ClickHouse/src/AggregateFunctions/QuantileTDigest.h
2022-09-19 08:53:20 +02:00

491 lines
18 KiB
C++

#pragma once
#include <cmath>
#include <Common/Exception.h>
#include <Common/RadixSort.h>
#include <Common/PODArray.h>
#include <Core/AccurateComparison.h>
#include <IO/WriteBuffer.h>
#include <IO/ReadBuffer.h>
#include <IO/VarInt.h>
namespace DB
{
struct Settings;
namespace ErrorCodes
{
extern const int CANNOT_PARSE_INPUT_ASSERTION_FAILED;
extern const int DECIMAL_OVERFLOW;
extern const int TOO_LARGE_ARRAY_SIZE;
}
/** The algorithm was implemented by Alexei Borzenkov https://github.com/snaury
* He owns the authorship of the code and half the comments in this namespace,
* except for merging, serialization, and sorting, as well as selecting types and other changes.
* We thank Alexei Borzenkov for writing the original code.
*/
/** Implementation of t-digest algorithm (https://github.com/tdunning/t-digest).
* This option is very similar to MergingDigest on java, however the decision about
* the union is accepted based on the original condition from the article
* (via a size constraint, using the approximation of the quantile of each
* centroid, not the distance on the curve of the position of their boundaries). MergingDigest
* on java gives significantly fewer centroids than this variant, that
* negatively affects accuracy with the same compression factor, but gives
* size guarantees. The author himself on the proposal for this variant said that
* the size of the digest grows like O(log(n)), while the version on java
* does not depend on the expected number of points. Also an variant on java
* uses asin, which slows down the algorithm a bit.
*/
template <typename T>
class QuantileTDigest
{
using Value = Float32;
using Count = Float32;
using BetterFloat = Float64; // For intermediate results and sum(Count). Must have better precision, than Count
/** The centroid stores the weight of points around their mean value
*/
struct Centroid
{
Value mean;
Count count;
Centroid() = default;
explicit Centroid(Value mean_, Count count_)
: mean(mean_)
, count(count_)
{}
bool operator<(const Centroid & other) const
{
return mean < other.mean;
}
};
/** :param epsilon: value \delta from the article - error in the range
* quantile 0.5 (default is 0.01, i.e. 1%)
* if you change epsilon, you must also change max_centroids
* :param max_centroids: depends on epsilon, the better accuracy, the more centroids you need
* to describe data with this accuracy. Read article before changing.
* :param max_unmerged: when accumulating count of new points beyond this
* value centroid compression is triggered
* (default is 2048, the higher the value - the
* more memory is required, but amortization of execution time increases)
* Change freely anytime.
*/
struct Params
{
Value epsilon = 0.01f;
size_t max_centroids = 2048;
size_t max_unmerged = 2048;
};
/** max_centroids_deserialize should be >= all max_centroids ever used in production.
* This is security parameter, preventing allocation of too much centroids in deserialize, so can be relatively large.
*/
static constexpr size_t max_centroids_deserialize = 65536;
static constexpr Params params{};
static constexpr size_t bytes_in_arena = 128 - sizeof(PODArray<Centroid>) - sizeof(BetterFloat) - sizeof(size_t); // If alignment is imperfect, sizeof(TDigest) will be more than naively expected
using Centroids = PODArrayWithStackMemory<Centroid, bytes_in_arena>;
Centroids centroids;
BetterFloat count = 0;
size_t unmerged = 0;
/// Linear interpolation at the point x on the line (x1, y1)..(x2, y2)
static Value interpolate(Value x, Value x1, Value y1, Value x2, Value y2)
{
/// Symmetric interpolation for better results with infinities.
double k = (x - x1) / (x2 - x1);
return static_cast<Value>((1 - k) * y1 + k * y2);
}
struct RadixSortTraits
{
using Element = Centroid;
using Result = Element;
using Key = Value;
using CountType = UInt32;
using KeyBits = UInt32;
static constexpr size_t PART_SIZE_BITS = 8;
using Transform = RadixSortFloatTransform<KeyBits>;
using Allocator = RadixSortAllocator;
/// The function to get the key from an array element.
static Key & extractKey(Element & elem) { return elem.mean; }
static Result & extractResult(Element & elem) { return elem; }
};
/** Adds a centroid `c` to the digest
* centroid must be valid, validity is checked in add(), deserialize() and is maintained by compress()
*/
void addCentroid(const Centroid & c)
{
centroids.push_back(c);
count += c.count;
++unmerged;
if (unmerged > params.max_unmerged)
compress();
}
inline bool canBeMerged(const BetterFloat & l_mean, const Value & r_mean)
{
return l_mean == r_mean || (!std::isinf(l_mean) && !std::isinf(r_mean));
}
void compressBrute()
{
if (centroids.size() <= params.max_centroids)
return;
const size_t batch_size = (centroids.size() + params.max_centroids - 1) / params.max_centroids; // at least 2
auto l = centroids.begin();
auto r = std::next(l);
BetterFloat sum = 0;
BetterFloat l_mean = l->mean; // We have high-precision temporaries for numeric stability
BetterFloat l_count = l->count;
size_t batch_pos = 0;
for (; r != centroids.end(); ++r)
{
if (batch_pos < batch_size - 1)
{
/// The left column "eats" the right. Middle of the batch
l_count += r->count;
if (r->mean != l_mean) /// Handling infinities of the same sign well.
{
l_mean += r->count * (r->mean - l_mean) / l_count; // Symmetric algo (M1*C1 + M2*C2)/(C1+C2) is numerically better, but slower
}
l->mean = static_cast<Value>(l_mean);
l->count = static_cast<Value>(l_count);
batch_pos += 1;
}
else
{
// End of the batch, start the next one
if (!std::isnan(l->mean)) /// Skip writing batch result if we compressed something to nan.
{
sum += l->count; // Not l_count, otherwise actual sum of elements will be different
++l;
}
/// We skip all the values "eaten" earlier.
*l = *r;
l_mean = l->mean;
l_count = l->count;
batch_pos = 0;
}
}
if (!std::isnan(l->mean))
{
count = sum + l_count; // Update count, it might be different due to += inaccuracy
centroids.resize(l - centroids.begin() + 1);
}
else /// Skip writing last batch if (super unlikely) it's nan.
{
count = sum;
centroids.resize(l - centroids.begin());
}
// Here centroids.size() <= params.max_centroids
}
public:
/** Performs compression of accumulated centroids
* When merging, the invariant is retained to the maximum size of each
* centroid that does not exceed `4 q (1 - q) \ delta N`.
*/
void compress()
{
if (unmerged > 0 || centroids.size() > params.max_centroids)
{
// unmerged > 0 implies centroids.size() > 0, hence *l is valid below
RadixSort<RadixSortTraits>::executeLSD(centroids.data(), centroids.size());
/// A pair of consecutive bars of the histogram.
auto l = centroids.begin();
auto r = std::next(l);
const BetterFloat count_epsilon_4 = count * params.epsilon * 4; // Compiler is unable to do this optimization
BetterFloat sum = 0;
BetterFloat l_mean = l->mean; // We have high-precision temporaries for numeric stability
BetterFloat l_count = l->count;
while (r != centroids.end())
{
/// N.B. We cannot merge all the same values into single centroids because this will lead to
/// unbalanced compression and wrong results.
/// For more information see: https://arxiv.org/abs/1902.04023
/// The ratio of the part of the histogram to l, including the half l to the entire histogram. That is, what level quantile in position l.
BetterFloat ql = (sum + l_count * 0.5) / count;
BetterFloat err = ql * (1 - ql);
/// The ratio of the portion of the histogram to l, including l and half r to the entire histogram. That is, what level is the quantile in position r.
BetterFloat qr = (sum + l_count + r->count * 0.5) / count;
BetterFloat err2 = qr * (1 - qr);
if (err > err2)
err = err2;
BetterFloat k = count_epsilon_4 * err;
/** The ratio of the weight of the glued column pair to all values is not greater,
* than epsilon multiply by a certain quadratic coefficient, which in the median is 1 (4 * 1/2 * 1/2),
* and at the edges decreases and is approximately equal to the distance to the edge * 4.
*/
if (l_count + r->count <= k && canBeMerged(l_mean, r->mean))
{
// it is possible to merge left and right
/// The left column "eats" the right.
l_count += r->count;
if (r->mean != l_mean) /// Handling infinities of the same sign well.
{
l_mean += r->count * (r->mean - l_mean) / l_count; // Symmetric algo (M1*C1 + M2*C2)/(C1+C2) is numerically better, but slower
}
l->mean = static_cast<Value>(l_mean);
l->count = static_cast<Value>(l_count);
}
else
{
// not enough capacity, check the next pair
sum += l->count; // Not l_count, otherwise actual sum of elements will be different
++l;
/// We skip all the values "eaten" earlier.
if (l != r)
*l = *r;
l_mean = l->mean;
l_count = l->count;
}
++r;
}
count = sum + l_count; // Update count, it might be different due to += inaccuracy
/// At the end of the loop, all values to the right of l were "eaten".
centroids.resize(l - centroids.begin() + 1);
unmerged = 0;
}
// Ensures centroids.size() < max_centroids, independent of unprovable floating point blackbox above
compressBrute();
}
/** Adds to the digest a change in `x` with a weight of `cnt` (default 1)
*/
void add(T x, UInt64 cnt = 1)
{
auto vx = static_cast<Value>(x);
if (cnt == 0 || std::isnan(vx))
return; // Count 0 breaks compress() assumptions, Nan breaks sort(). We treat them as no sample.
addCentroid(Centroid{vx, static_cast<Count>(cnt)});
}
void merge(const QuantileTDigest & other)
{
for (const auto & c : other.centroids)
addCentroid(c);
}
void serialize(WriteBuffer & buf)
{
compress();
writeVarUInt(centroids.size(), buf);
buf.write(reinterpret_cast<const char *>(centroids.data()), centroids.size() * sizeof(centroids[0]));
}
void deserialize(ReadBuffer & buf)
{
size_t size = 0;
readVarUInt(size, buf);
if (size > max_centroids_deserialize)
throw Exception("Too large t-digest centroids size", ErrorCodes::TOO_LARGE_ARRAY_SIZE);
count = 0;
unmerged = 0;
centroids.resize(size);
// From now, TDigest will be in invalid state if exception is thrown.
buf.read(reinterpret_cast<char *>(centroids.data()), size * sizeof(centroids[0]));
for (const auto & c : centroids)
{
if (c.count <= 0 || std::isnan(c.count)) // invalid count breaks compress()
throw Exception("Invalid centroid " + std::to_string(c.count) + ":" + std::to_string(c.mean), ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED);
if (!std::isnan(c.mean))
{
count += c.count;
}
}
auto it = std::remove_if(centroids.begin(), centroids.end(), [](Centroid & c) { return std::isnan(c.mean); });
centroids.erase(it, centroids.end());
compress(); // Allows reading/writing TDigests with different epsilon/max_centroids params
}
/** Calculates the quantile q [0, 1] based on the digest.
* For an empty digest returns NaN.
*/
template <typename ResultType>
ResultType getImpl(Float64 level)
{
if (centroids.empty())
return std::is_floating_point_v<ResultType> ? std::numeric_limits<ResultType>::quiet_NaN() : 0;
compress();
if (centroids.size() == 1)
return checkOverflow<ResultType>(centroids.front().mean);
Float64 x = level * count;
Float64 prev_x = 0;
Count sum = 0;
Value prev_mean = centroids.front().mean;
Count prev_count = centroids.front().count;
for (const auto & c : centroids)
{
Float64 current_x = sum + c.count * 0.5;
if (current_x >= x)
{
/// Special handling of singletons.
Float64 left = prev_x + 0.5 * (prev_count == 1);
Float64 right = current_x - 0.5 * (c.count == 1);
if (x <= left)
return checkOverflow<ResultType>(prev_mean);
else if (x >= right)
return checkOverflow<ResultType>(c.mean);
else
return checkOverflow<ResultType>(interpolate(
static_cast<Value>(x),
static_cast<Value>(left),
prev_mean,
static_cast<Value>(right),
c.mean));
}
sum += c.count;
prev_mean = c.mean;
prev_count = c.count;
prev_x = current_x;
}
return checkOverflow<ResultType>(centroids.back().mean);
}
/** Get multiple quantiles (`size` parts).
* levels - an array of levels of the desired quantiles. They are in a random order.
* levels_permutation - array-permutation levels. The i-th position will be the index of the i-th ascending level in the `levels` array.
* result - the array where the results are added, in order of `levels`,
*/
template <typename ResultType>
void getManyImpl(const Float64 * levels, const size_t * levels_permutation, size_t size, ResultType * result)
{
if (centroids.empty())
{
for (size_t result_num = 0; result_num < size; ++result_num)
result[result_num] = std::is_floating_point_v<ResultType> ? NAN : 0;
return;
}
compress();
if (centroids.size() == 1)
{
for (size_t result_num = 0; result_num < size; ++result_num)
result[result_num] = static_cast<ResultType>(centroids.front().mean);
return;
}
Float64 x = levels[levels_permutation[0]] * count;
Float64 prev_x = 0;
Count sum = 0;
Value prev_mean = centroids.front().mean;
Count prev_count = centroids.front().count;
size_t result_num = 0;
for (const auto & c : centroids)
{
Float64 current_x = sum + c.count * 0.5;
if (current_x >= x)
{
/// Special handling of singletons.
Float64 left = prev_x + 0.5 * (prev_count == 1);
Float64 right = current_x - 0.5 * (c.count == 1);
while (current_x >= x)
{
if (x <= left)
result[levels_permutation[result_num]] = static_cast<ResultType>(prev_mean);
else if (x >= right)
result[levels_permutation[result_num]] = static_cast<ResultType>(c.mean);
else
result[levels_permutation[result_num]] = static_cast<ResultType>(interpolate(
static_cast<Value>(x), static_cast<Value>(left), prev_mean, static_cast<Value>(right), c.mean));
++result_num;
if (result_num >= size)
return;
x = levels[levels_permutation[result_num]] * count;
}
}
sum += c.count;
prev_mean = c.mean;
prev_count = c.count;
prev_x = current_x;
}
auto rest_of_results = centroids.back().mean;
for (; result_num < size; ++result_num)
result[levels_permutation[result_num]] = static_cast<ResultType>(rest_of_results);
}
T get(Float64 level)
{
return getImpl<T>(level);
}
Float32 getFloat(Float64 level)
{
return getImpl<Float32>(level);
}
void getMany(const Float64 * levels, const size_t * indices, size_t size, T * result)
{
getManyImpl(levels, indices, size, result);
}
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float32 * result)
{
getManyImpl(levels, indices, size, result);
}
private:
template <typename ResultType>
static ResultType checkOverflow(Value val)
{
ResultType result;
if (accurate::convertNumeric(val, result))
return result;
throw DB::Exception("Numeric overflow", ErrorCodes::DECIMAL_OVERFLOW);
}
};
}