ClickHouse/dbms/include/DB/Functions/FunctionsRound.h
Alexey Arno aa6fb6b229 Merge
2015-05-14 15:08:27 +03:00

458 lines
13 KiB
C++
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

#pragma once
#include <DB/Functions/FunctionsArithmetic.h>
#include <cmath>
#include <type_traits>
#include <array>
namespace DB
{
/** Функции округления:
* roundToExp2 - вниз до ближайшей степени двойки;
* roundDuration - вниз до ближайшего из: 0, 1, 10, 30, 60, 120, 180, 240, 300, 600, 1200, 1800, 3600, 7200, 18000, 36000;
* roundAge - вниз до ближайшего из: 0, 18, 25, 35, 45.
* round(x, N) - арифметическое округление (N - сколько знаков после запятой оставить; 0 по умолчанию).
* ceil(x, N) - наименьшее число, которое не меньше x (N - сколько знаков после запятой оставить; 0 по умолчанию).
* floor(x, N) - наибольшее число, которое не больше x (N - сколько знаков после запятой оставить; 0 по умолчанию).
*/
template<typename A>
struct RoundToExp2Impl
{
typedef A ResultType;
static inline A apply(A x)
{
return x <= 0 ? static_cast<A>(0) : (static_cast<A>(1) << static_cast<UInt64>(log2(static_cast<double>(x))));
}
};
template<>
struct RoundToExp2Impl<Float32>
{
typedef Float32 ResultType;
static inline Float32 apply(Float32 x)
{
return static_cast<Float32>(x < 1 ? 0. : pow(2., floor(log2(x))));
}
};
template<>
struct RoundToExp2Impl<Float64>
{
typedef Float64 ResultType;
static inline Float64 apply(Float64 x)
{
return x < 1 ? 0. : pow(2., floor(log2(x)));
}
};
template<typename A>
struct RoundDurationImpl
{
typedef UInt16 ResultType;
static inline ResultType apply(A x)
{
return x < 1 ? 0
: (x < 10 ? 1
: (x < 30 ? 10
: (x < 60 ? 30
: (x < 120 ? 60
: (x < 180 ? 120
: (x < 240 ? 180
: (x < 300 ? 240
: (x < 600 ? 300
: (x < 1200 ? 600
: (x < 1800 ? 1200
: (x < 3600 ? 1800
: (x < 7200 ? 3600
: (x < 18000 ? 7200
: (x < 36000 ? 18000
: 36000))))))))))))));
}
};
template<typename A>
struct RoundAgeImpl
{
typedef UInt8 ResultType;
static inline ResultType apply(A x)
{
return x < 18 ? 0
: (x < 25 ? 18
: (x < 35 ? 25
: (x < 45 ? 35
: 45)));
}
};
template<typename T, template<typename> class Op, typename PowersTable>
struct FunctionApproximatingImpl
{
template <typename U = T>
static inline U apply(U val, UInt8 precision,
typename std::enable_if<std::is_floating_point<U>::value>::type * = nullptr)
{
if (val == 0)
return val;
else
{
size_t power = PowersTable::values[precision];
return Op<U>::apply(val * power) / power;
}
}
/// Для целых чисел ничего не надо делать.
template <typename U = T>
static inline U apply(U val, UInt8 precision,
typename std::enable_if<std::is_integral<U>::value>::type * = nullptr)
{
return val;
}
};
template<typename T, typename U>
struct PrecisionForType
{
template<typename L = T>
static inline bool apply(const ColumnPtr & column, UInt8 & precision,
typename std::enable_if<std::is_floating_point<L>::value>::type * = nullptr)
{
using ColumnType = ColumnConst<U>;
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
if (precision_col == nullptr)
return false;
U val = precision_col->getData();
if (val < 0)
val = 0;
else if (val >= static_cast<U>(std::numeric_limits<L>::digits10))
val = static_cast<U>(std::numeric_limits<L>::digits10);
precision = static_cast<UInt8>(val);
return true;
}
/// Для целых чисел точность не имеет значения.
template<typename L = T>
static inline bool apply(const ColumnPtr & column, UInt8 & precision,
typename std::enable_if<std::is_integral<L>::value>::type * = nullptr)
{
using ColumnType = ColumnConst<U>;
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
if (precision_col == nullptr)
return false;
precision = 0;
return true;
}
};
/// Следующий код генерирует во время сборки таблицу степеней числа 10.
namespace
{
/// Отдельные степени числа 10.
template <size_t N>
struct PowerOf10
{
static const size_t value = 10 * PowerOf10<N - 1>::value;
};
template<>
struct PowerOf10<0>
{
static const size_t value = 1;
};
}
/// Объявление и определение контейнера содержащего таблицу степеней числа 10.
template <size_t... TArgs>
struct TableContainer
{
static const std::array<size_t, sizeof...(TArgs)> values;
};
template <size_t... TArgs>
const std::array<size_t, sizeof...(TArgs)> TableContainer<TArgs...>::values = { TArgs... };
/// Генератор первых N степеней.
template <size_t N, size_t... TArgs>
struct FillArrayImpl
{
using result = typename FillArrayImpl<N - 1, PowerOf10<N>::value, TArgs...>::result;
};
template <size_t... TArgs>
struct FillArrayImpl<0, TArgs...>
{
using result = TableContainer<PowerOf10<0>::value, TArgs...>;
};
template <size_t N>
struct FillArray
{
using result = typename FillArrayImpl<N-1>::result;
};
/** Шаблон для функцией, которые вычисляют приближенное значение входного параметра
* типа (U)Int8/16/32/64 или Float32/64 и принимают дополнительный необязятельный
* параметр указывающий сколько знаков после запятой оставить (по умолчанию - 0).
* Op - функция (round/floor/ceil)
*/
template<template<typename> class Op, typename Name>
class FunctionApproximating : public IFunction
{
public:
static constexpr auto name = Name::name;
static IFunction * create(const Context & context) { return new FunctionApproximating; }
private:
using PowersOf10 = FillArray<std::numeric_limits<DB::Float64>::digits10 + 1>::result;
private:
template<typename T>
bool checkType(const IDataType * type) const
{
return typeid_cast<const T *>(type) != nullptr;
}
template<typename T>
bool executeForType(Block & block, const ColumnNumbers & arguments, size_t result)
{
if (ColumnVector<T> * col = typeid_cast<ColumnVector<T> *>(&*block.getByPosition(arguments[0]).column))
{
UInt8 precision = 0;
if (arguments.size() == 2)
precision = getPrecision<T>(block.getByPosition(arguments[1]).column);
ColumnVector<T> * col_res = new ColumnVector<T>;
block.getByPosition(result).column = col_res;
typename ColumnVector<T>::Container_t & vec_res = col_res->getData();
vec_res.resize(col->getData().size());
const PODArray<T> & a = col->getData();
size_t size = a.size();
for (size_t i = 0; i < size; ++i)
vec_res[i] = FunctionApproximatingImpl<T, Op, PowersOf10>::apply(a[i], precision);
return true;
}
else if (ColumnConst<T> * col = typeid_cast<ColumnConst<T> *>(&*block.getByPosition(arguments[0]).column))
{
UInt8 precision = 0;
if (arguments.size() == 2)
precision = getPrecision<T>(block.getByPosition(arguments[1]).column);
T res = FunctionApproximatingImpl<T, Op, PowersOf10>::apply(col->getData(), precision);
ColumnConst<T> * col_res = new ColumnConst<T>(col->size(), res);
block.getByPosition(result).column = col_res;
return true;
}
return false;
}
/// В зависимости от входного параметра, определить какая нужна точность
/// для результата.
template<typename T>
UInt8 getPrecision(const ColumnPtr & column)
{
UInt8 precision = 0;
if (!( PrecisionForType<T, UInt8>::apply(column, precision)
|| PrecisionForType<T, UInt16>::apply(column, precision)
|| PrecisionForType<T, UInt16>::apply(column, precision)
|| PrecisionForType<T, UInt32>::apply(column, precision)
|| PrecisionForType<T, UInt64>::apply(column, precision)
|| PrecisionForType<T, Int8>::apply(column, precision)
|| PrecisionForType<T, Int16>::apply(column, precision)
|| PrecisionForType<T, Int32>::apply(column, precision)
|| PrecisionForType<T, Int64>::apply(column, precision)))
{
throw Exception("Illegal column " + column->getName()
+ " of second ('precision') argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
return precision;
}
public:
/// Получить имя функции.
String getName() const override
{
return name;
}
/// Получить типы результата по типам аргументов. Если функция неприменима для данных аргументов - кинуть исключение.
DataTypePtr getReturnType(const DataTypes & arguments) const override
{
if ((arguments.size() < 1) || (arguments.size() > 2))
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
+ toString(arguments.size()) + ", should be 1 or 2.",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
if (arguments.size() == 2)
{
const IDataType * type = &*arguments[1];
if (!( checkType<DataTypeUInt8>(type)
|| checkType<DataTypeUInt16>(type)
|| checkType<DataTypeUInt32>(type)
|| checkType<DataTypeUInt64>(type)
|| checkType<DataTypeInt8>(type)
|| checkType<DataTypeInt16>(type)
|| checkType<DataTypeInt32>(type)
|| checkType<DataTypeInt64>(type)))
{
throw Exception("Illegal type in second argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
}
}
const IDataType * type = &*arguments[0];
if (!type->behavesAsNumber())
throw Exception("Illegal type " + arguments[0]->getName() + " of argument of function " + getName(),
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
return arguments[0];
}
/// Выполнить функцию над блоком.
void execute(Block & block, const ColumnNumbers & arguments, size_t result) override
{
if (!( executeForType<UInt8>(block, arguments, result)
|| executeForType<UInt16>(block, arguments, result)
|| executeForType<UInt32>(block, arguments, result)
|| executeForType<UInt64>(block, arguments, result)
|| executeForType<Int8>(block, arguments, result)
|| executeForType<Int16>(block, arguments, result)
|| executeForType<Int32>(block, arguments, result)
|| executeForType<Int64>(block, arguments, result)
|| executeForType<Float32>(block, arguments, result)
|| executeForType<Float64>(block, arguments, result)))
{
throw Exception("Illegal column " + block.getByPosition(arguments[0]).column->getName()
+ " of argument of function " + getName(),
ErrorCodes::ILLEGAL_COLUMN);
}
}
};
namespace
{
/// Определение функцией для использования в шаблоне FunctionApproximating.
template<typename T>
struct RoundImpl
{
static inline T apply(T val)
{
return val;
}
};
template<>
struct RoundImpl<DB::Float32>
{
static inline DB::Float32 apply(DB::Float32 val)
{
return roundf(val);
}
};
template<>
struct RoundImpl<DB::Float64>
{
static inline DB::Float64 apply(DB::Float64 val)
{
return round(val);
}
};
template<typename T>
struct CeilImpl
{
static inline T apply(T val)
{
return val;
}
};
template<>
struct CeilImpl<DB::Float32>
{
static inline DB::Float32 apply(DB::Float32 val)
{
return ceilf(val);
}
};
template<>
struct CeilImpl<DB::Float64>
{
static inline DB::Float64 apply(DB::Float64 val)
{
return ceil(val);
}
};
template<typename T>
struct FloorImpl
{
static inline T apply(T val)
{
return val;
}
};
template<>
struct FloorImpl<DB::Float32>
{
static inline DB::Float32 apply(DB::Float32 val)
{
return floorf(val);
}
};
template<>
struct FloorImpl<DB::Float64>
{
static inline DB::Float64 apply(DB::Float64 val)
{
return floor(val);
}
};
}
struct NameRoundToExp2 { static constexpr auto name = "roundToExp2"; };
struct NameRoundDuration { static constexpr auto name = "roundDuration"; };
struct NameRoundAge { static constexpr auto name = "roundAge"; };
struct NameRound { static constexpr auto name = "round"; };
struct NameCeil { static constexpr auto name = "ceil"; };
struct NameFloor { static constexpr auto name = "floor"; };
typedef FunctionUnaryArithmetic<RoundToExp2Impl, NameRoundToExp2> FunctionRoundToExp2;
typedef FunctionUnaryArithmetic<RoundDurationImpl, NameRoundDuration> FunctionRoundDuration;
typedef FunctionUnaryArithmetic<RoundAgeImpl, NameRoundAge> FunctionRoundAge;
typedef FunctionApproximating<RoundImpl, NameRound> FunctionRound;
typedef FunctionApproximating<CeilImpl, NameCeil> FunctionCeil;
typedef FunctionApproximating<FloorImpl, NameFloor> FunctionFloor;
}