mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-18 21:51:57 +00:00
228 lines
5.7 KiB
C++
228 lines
5.7 KiB
C++
#pragma once
|
|
|
|
#include <limits>
|
|
#include <algorithm>
|
|
#include <climits>
|
|
#include <sstream>
|
|
#include <DB/AggregateFunctions/ReservoirSampler.h>
|
|
#include <common/Common.h>
|
|
#include <DB/Common/HashTable/Hash.h>
|
|
#include <DB/IO/ReadBuffer.h>
|
|
#include <DB/IO/ReadHelpers.h>
|
|
#include <DB/IO/WriteHelpers.h>
|
|
#include <DB/Common/PODArray.h>
|
|
#include <Poco/Exception.h>
|
|
#include <boost/random.hpp>
|
|
|
|
|
|
/// Implementation of Reservoir Sampling algorithm. Incrementally selects from the added objects a random subset of the `sample_count` size.
|
|
/// Can approximately get quantiles.
|
|
/// The `quantile` call takes O(sample_count log sample_count), if after the previous call `quantile` there was at least one call to insert. Otherwise, O(1).
|
|
/// That is, it makes sense to first add, then get quantiles without adding.
|
|
|
|
|
|
namespace DB
|
|
{
|
|
namespace ErrorCodes
|
|
{
|
|
extern const int MEMORY_LIMIT_EXCEEDED;
|
|
}
|
|
}
|
|
|
|
|
|
namespace detail
|
|
{
|
|
const size_t DEFAULT_SAMPLE_COUNT = 8192;
|
|
const auto MAX_SKIP_DEGREE = sizeof(UInt32) * 8;
|
|
}
|
|
|
|
/// What if there is not a single value - throw an exception, or return 0 or NaN in the case of double?
|
|
enum class ReservoirSamplerDeterministicOnEmpty
|
|
{
|
|
THROW,
|
|
RETURN_NAN_OR_ZERO,
|
|
};
|
|
|
|
template <typename T,
|
|
ReservoirSamplerDeterministicOnEmpty OnEmpty = ReservoirSamplerDeterministicOnEmpty::THROW>
|
|
class ReservoirSamplerDeterministic
|
|
{
|
|
bool good(const UInt32 hash)
|
|
{
|
|
return hash == ((hash >> skip_degree) << skip_degree);
|
|
}
|
|
|
|
public:
|
|
ReservoirSamplerDeterministic(const size_t sample_count = DEFAULT_SAMPLE_COUNT)
|
|
: sample_count{sample_count}
|
|
{
|
|
}
|
|
|
|
void clear()
|
|
{
|
|
samples.clear();
|
|
sorted = false;
|
|
total_values = 0;
|
|
}
|
|
|
|
void insert(const T & v, const UInt64 determinator)
|
|
{
|
|
const UInt32 hash = intHash64(determinator);
|
|
if (!good(hash))
|
|
return;
|
|
|
|
insertImpl(v, hash);
|
|
sorted = false;
|
|
++total_values;
|
|
}
|
|
|
|
size_t size() const
|
|
{
|
|
return total_values;
|
|
}
|
|
|
|
T quantileNearest(double level)
|
|
{
|
|
if (samples.empty())
|
|
return onEmpty<T>();
|
|
|
|
sortIfNeeded();
|
|
|
|
double index = level * (samples.size() - 1);
|
|
size_t int_index = static_cast<size_t>(index + 0.5);
|
|
int_index = std::max(0LU, std::min(samples.size() - 1, int_index));
|
|
return samples[int_index].first;
|
|
}
|
|
|
|
/** If T is not a numeric type, using this method causes a compilation error,
|
|
* but use of error class does not cause. SFINAE.
|
|
* Not SFINAE. Functions members of type templates are simply not checked until they are used.
|
|
*/
|
|
double quantileInterpolated(double level)
|
|
{
|
|
if (samples.empty())
|
|
return onEmpty<double>();
|
|
|
|
sortIfNeeded();
|
|
|
|
const double index = std::max(0., std::min(samples.size() - 1., level * (samples.size() - 1)));
|
|
|
|
/// To get a value from a fractional index, we linearly interpolate between adjacent values.
|
|
size_t left_index = static_cast<size_t>(index);
|
|
size_t right_index = left_index + 1;
|
|
if (right_index == samples.size())
|
|
return samples[left_index].first;
|
|
|
|
const double left_coef = right_index - index;
|
|
const double right_coef = index - left_index;
|
|
|
|
return samples[left_index].first * left_coef + samples[right_index].first * right_coef;
|
|
}
|
|
|
|
void merge(const ReservoirSamplerDeterministic & b)
|
|
{
|
|
if (sample_count != b.sample_count)
|
|
throw Poco::Exception("Cannot merge ReservoirSamplerDeterministic's with different sample_count");
|
|
sorted = false;
|
|
|
|
if (b.skip_degree > skip_degree)
|
|
{
|
|
skip_degree = b.skip_degree;
|
|
thinOut();
|
|
}
|
|
|
|
for (const auto & sample : b.samples)
|
|
if (good(sample.second))
|
|
insertImpl(sample.first, sample.second);
|
|
|
|
total_values += b.total_values;
|
|
}
|
|
|
|
void read(DB::ReadBuffer & buf)
|
|
{
|
|
DB::readIntBinary<size_t>(sample_count, buf);
|
|
DB::readIntBinary<size_t>(total_values, buf);
|
|
samples.resize(std::min(total_values, sample_count));
|
|
|
|
for (size_t i = 0; i < samples.size(); ++i)
|
|
DB::readPODBinary(samples[i], buf);
|
|
|
|
sorted = false;
|
|
}
|
|
|
|
void write(DB::WriteBuffer & buf) const
|
|
{
|
|
DB::writeIntBinary<size_t>(sample_count, buf);
|
|
DB::writeIntBinary<size_t>(total_values, buf);
|
|
|
|
for (size_t i = 0; i < std::min(sample_count, total_values); ++i)
|
|
DB::writePODBinary(samples[i], buf);
|
|
}
|
|
|
|
private:
|
|
/// We allocate some memory on the stack to avoid allocations when there are many objects with a small number of elements.
|
|
static constexpr size_t bytes_on_stack = 64;
|
|
using Element = std::pair<T, UInt32>;
|
|
using Array = DB::PODArray<Element, bytes_on_stack / sizeof(Element), AllocatorWithStackMemory<Allocator<false>, bytes_on_stack>>;
|
|
|
|
size_t sample_count;
|
|
size_t total_values{};
|
|
bool sorted{};
|
|
Array samples;
|
|
UInt8 skip_degree{};
|
|
|
|
void insertImpl(const T & v, const UInt32 hash)
|
|
{
|
|
/// @todo why + 1? I don't quite recall
|
|
while (samples.size() + 1 >= sample_count)
|
|
{
|
|
if (++skip_degree > detail::MAX_SKIP_DEGREE)
|
|
throw DB::Exception{"skip_degree exceeds maximum value", DB::ErrorCodes::MEMORY_LIMIT_EXCEEDED};
|
|
thinOut();
|
|
}
|
|
|
|
samples.emplace_back(v, hash);
|
|
}
|
|
|
|
void thinOut()
|
|
{
|
|
auto size = samples.size();
|
|
for (size_t i = 0; i < size;)
|
|
{
|
|
if (!good(samples[i].second))
|
|
{
|
|
/// swap current element with the last one
|
|
std::swap(samples[size - 1], samples[i]);
|
|
--size;
|
|
}
|
|
else
|
|
++i;
|
|
}
|
|
|
|
if (size != samples.size())
|
|
{
|
|
samples.resize(size);
|
|
sorted = false;
|
|
}
|
|
}
|
|
|
|
void sortIfNeeded()
|
|
{
|
|
if (sorted)
|
|
return;
|
|
sorted = true;
|
|
std::sort(samples.begin(), samples.end(), [] (const std::pair<T, UInt32> & lhs, const std::pair<T, UInt32> & rhs) {
|
|
return lhs.first < rhs.first;
|
|
});
|
|
}
|
|
|
|
template <typename ResultType>
|
|
ResultType onEmpty() const
|
|
{
|
|
if (OnEmpty == ReservoirSamplerDeterministicOnEmpty::THROW)
|
|
throw Poco::Exception("Quantile of empty ReservoirSamplerDeterministic");
|
|
else
|
|
return NanLikeValueConstructor<ResultType, std::is_floating_point<ResultType>::value>::getValue();
|
|
}
|
|
};
|