyCacheDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value)
{
Attribute attr{type, {}, {}};
auto type_call = [&](const auto &dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
if constexpr (std::is_same_v<AttributeType, String>)
{
attr.null_values = null_value.get<String>();
attr.arrays = std::make_unique<ContainerType<StringRef>>(size);
bytes_allocated += size * sizeof(StringRef);
if (!string_arena)
string_arena = std::make_unique<ArenaWithFreeLists>();
}
else
{
attr.null_values = AttributeType(null_value.get<NearestFieldType<AttributeType>>()); /* NOLINT */
attr.arrays = std::make_unique<ContainerType<AttributeType>>(size); /* NOLINT */
bytes_allocated += size * sizeof(AttributeType);
}
};
callOnDictionaryAttributeType(type, type_call);
return attr;
}
void ComplexKeyCacheDictionary::setAttributeValue(Attribute & attribute, const size_t idx, const Field & value) const
{
auto type_call = [&](const auto &dictionary_attribute_type)
{
using Type = std::decay_t<decltype(dictionary_attribute_type)>;
using AttributeType = typename Type::AttributeType;
if constexpr (std::is_same_v<AttributeType, String>)
{
const auto & string = value.get<String>();
auto & string_ref = std::get<ContainerPtrType<StringRef>>(attribute.arrays)[idx];
const auto & null_value_ref = std::get<String>(attribute.null_values);
/// free memory unless it points to a null_value
if (string_ref.data && string_ref.data != null_value_ref.data())
string_arena->free(const_cast<char *>(string_ref.data), string_ref.size);
const auto str_size = string.size();
if (str_size != 0)
{
auto * str_ptr = string_arena->alloc(str_size);
std::copy(string.data(), string.data() + str_size, str_ptr);
string_ref = StringRef{str_ptr, str_size};
}
else
string_ref = {};
}
else
{
std::get<ContainerPtrType<AttributeType>>(attribute.arrays)[idx] = value.get<NearestFieldType<AttributeType>>();
}
};
callOnDictionaryAttributeType(attribute.type, type_call);
}
StringRef ComplexKeyCacheDictionary::allocKey(const size_t row, const Columns & key_columns, StringRefs & keys) const
{
if (key_size_is_fixed)
return placeKeysInFixedSizePool(row, key_columns);
return placeKeysInPool(row, key_columns, keys, *dict_struct.key, *keys_pool);
}
void ComplexKeyCacheDictionary::freeKey(const StringRef key) const
{
if (key_size_is_fixed)
fixed_size_keys_pool->free(const_cast<char *>(key.data));
else
keys_pool->free(const_cast<char *>(key.data), key.size);
}
template <typename Pool>
StringRef ComplexKeyCacheDictionary::placeKeysInPool(
const size_t row, const Columns & key_columns, StringRefs & keys, const std::vector<DictionaryAttribute> & key_attributes, Pool & pool)
{
const auto keys_size = key_columns.size();
size_t sum_keys_size{};
for (size_t j = 0; j < keys_size; ++j)
{
keys[j] = key_columns[j]->getDataAt(row);
sum_keys_size += keys[j].size;
if (key_attributes[j].underlying_type == AttributeUnderlyingType::utString)
sum_keys_size += sizeof(size_t) + 1;
}
auto place = pool.alloc(sum_keys_size);
auto key_start = place;
for (size_t j = 0; j < keys_size; ++j)
{
if (key_attributes[j].underlying_type == AttributeUnderlyingType::utString)
{
auto start = key_start;
auto key_size = keys[j].size + 1;
memcpy(key_start, &key_size, sizeof(size_t));
key_start += sizeof(size_t);
memcpy(key_start, keys[j].data, keys[j].size);
key_start += keys[j].size;
*key_start = '\0';
++key_start;
keys[j].data = start;
keys[j].size += sizeof(size_t) + 1;
}
else
{
memcpy(key_start, keys[j].data, keys[j].size);
keys[j].data = key_start;
key_start += keys[j].size;
}
}
return {place, sum_keys_size};
}
/// Explicit instantiations.
template StringRef ComplexKeyCacheDictionary::placeKeysInPool<Arena>(
const size_t row,
const Columns & key_columns,
StringRefs & keys,
const std::vector<DictionaryAttribute> & key_attributes,
Arena & pool);
template StringRef ComplexKeyCacheDictionary::placeKeysInPool<ArenaWithFreeLists>(
const size_t row,
const Columns & key_columns,
StringRefs & keys,
const std::vector<DictionaryAttribute> & key_attributes,
ArenaWithFreeLists & pool);
StringRef ComplexKeyCacheDictionary::placeKeysInFixedSizePool(const size_t row, const Columns & key_columns) const
{
auto * res = fixed_size_keys_pool->alloc();
auto * place = res;
for (const auto & key_column : key_columns)
{
const StringRef key = key_column->getDataAt(row);
memcpy(place, key.data, key.size);
place += key.size;
}
return {res, key_size};
}
StringRef ComplexKeyCacheDictionary::copyIntoArena(StringRef src, Arena & arena)
{
char * allocated = arena.alloc(src.size);
memcpy(allocated, src.data, src.size);
return {allocated, src.size};
}
StringRef ComplexKeyCacheDictionary::copyKey(const StringRef key) const
{
auto * res = key_size_is_fixed ? fixed_size_keys_pool->alloc() : keys_pool->alloc(key.size);
memcpy(res, key.data, key.size);
return {res, key.size};
}
bool ComplexKeyCacheDictionary::isEmptyCell(const UInt64 idx) const
{
return (
cells[idx].key == StringRef{}
&& (idx != zero_cell_idx || cells[idx].data == ext::safe_bit_cast<CellMetadata::time_point_urep_t>(CellMetadata::time_point_t())));
}
BlockInputStreamPtr ComplexKeyCacheDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const
{
std::vector<StringRef> keys;
{
const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs};
for (auto idx : ext::range(0, cells.size()))
if (!isEmptyCell(idx) && !cells[idx].isDefault())
keys.push_back(cells[idx].key);
}
using BlockInputStreamType = DictionaryBlockInputStream<UInt64>;
return std::make_shared<BlockInputStreamType>(shared_from_this(), max_block_size, keys, column_names);
}
void registerDictionaryComplexKeyCache(DictionaryFactory & factory)
{
auto create_layout = [=](const std::string & full_name,
const DictionaryStructure & dict_struct,
const Poco::Util::AbstractConfiguration & config,
const std::string & config_prefix,
DictionarySourcePtr source_ptr) -> DictionaryPtr
{
if (!dict_struct.key)
throw Exception{"'key' is required for dictionary of layout 'complex_key_hashed'", ErrorCodes::BAD_ARGUMENTS};
const auto & layout_prefix = config_prefix + ".layout";
const auto size = config.getInt(layout_prefix + ".complex_key_cache.size_in_cells");
if (size == 0)
throw Exception{full_name + ": dictionary of layout 'cache' cannot have 0 cells", ErrorCodes::TOO_SMALL_BUFFER_SIZE};
const bool require_nonempty = config.getBool(config_prefix + ".require_nonempty", false);
if (require_nonempty)
throw Exception{full_name + ": dictionary of layout 'cache' cannot have 'require_nonempty' attribute set",
ErrorCodes::BAD_ARGUMENTS};
const auto dict_id = StorageID::fromDictionaryConfig(config, config_prefix);
const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"};
return std::make_unique<ComplexKeyCacheDictionary>(dict_id, dict_struct, std::move(source_ptr), dict_lifetime, size);
};
factory.registerLayout("complex_key_cache", create_layout, true);
}
}