ClickHouse/src/Storages/StorageMemory.h

105 lines
3.8 KiB
C++

#pragma once
#include <atomic>
#include <optional>
#include <mutex>
#include <ext/shared_ptr_helper.h>
#include <Core/NamesAndTypes.h>
#include <Storages/IStorage.h>
#include <DataStreams/IBlockOutputStream.h>
namespace DB
{
/** Implements storage in the RAM.
* Suitable for temporary data.
* It does not support keys.
* Data is stored as a set of blocks and is not stored anywhere else.
*/
class StorageMemory final : public ext::shared_ptr_helper<StorageMemory>, public IStorage
{
friend class MemoryBlockOutputStream;
friend struct ext::shared_ptr_helper<StorageMemory>;
public:
String getName() const override { return "Memory"; }
size_t getSize() const { return data.size(); }
Pipe read(
const Names & column_names,
const StorageMetadataPtr & /*metadata_snapshot*/,
SelectQueryInfo & query_info,
const Context & context,
QueryProcessingStage::Enum processed_stage,
size_t max_block_size,
unsigned num_streams) override;
bool supportsParallelInsert() const override { return true; }
BlockOutputStreamPtr write(const ASTPtr & query, const StorageMetadataPtr & metadata_snapshot, const Context & context) override;
void drop() override;
void truncate(const ASTPtr &, const StorageMetadataPtr &, const Context &, TableExclusiveLockHolder &) override;
std::optional<UInt64> totalRows() const override;
std::optional<UInt64> totalBytes() const override;
/** Delays initialization of StorageMemory::read() until the first read is actually happen.
* Usually, fore code like this:
*
* auto out = StorageMemory::write();
* auto in = StorageMemory::read();
* out->write(new_data);
*
* `new_data` won't appear into `in`.
* However, if delayReadForGlobalSubqueries is called, first read from `in` will check for new_data and return it.
*
*
* Why is delayReadForGlobalSubqueries needed?
*
* The fact is that when processing a query of the form
* SELECT ... FROM remote_test WHERE column GLOBAL IN (subquery),
* if the distributed remote_test table contains localhost as one of the servers,
* the query will be interpreted locally again (and not sent over TCP, as in the case of a remote server).
*
* The query execution pipeline will be:
* CreatingSets
* subquery execution, filling the temporary table with _data1 (1)
* CreatingSets
* reading from the table _data1, creating the set (2)
* read from the table subordinate to remote_test.
*
* (The second part of the pipeline under CreateSets is a reinterpretation of the query inside StorageDistributed,
* the query differs in that the database name and tables are replaced with subordinates, and the subquery is replaced with _data1.)
*
* But when creating the pipeline, when creating the source (2), it will be found that the _data1 table is empty
* (because the query has not started yet), and empty source will be returned as the source.
* And then, when the query is executed, an empty set will be created in step (2).
*
* Therefore, we make the initialization of step (2) delayed
* - so that it does not occur until step (1) is completed, on which the table will be populated.
*/
void delayReadForGlobalSubqueries() { delay_read_for_global_subqueries = true; }
private:
/// The data itself. `list` - so that when inserted to the end, the existing iterators are not invalidated.
BlocksList data;
mutable std::mutex mutex;
bool delay_read_for_global_subqueries = false;
std::atomic<size_t> total_size_bytes = 0;
std::atomic<size_t> total_size_rows = 0;
protected:
StorageMemory(const StorageID & table_id_, ColumnsDescription columns_description_, ConstraintsDescription constraints_);
};
}