mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-14 10:22:10 +00:00
495c6e03aa
* Replace all Context references with std::weak_ptr * Fix shared context captured by value * Fix build * Fix Context with named sessions * Fix copy context * Fix gcc build * Merge with master and fix build * Fix gcc-9 build
474 lines
17 KiB
C++
474 lines
17 KiB
C++
#include <Storages/IStorage.h>
|
|
#include <Storages/ColumnsDescription.h>
|
|
#include <Storages/StorageGenerateRandom.h>
|
|
#include <Storages/StorageFactory.h>
|
|
#include <Processors/Sources/SourceFromSingleChunk.h>
|
|
#include <Processors/Pipe.h>
|
|
#include <Parsers/ASTLiteral.h>
|
|
|
|
#include <DataTypes/DataTypeTuple.h>
|
|
#include <DataTypes/DataTypeEnum.h>
|
|
#include <DataTypes/DataTypeNullable.h>
|
|
#include <DataTypes/DataTypeDateTime64.h>
|
|
#include <DataTypes/DataTypeDecimalBase.h>
|
|
#include <DataTypes/DataTypeArray.h>
|
|
#include <DataTypes/DataTypeString.h>
|
|
#include <DataTypes/DataTypeFixedString.h>
|
|
#include <DataTypes/NestedUtils.h>
|
|
#include <Columns/ColumnArray.h>
|
|
#include <Columns/ColumnFixedString.h>
|
|
#include <Columns/ColumnString.h>
|
|
#include <Columns/ColumnVector.h>
|
|
#include <Columns/ColumnNullable.h>
|
|
#include <Columns/ColumnTuple.h>
|
|
|
|
#include <Common/SipHash.h>
|
|
#include <Common/randomSeed.h>
|
|
#include <common/unaligned.h>
|
|
|
|
#include <Functions/FunctionFactory.h>
|
|
|
|
#include <pcg_random.hpp>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int NOT_IMPLEMENTED;
|
|
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
|
|
extern const int TOO_LARGE_ARRAY_SIZE;
|
|
extern const int TOO_LARGE_STRING_SIZE;
|
|
}
|
|
|
|
|
|
namespace
|
|
{
|
|
|
|
void fillBufferWithRandomData(char * __restrict data, size_t size, pcg64 & rng)
|
|
{
|
|
char * __restrict end = data + size;
|
|
while (data < end)
|
|
{
|
|
/// The loop can be further optimized.
|
|
UInt64 number = rng();
|
|
unalignedStore<UInt64>(data, number);
|
|
data += sizeof(UInt64); /// We assume that data has at least 7-byte padding (see PaddedPODArray)
|
|
}
|
|
}
|
|
|
|
|
|
ColumnPtr fillColumnWithRandomData(
|
|
const DataTypePtr type,
|
|
UInt64 limit,
|
|
UInt64 max_array_length,
|
|
UInt64 max_string_length,
|
|
pcg64 & rng,
|
|
ContextPtr context)
|
|
{
|
|
TypeIndex idx = type->getTypeId();
|
|
|
|
switch (idx)
|
|
{
|
|
case TypeIndex::String:
|
|
{
|
|
/// Mostly the same as the implementation of randomPrintableASCII function.
|
|
|
|
auto column = ColumnString::create();
|
|
ColumnString::Chars & data_to = column->getChars();
|
|
ColumnString::Offsets & offsets_to = column->getOffsets();
|
|
offsets_to.resize(limit);
|
|
|
|
IColumn::Offset offset = 0;
|
|
for (size_t row_num = 0; row_num < limit; ++row_num)
|
|
{
|
|
size_t length = rng() % (max_string_length + 1); /// Slow
|
|
|
|
IColumn::Offset next_offset = offset + length + 1;
|
|
data_to.resize(next_offset);
|
|
offsets_to[row_num] = next_offset;
|
|
|
|
auto * data_to_ptr = data_to.data(); /// avoid assert on array indexing after end
|
|
for (size_t pos = offset, end = offset + length; pos < end; pos += 4) /// We have padding in column buffers that we can overwrite.
|
|
{
|
|
UInt64 rand = rng();
|
|
|
|
UInt16 rand1 = rand;
|
|
UInt16 rand2 = rand >> 16;
|
|
UInt16 rand3 = rand >> 32;
|
|
UInt16 rand4 = rand >> 48;
|
|
|
|
/// Printable characters are from range [32; 126].
|
|
/// https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction/
|
|
|
|
data_to_ptr[pos + 0] = 32 + ((rand1 * 95) >> 16);
|
|
data_to_ptr[pos + 1] = 32 + ((rand2 * 95) >> 16);
|
|
data_to_ptr[pos + 2] = 32 + ((rand3 * 95) >> 16);
|
|
data_to_ptr[pos + 3] = 32 + ((rand4 * 95) >> 16);
|
|
|
|
/// NOTE gcc failed to vectorize this code (aliasing of char?)
|
|
/// TODO Implement SIMD optimizations from Danila Kutenin.
|
|
}
|
|
|
|
data_to[offset + length] = 0;
|
|
|
|
offset = next_offset;
|
|
}
|
|
|
|
return column;
|
|
}
|
|
|
|
case TypeIndex::Enum8:
|
|
{
|
|
auto column = ColumnVector<Int8>::create();
|
|
auto values = typeid_cast<const DataTypeEnum<Int8> *>(type.get())->getValues();
|
|
auto & data = column->getData();
|
|
data.resize(limit);
|
|
|
|
UInt8 size = values.size();
|
|
UInt8 off;
|
|
for (UInt64 i = 0; i < limit; ++i)
|
|
{
|
|
off = static_cast<UInt8>(rng()) % size;
|
|
data[i] = values[off].second;
|
|
}
|
|
|
|
return column;
|
|
}
|
|
|
|
case TypeIndex::Enum16:
|
|
{
|
|
auto column = ColumnVector<Int16>::create();
|
|
auto values = typeid_cast<const DataTypeEnum<Int16> *>(type.get())->getValues();
|
|
auto & data = column->getData();
|
|
data.resize(limit);
|
|
|
|
UInt16 size = values.size();
|
|
UInt8 off;
|
|
for (UInt64 i = 0; i < limit; ++i)
|
|
{
|
|
off = static_cast<UInt16>(rng()) % size;
|
|
data[i] = values[off].second;
|
|
}
|
|
|
|
return column;
|
|
}
|
|
|
|
case TypeIndex::Array:
|
|
{
|
|
auto nested_type = typeid_cast<const DataTypeArray *>(type.get())->getNestedType();
|
|
|
|
auto offsets_column = ColumnVector<ColumnArray::Offset>::create();
|
|
auto & offsets = offsets_column->getData();
|
|
|
|
UInt64 offset = 0;
|
|
offsets.resize(limit);
|
|
for (UInt64 i = 0; i < limit; ++i)
|
|
{
|
|
offset += static_cast<UInt64>(rng()) % (max_array_length + 1);
|
|
offsets[i] = offset;
|
|
}
|
|
|
|
auto data_column = fillColumnWithRandomData(nested_type, offset, max_array_length, max_string_length, rng, context);
|
|
|
|
return ColumnArray::create(std::move(data_column), std::move(offsets_column));
|
|
}
|
|
|
|
case TypeIndex::Tuple:
|
|
{
|
|
auto elements = typeid_cast<const DataTypeTuple *>(type.get())->getElements();
|
|
const size_t tuple_size = elements.size();
|
|
Columns tuple_columns(tuple_size);
|
|
|
|
for (size_t i = 0; i < tuple_size; ++i)
|
|
tuple_columns[i] = fillColumnWithRandomData(elements[i], limit, max_array_length, max_string_length, rng, context);
|
|
|
|
return ColumnTuple::create(std::move(tuple_columns));
|
|
}
|
|
|
|
case TypeIndex::Nullable:
|
|
{
|
|
auto nested_type = typeid_cast<const DataTypeNullable *>(type.get())->getNestedType();
|
|
auto nested_column = fillColumnWithRandomData(nested_type, limit, max_array_length, max_string_length, rng, context);
|
|
|
|
auto null_map_column = ColumnUInt8::create();
|
|
auto & null_map = null_map_column->getData();
|
|
null_map.resize(limit);
|
|
for (UInt64 i = 0; i < limit; ++i)
|
|
null_map[i] = rng() % 16 == 0; /// No real motivation for this.
|
|
|
|
return ColumnNullable::create(std::move(nested_column), std::move(null_map_column));
|
|
}
|
|
|
|
case TypeIndex::UInt8:
|
|
{
|
|
auto column = ColumnUInt8::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(UInt8), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::UInt16: [[fallthrough]];
|
|
case TypeIndex::Date:
|
|
{
|
|
auto column = ColumnUInt16::create();
|
|
column->getData().resize(limit);
|
|
|
|
for (size_t i = 0; i < limit; ++i)
|
|
column->getData()[i] = rng() % (DATE_LUT_MAX_DAY_NUM + 1);
|
|
|
|
return column;
|
|
}
|
|
case TypeIndex::UInt32: [[fallthrough]];
|
|
case TypeIndex::DateTime:
|
|
{
|
|
auto column = ColumnUInt32::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(UInt32), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::UInt64:
|
|
{
|
|
auto column = ColumnUInt64::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(UInt64), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::UInt128: [[fallthrough]];
|
|
case TypeIndex::UUID:
|
|
{
|
|
auto column = ColumnUInt128::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(UInt128), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Int8:
|
|
{
|
|
auto column = ColumnInt8::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(Int8), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Int16:
|
|
{
|
|
auto column = ColumnInt16::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(Int16), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Int32:
|
|
{
|
|
auto column = ColumnInt32::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(Int32), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Int64:
|
|
{
|
|
auto column = ColumnInt64::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(Int64), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Float32:
|
|
{
|
|
auto column = ColumnFloat32::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(Float32), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Float64:
|
|
{
|
|
auto column = ColumnFloat64::create();
|
|
column->getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getData().data()), limit * sizeof(Float64), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Decimal32:
|
|
{
|
|
auto column = type->createColumn();
|
|
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal32> &>(*column);
|
|
column_concrete.getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column_concrete.getData().data()), limit * sizeof(Decimal32), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Decimal64: /// TODO Decimal may be generated out of range.
|
|
{
|
|
auto column = type->createColumn();
|
|
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal64> &>(*column);
|
|
column_concrete.getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column_concrete.getData().data()), limit * sizeof(Decimal64), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::Decimal128:
|
|
{
|
|
auto column = type->createColumn();
|
|
auto & column_concrete = typeid_cast<ColumnDecimal<Decimal128> &>(*column);
|
|
column_concrete.getData().resize(limit);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column_concrete.getData().data()), limit * sizeof(Decimal128), rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::FixedString:
|
|
{
|
|
size_t n = typeid_cast<const DataTypeFixedString &>(*type).getN();
|
|
auto column = ColumnFixedString::create(n);
|
|
column->getChars().resize(limit * n);
|
|
fillBufferWithRandomData(reinterpret_cast<char *>(column->getChars().data()), limit * n, rng);
|
|
return column;
|
|
}
|
|
case TypeIndex::DateTime64:
|
|
{
|
|
auto column = type->createColumn();
|
|
auto & column_concrete = typeid_cast<ColumnDecimal<DateTime64> &>(*column);
|
|
column_concrete.getData().resize(limit);
|
|
|
|
UInt64 range = (1ULL << 32) * intExp10(typeid_cast<const DataTypeDateTime64 &>(*type).getScale());
|
|
|
|
for (size_t i = 0; i < limit; ++i)
|
|
column_concrete.getData()[i] = rng() % range; /// Slow
|
|
|
|
return column;
|
|
}
|
|
|
|
default:
|
|
throw Exception("The 'GenerateRandom' is not implemented for type " + type->getName(), ErrorCodes::NOT_IMPLEMENTED);
|
|
}
|
|
}
|
|
|
|
|
|
class GenerateSource : public SourceWithProgress
|
|
{
|
|
public:
|
|
GenerateSource(UInt64 block_size_, UInt64 max_array_length_, UInt64 max_string_length_, UInt64 random_seed_, Block block_header_, ContextPtr context_)
|
|
: SourceWithProgress(Nested::flatten(prepareBlockToFill(block_header_)))
|
|
, block_size(block_size_), max_array_length(max_array_length_), max_string_length(max_string_length_)
|
|
, block_to_fill(std::move(block_header_)), rng(random_seed_), context(context_) {}
|
|
|
|
String getName() const override { return "GenerateRandom"; }
|
|
|
|
protected:
|
|
Chunk generate() override
|
|
{
|
|
Columns columns;
|
|
columns.reserve(block_to_fill.columns());
|
|
|
|
for (const auto & elem : block_to_fill)
|
|
columns.emplace_back(fillColumnWithRandomData(elem.type, block_size, max_array_length, max_string_length, rng, context));
|
|
|
|
columns = Nested::flatten(block_to_fill.cloneWithColumns(std::move(columns))).getColumns();
|
|
return {std::move(columns), block_size};
|
|
}
|
|
|
|
private:
|
|
UInt64 block_size;
|
|
UInt64 max_array_length;
|
|
UInt64 max_string_length;
|
|
Block block_to_fill;
|
|
|
|
pcg64 rng;
|
|
|
|
ContextPtr context;
|
|
|
|
static Block & prepareBlockToFill(Block & block)
|
|
{
|
|
/// To support Nested types, we will collect them to single Array of Tuple.
|
|
auto names_and_types = Nested::collect(block.getNamesAndTypesList());
|
|
block.clear();
|
|
|
|
for (auto & column : names_and_types)
|
|
block.insert(ColumnWithTypeAndName(column.type, column.name));
|
|
|
|
return block;
|
|
}
|
|
};
|
|
|
|
}
|
|
|
|
|
|
StorageGenerateRandom::StorageGenerateRandom(const StorageID & table_id_, const ColumnsDescription & columns_,
|
|
UInt64 max_array_length_, UInt64 max_string_length_, std::optional<UInt64> random_seed_)
|
|
: IStorage(table_id_), max_array_length(max_array_length_), max_string_length(max_string_length_)
|
|
{
|
|
static constexpr size_t MAX_ARRAY_SIZE = 1 << 30;
|
|
static constexpr size_t MAX_STRING_SIZE = 1 << 30;
|
|
|
|
if (max_array_length > MAX_ARRAY_SIZE)
|
|
throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Too large array size in GenerateRandom: {}, maximum: {}",
|
|
max_array_length, MAX_ARRAY_SIZE);
|
|
if (max_string_length > MAX_STRING_SIZE)
|
|
throw Exception(ErrorCodes::TOO_LARGE_STRING_SIZE, "Too large string size in GenerateRandom: {}, maximum: {}",
|
|
max_string_length, MAX_STRING_SIZE);
|
|
|
|
random_seed = random_seed_ ? sipHash64(*random_seed_) : randomSeed();
|
|
StorageInMemoryMetadata storage_metadata;
|
|
storage_metadata.setColumns(columns_);
|
|
setInMemoryMetadata(storage_metadata);
|
|
}
|
|
|
|
|
|
void registerStorageGenerateRandom(StorageFactory & factory)
|
|
{
|
|
factory.registerStorage("GenerateRandom", [](const StorageFactory::Arguments & args)
|
|
{
|
|
ASTs & engine_args = args.engine_args;
|
|
|
|
if (engine_args.size() > 3)
|
|
throw Exception("Storage GenerateRandom requires at most three arguments: "
|
|
"random_seed, max_string_length, max_array_length.",
|
|
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
|
|
|
std::optional<UInt64> random_seed;
|
|
UInt64 max_string_length = 10;
|
|
UInt64 max_array_length = 10;
|
|
|
|
if (!engine_args.empty())
|
|
{
|
|
const Field & value = engine_args[0]->as<const ASTLiteral &>().value;
|
|
if (!value.isNull())
|
|
random_seed = value.safeGet<UInt64>();
|
|
}
|
|
|
|
if (engine_args.size() >= 2)
|
|
max_string_length = engine_args[1]->as<const ASTLiteral &>().value.safeGet<UInt64>();
|
|
|
|
if (engine_args.size() == 3)
|
|
max_array_length = engine_args[2]->as<const ASTLiteral &>().value.safeGet<UInt64>();
|
|
|
|
return StorageGenerateRandom::create(args.table_id, args.columns, max_array_length, max_string_length, random_seed);
|
|
});
|
|
}
|
|
|
|
Pipe StorageGenerateRandom::read(
|
|
const Names & column_names,
|
|
const StorageMetadataPtr & metadata_snapshot,
|
|
SelectQueryInfo & /*query_info*/,
|
|
ContextPtr context,
|
|
QueryProcessingStage::Enum /*processed_stage*/,
|
|
size_t max_block_size,
|
|
unsigned num_streams)
|
|
{
|
|
metadata_snapshot->check(column_names, getVirtuals(), getStorageID());
|
|
|
|
Pipes pipes;
|
|
pipes.reserve(num_streams);
|
|
|
|
const ColumnsDescription & our_columns = metadata_snapshot->getColumns();
|
|
Block block_header;
|
|
for (const auto & name : column_names)
|
|
{
|
|
const auto & name_type = our_columns.get(name);
|
|
MutableColumnPtr column = name_type.type->createColumn();
|
|
block_header.insert({std::move(column), name_type.type, name_type.name});
|
|
}
|
|
|
|
/// Will create more seed values for each source from initial seed.
|
|
pcg64 generate(random_seed);
|
|
|
|
for (UInt64 i = 0; i < num_streams; ++i)
|
|
pipes.emplace_back(std::make_shared<GenerateSource>(max_block_size, max_array_length, max_string_length, generate(), block_header, context));
|
|
|
|
return Pipe::unitePipes(std::move(pipes));
|
|
}
|
|
|
|
}
|