mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-11-28 18:42:26 +00:00
210 lines
5.8 KiB
C++
210 lines
5.8 KiB
C++
#pragma once
|
|
|
|
#include <base/types.h>
|
|
#include <base/bit_cast.h>
|
|
#include <base/sort.h>
|
|
#include <Common/HashTable/HashMap.h>
|
|
|
|
#include <IO/ReadBuffer.h>
|
|
#include <IO/WriteBuffer.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
/** `bfloat16` is a 16-bit floating point data type that is the same as the corresponding most significant 16 bits of the `float`.
|
|
* https://en.wikipedia.org/wiki/Bfloat16_floating-point_format
|
|
*
|
|
* To calculate quantile, simply convert input value to 16 bit (convert to float, then take the most significant 16 bits),
|
|
* and calculate the histogram of these values.
|
|
*
|
|
* Hash table is the preferred way to store histogram, because the number of distinct values is small:
|
|
* ```
|
|
* SELECT uniq(bfloat)
|
|
* FROM
|
|
* (
|
|
* SELECT
|
|
* number,
|
|
* toFloat32(number) AS f,
|
|
* bitShiftRight(bitAnd(reinterpretAsUInt32(reinterpretAsFixedString(f)), 4294901760) AS cut, 16),
|
|
* reinterpretAsFloat32(reinterpretAsFixedString(cut)) AS bfloat
|
|
* FROM numbers(100000000)
|
|
* )
|
|
*
|
|
* ┌─uniq(bfloat)─┐
|
|
* │ 2623 │
|
|
* └──────────────┘
|
|
* ```
|
|
* (when increasing the range of values 1000 times, the number of distinct bfloat16 values increases just by 1280).
|
|
*
|
|
* Then calculate quantile from the histogram.
|
|
*
|
|
* This sketch is very simple and rough. Its relative precision is constant 1 / 256 = 0.390625%.
|
|
*/
|
|
template <typename Value>
|
|
struct QuantileBFloat16Histogram
|
|
{
|
|
using BFloat16 = UInt16;
|
|
using Weight = UInt64;
|
|
|
|
/// Make automatic memory for 16 elements to avoid allocations for small states.
|
|
/// The usage of trivial hash is ok, because we effectively take logarithm of the values and pathological cases are unlikely.
|
|
using Data = HashMapWithStackMemory<BFloat16, Weight, TrivialHash, 4>;
|
|
|
|
Data data;
|
|
|
|
void add(const Value & x)
|
|
{
|
|
add(x, 1);
|
|
}
|
|
|
|
void add(const Value & x, Weight w)
|
|
{
|
|
if (!isNaN(x))
|
|
data[toBFloat16(x)] += w;
|
|
}
|
|
|
|
void merge(const QuantileBFloat16Histogram & rhs)
|
|
{
|
|
for (const auto & pair : rhs.data)
|
|
data[pair.getKey()] += pair.getMapped();
|
|
}
|
|
|
|
void serialize(WriteBuffer & buf) const
|
|
{
|
|
data.write(buf);
|
|
}
|
|
|
|
void deserialize(ReadBuffer & buf)
|
|
{
|
|
data.read(buf);
|
|
}
|
|
|
|
Value get(Float64 level) const
|
|
{
|
|
return getImpl<Value>(level);
|
|
}
|
|
|
|
void getMany(const Float64 * levels, const size_t * indices, size_t size, Value * result) const
|
|
{
|
|
getManyImpl(levels, indices, size, result);
|
|
}
|
|
|
|
Float64 getFloat(Float64 level) const
|
|
{
|
|
return getImpl<Float64>(level);
|
|
}
|
|
|
|
void getManyFloat(const Float64 * levels, const size_t * indices, size_t size, Float64 * result) const
|
|
{
|
|
getManyImpl(levels, indices, size, result);
|
|
}
|
|
|
|
private:
|
|
/// Take the most significant 16 bits of the floating point number.
|
|
BFloat16 toBFloat16(const Value & x) const
|
|
{
|
|
return bit_cast<UInt32>(static_cast<Float32>(x)) >> 16;
|
|
}
|
|
|
|
/// Put the bits into most significant 16 bits of the floating point number and fill other bits with zeros.
|
|
Float32 toFloat32(const BFloat16 & x) const
|
|
{
|
|
return bit_cast<Float32>(x << 16);
|
|
}
|
|
|
|
using Pair = PairNoInit<Float32, Weight>;
|
|
|
|
template <typename T>
|
|
T getImpl(Float64 level) const
|
|
{
|
|
size_t size = data.size();
|
|
|
|
if (0 == size)
|
|
return std::numeric_limits<T>::quiet_NaN();
|
|
|
|
std::unique_ptr<Pair[]> array_holder(new Pair[size]);
|
|
Pair * array = array_holder.get();
|
|
|
|
Float64 sum_weight = 0;
|
|
Pair * arr_it = array;
|
|
for (const auto & pair : data)
|
|
{
|
|
sum_weight += pair.getMapped();
|
|
*arr_it = {toFloat32(pair.getKey()), pair.getMapped()};
|
|
++arr_it;
|
|
}
|
|
|
|
::sort(array, array + size, [](const Pair & a, const Pair & b) { return a.first < b.first; });
|
|
|
|
Float64 threshold = std::ceil(sum_weight * level);
|
|
Float64 accumulated = 0;
|
|
|
|
for (const Pair * p = array; p != (array + size); ++p)
|
|
{
|
|
accumulated += p->second;
|
|
|
|
if (accumulated >= threshold)
|
|
return p->first;
|
|
}
|
|
|
|
return array[size - 1].first;
|
|
}
|
|
|
|
template <typename T>
|
|
void getManyImpl(const Float64 * levels, const size_t * indices, size_t num_levels, T * result) const
|
|
{
|
|
size_t size = data.size();
|
|
|
|
if (0 == size)
|
|
{
|
|
for (size_t i = 0; i < num_levels; ++i)
|
|
result[i] = std::numeric_limits<T>::quiet_NaN();
|
|
|
|
return;
|
|
}
|
|
|
|
std::unique_ptr<Pair[]> array_holder(new Pair[size]);
|
|
Pair * array = array_holder.get();
|
|
|
|
Float64 sum_weight = 0;
|
|
Pair * arr_it = array;
|
|
for (const auto & pair : data)
|
|
{
|
|
sum_weight += pair.getMapped();
|
|
*arr_it = {toFloat32(pair.getKey()), pair.getMapped()};
|
|
++arr_it;
|
|
}
|
|
|
|
::sort(array, array + size, [](const Pair & a, const Pair & b) { return a.first < b.first; });
|
|
|
|
size_t level_index = 0;
|
|
Float64 accumulated = 0;
|
|
Float64 threshold = std::ceil(sum_weight * levels[indices[level_index]]);
|
|
|
|
for (const Pair * p = array; p != (array + size); ++p)
|
|
{
|
|
accumulated += p->second;
|
|
|
|
while (accumulated >= threshold)
|
|
{
|
|
result[indices[level_index]] = p->first;
|
|
++level_index;
|
|
|
|
if (level_index == num_levels)
|
|
return;
|
|
|
|
threshold = std::ceil(sum_weight * levels[indices[level_index]]);
|
|
}
|
|
}
|
|
|
|
while (level_index < num_levels)
|
|
{
|
|
result[indices[level_index]] = array[size - 1].first;
|
|
++level_index;
|
|
}
|
|
}
|
|
};
|
|
|
|
}
|