mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-17 11:52:27 +00:00
6d5bfc8c6f
* Better code [#CLICKHOUSE-2]. * Addition to prev. revision [#CLICKHOUSE-2]. * Addition to prev. revision [#CLICKHOUSE-2]. * Addition to prev. revision [#CLICKHOUSE-2].
1169 lines
32 KiB
C++
1169 lines
32 KiB
C++
#pragma once
|
||
|
||
#include <DB/Functions/FunctionsArithmetic.h>
|
||
#include <DB/IO/WriteHelpers.h>
|
||
|
||
#include <cmath>
|
||
#include <type_traits>
|
||
#include <array>
|
||
|
||
#if __SSE4_1__
|
||
#include <smmintrin.h>
|
||
#endif
|
||
|
||
|
||
namespace DB
|
||
{
|
||
|
||
/** Функции округления:
|
||
* roundToExp2 - вниз до ближайшей степени двойки;
|
||
* roundDuration - вниз до ближайшего из: 0, 1, 10, 30, 60, 120, 180, 240, 300, 600, 1200, 1800, 3600, 7200, 18000, 36000;
|
||
* roundAge - вниз до ближайшего из: 0, 18, 25, 35, 45.
|
||
*
|
||
* round(x, N) - арифметическое округление (N = 0 по умолчанию).
|
||
* ceil(x, N) - наименьшее число, которое не меньше x (N = 0 по умолчанию).
|
||
* floor(x, N) - наибольшее число, которое не больше x (N = 0 по умолчанию).
|
||
*
|
||
* Значение параметра N:
|
||
* - N > 0: округлять до числа с N десятичными знаками после запятой
|
||
* - N < 0: окурглять до целого числа с N нулевыми знаками
|
||
* - N = 0: округлять до целого числа
|
||
*/
|
||
|
||
template<typename A>
|
||
struct RoundToExp2Impl
|
||
{
|
||
using ResultType = A;
|
||
|
||
static inline A apply(A x)
|
||
{
|
||
return x <= 0 ? static_cast<A>(0) : (static_cast<A>(1) << static_cast<UInt64>(log2(static_cast<double>(x))));
|
||
}
|
||
};
|
||
|
||
template<>
|
||
struct RoundToExp2Impl<Float32>
|
||
{
|
||
using ResultType = Float32;
|
||
|
||
static inline Float32 apply(Float32 x)
|
||
{
|
||
return static_cast<Float32>(x < 1 ? 0. : pow(2., floor(log2(x))));
|
||
}
|
||
};
|
||
|
||
template<>
|
||
struct RoundToExp2Impl<Float64>
|
||
{
|
||
using ResultType = Float64;
|
||
|
||
static inline Float64 apply(Float64 x)
|
||
{
|
||
return x < 1 ? 0. : pow(2., floor(log2(x)));
|
||
}
|
||
};
|
||
|
||
template<typename A>
|
||
struct RoundDurationImpl
|
||
{
|
||
using ResultType = UInt16;
|
||
|
||
static inline ResultType apply(A x)
|
||
{
|
||
return x < 1 ? 0
|
||
: (x < 10 ? 1
|
||
: (x < 30 ? 10
|
||
: (x < 60 ? 30
|
||
: (x < 120 ? 60
|
||
: (x < 180 ? 120
|
||
: (x < 240 ? 180
|
||
: (x < 300 ? 240
|
||
: (x < 600 ? 300
|
||
: (x < 1200 ? 600
|
||
: (x < 1800 ? 1200
|
||
: (x < 3600 ? 1800
|
||
: (x < 7200 ? 3600
|
||
: (x < 18000 ? 7200
|
||
: (x < 36000 ? 18000
|
||
: 36000))))))))))))));
|
||
}
|
||
};
|
||
|
||
template<typename A>
|
||
struct RoundAgeImpl
|
||
{
|
||
using ResultType = UInt8;
|
||
|
||
static inline ResultType apply(A x)
|
||
{
|
||
return x < 1 ? 0
|
||
: (x < 18 ? 17
|
||
: (x < 25 ? 18
|
||
: (x < 35 ? 25
|
||
: (x < 45 ? 35
|
||
: 45))));
|
||
}
|
||
};
|
||
|
||
/** Быстрое вычисление остатка от деления для применения к округлению целых чисел.
|
||
* Без проверки, потому что делитель всегда положительный.
|
||
*/
|
||
template<typename T, typename Enable = void>
|
||
struct FastModulo;
|
||
|
||
template<typename T>
|
||
struct FastModulo<T, typename std::enable_if<std::is_integral<T>::value>::type>
|
||
{
|
||
private:
|
||
template<typename InputType, typename Enable = void>
|
||
struct Extend;
|
||
|
||
template<typename InputType>
|
||
struct Extend<InputType,
|
||
typename std::enable_if<std::is_same<InputType, Int8>::value
|
||
|| std::is_same<InputType, Int16>::value>::type>
|
||
{
|
||
using Type = Int64;
|
||
};
|
||
|
||
template<typename InputType>
|
||
struct Extend<InputType,
|
||
typename std::enable_if<std::is_same<InputType, UInt8>::value
|
||
|| std::is_same<InputType, UInt16>::value>::type>
|
||
{
|
||
using Type = UInt64;
|
||
};
|
||
|
||
template<typename InputType>
|
||
struct Extend<InputType,
|
||
typename std::enable_if<std::is_integral<InputType>::value
|
||
&& (sizeof(InputType) >= 4)>::type>
|
||
{
|
||
using Type = InputType;
|
||
};
|
||
|
||
using U = typename Extend<T>::Type;
|
||
|
||
public:
|
||
using Divisor = std::pair<size_t, typename libdivide::divider<U> >;
|
||
|
||
static inline Divisor prepare(size_t b)
|
||
{
|
||
return std::make_pair(b, libdivide::divider<U>(b));
|
||
}
|
||
|
||
static inline T compute(T a, const Divisor & divisor)
|
||
{
|
||
U val = static_cast<U>(a);
|
||
U rem = val - (val / divisor.second) * static_cast<U>(divisor.first);
|
||
return static_cast<T>(rem);
|
||
}
|
||
};
|
||
|
||
/** Этот параметр контролирует поведение функций округления.
|
||
*/
|
||
enum ScaleMode
|
||
{
|
||
PositiveScale, // округлять до числа с N десятичными знаками после запятой
|
||
NegativeScale, // окурглять до целого числа с N нулевыми знаками
|
||
ZeroScale, // округлять до целого числа
|
||
NullScale // возвращать нулевое значение
|
||
};
|
||
|
||
#if !defined(_MM_FROUND_NINT)
|
||
#define _MM_FROUND_NINT 0
|
||
#define _MM_FROUND_FLOOR 1
|
||
#define _MM_FROUND_CEIL 2
|
||
#endif
|
||
|
||
/** Реализация низкоуровневых функций округления для целочисленных значений.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode, typename Enable = void>
|
||
struct IntegerRoundingComputation;
|
||
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode>
|
||
struct IntegerRoundingComputation<T, rounding_mode, scale_mode,
|
||
typename std::enable_if<std::is_integral<T>::value
|
||
&& ((scale_mode == PositiveScale) || (scale_mode == ZeroScale))>::type>
|
||
{
|
||
using Divisor = int;
|
||
|
||
static inline Divisor prepare(size_t scale)
|
||
{
|
||
return 0;
|
||
}
|
||
|
||
static inline T compute(T in, const Divisor & scale)
|
||
{
|
||
return in;
|
||
}
|
||
};
|
||
|
||
template<typename T>
|
||
struct IntegerRoundingComputation<T, _MM_FROUND_NINT, NegativeScale,
|
||
typename std::enable_if<std::is_integral<T>::value>::type>
|
||
{
|
||
using Op = FastModulo<T>;
|
||
using Divisor = typename Op::Divisor;
|
||
|
||
static inline Divisor prepare(size_t scale)
|
||
{
|
||
return Op::prepare(scale);
|
||
}
|
||
|
||
static inline T compute(T in, const Divisor & scale)
|
||
{
|
||
T factor = (in < 0) ? -1 : 1;
|
||
in *= factor;
|
||
T rem = Op::compute(in, scale);
|
||
in -= rem;
|
||
T res;
|
||
if ((2 * rem) < static_cast<T>(scale.first))
|
||
res = in;
|
||
else
|
||
res = in + scale.first;
|
||
return factor * res;
|
||
}
|
||
};
|
||
|
||
template<typename T>
|
||
struct IntegerRoundingComputation<T, _MM_FROUND_CEIL, NegativeScale,
|
||
typename std::enable_if<std::is_integral<T>::value>::type>
|
||
{
|
||
using Op = FastModulo<T>;
|
||
using Divisor = typename Op::Divisor;
|
||
|
||
static inline Divisor prepare(size_t scale)
|
||
{
|
||
return Op::prepare(scale);
|
||
}
|
||
|
||
static inline T compute(T in, const Divisor & scale)
|
||
{
|
||
T factor = (in < 0) ? -1 : 1;
|
||
in *= factor;
|
||
T rem = Op::compute(in, scale);
|
||
T res = in - rem + scale.first;
|
||
return factor * res;
|
||
}
|
||
};
|
||
|
||
template<typename T>
|
||
struct IntegerRoundingComputation<T, _MM_FROUND_FLOOR, NegativeScale,
|
||
typename std::enable_if<std::is_integral<T>::value>::type>
|
||
{
|
||
using Op = FastModulo<T>;
|
||
using Divisor = typename Op::Divisor;
|
||
|
||
static inline Divisor prepare(size_t scale)
|
||
{
|
||
return Op::prepare(scale);
|
||
}
|
||
|
||
static inline T compute(T in, const Divisor & scale)
|
||
{
|
||
T factor = (in < 0) ? -1 : 1;
|
||
in *= factor;
|
||
T rem = Op::compute(in, scale);
|
||
T res = in - rem;
|
||
return factor * res;
|
||
}
|
||
};
|
||
|
||
#if __SSE4_1__
|
||
template <typename T>
|
||
class BaseFloatRoundingComputation;
|
||
|
||
template <>
|
||
class BaseFloatRoundingComputation<Float32>
|
||
{
|
||
public:
|
||
using Scale = __m128;
|
||
static const size_t data_count = 4;
|
||
|
||
protected:
|
||
/// Предотвратить появление отрицательных нолей определённых в стандарте IEEE-754.
|
||
static inline void normalize(__m128 & val, const __m128 & mask)
|
||
{
|
||
__m128 mask1 = _mm_cmpeq_ps(val, getZero());
|
||
__m128 mask2 = _mm_and_ps(mask, mask1);
|
||
mask2 = _mm_cmpeq_ps(mask2, getZero());
|
||
mask2 = _mm_min_ps(mask2, getTwo());
|
||
mask2 = _mm_sub_ps(mask2, getOne());
|
||
val = _mm_mul_ps(val, mask2);
|
||
}
|
||
|
||
static inline const __m128 & getZero()
|
||
{
|
||
static const __m128 zero = _mm_set1_ps(0.0);
|
||
return zero;
|
||
}
|
||
|
||
static inline const __m128 & getOne()
|
||
{
|
||
static const __m128 one = _mm_set1_ps(1.0);
|
||
return one;
|
||
}
|
||
|
||
static inline const __m128 & getTwo()
|
||
{
|
||
static const __m128 two = _mm_set1_ps(2.0);
|
||
return two;
|
||
}
|
||
};
|
||
|
||
template <>
|
||
class BaseFloatRoundingComputation<Float64>
|
||
{
|
||
public:
|
||
using Scale = __m128d;
|
||
static const size_t data_count = 2;
|
||
|
||
protected:
|
||
/// Предотвратить появление отрицательных нолей определённых в стандарте IEEE-754.
|
||
static inline void normalize(__m128d & val, const __m128d & mask)
|
||
{
|
||
__m128d mask1 = _mm_cmpeq_pd(val, getZero());
|
||
__m128d mask2 = _mm_and_pd(mask, mask1);
|
||
mask2 = _mm_cmpeq_pd(mask2, getZero());
|
||
mask2 = _mm_min_pd(mask2, getTwo());
|
||
mask2 = _mm_sub_pd(mask2, getOne());
|
||
val = _mm_mul_pd(val, mask2);
|
||
}
|
||
|
||
static inline const __m128d & getZero()
|
||
{
|
||
static const __m128d zero = _mm_set1_pd(0.0);
|
||
return zero;
|
||
}
|
||
|
||
static inline const __m128d & getOne()
|
||
{
|
||
static const __m128d one = _mm_set1_pd(1.0);
|
||
return one;
|
||
}
|
||
|
||
static inline const __m128d & getTwo()
|
||
{
|
||
static const __m128d two = _mm_set1_pd(2.0);
|
||
return two;
|
||
}
|
||
};
|
||
|
||
/** Реализация низкоуровневых функций округления для значений с плавающей точкой.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode>
|
||
class FloatRoundingComputation;
|
||
|
||
template<int rounding_mode>
|
||
class FloatRoundingComputation<Float32, rounding_mode, PositiveScale>
|
||
: public BaseFloatRoundingComputation<Float32>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
Float32 fscale = static_cast<Float32>(scale);
|
||
mm_scale = _mm_load1_ps(&fscale);
|
||
}
|
||
|
||
static inline void compute(const Float32 * __restrict in, const Scale & scale, Float32 * __restrict out)
|
||
{
|
||
__m128 val = _mm_loadu_ps(in);
|
||
__m128 mask = _mm_cmplt_ps(val, getZero());
|
||
|
||
/// Алгоритм округления.
|
||
val = _mm_mul_ps(val, scale);
|
||
val = _mm_round_ps(val, rounding_mode);
|
||
val = _mm_div_ps(val, scale);
|
||
|
||
normalize(val, mask);
|
||
_mm_storeu_ps(out, val);
|
||
}
|
||
};
|
||
|
||
template<int rounding_mode>
|
||
class FloatRoundingComputation<Float32, rounding_mode, NegativeScale>
|
||
: public BaseFloatRoundingComputation<Float32>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
Float32 fscale = static_cast<Float32>(scale);
|
||
mm_scale = _mm_load1_ps(&fscale);
|
||
}
|
||
|
||
static inline void compute(const Float32 * __restrict in, const Scale & scale, Float32 * __restrict out)
|
||
{
|
||
__m128 val = _mm_loadu_ps(in);
|
||
__m128 mask = _mm_cmplt_ps(val, getZero());
|
||
|
||
/// Превратить отрицательные значения в положительные.
|
||
__m128 factor = _mm_cmpge_ps(val, getZero());
|
||
factor = _mm_min_ps(factor, getTwo());
|
||
factor = _mm_sub_ps(factor, getOne());
|
||
val = _mm_mul_ps(val, factor);
|
||
|
||
/// Алгоритм округления.
|
||
val = _mm_div_ps(val, scale);
|
||
__m128 res = _mm_cmpge_ps(val, getOneTenth());
|
||
val = _mm_round_ps(val, rounding_mode);
|
||
val = _mm_mul_ps(val, scale);
|
||
val = _mm_and_ps(val, res);
|
||
|
||
/// Вернуть настоящие знаки всех значений.
|
||
val = _mm_mul_ps(val, factor);
|
||
|
||
normalize(val, mask);
|
||
_mm_storeu_ps(out, val);
|
||
}
|
||
|
||
private:
|
||
static inline const __m128 & getOneTenth()
|
||
{
|
||
static const __m128 one_tenth = _mm_set1_ps(0.1);
|
||
return one_tenth;
|
||
}
|
||
};
|
||
|
||
template<int rounding_mode>
|
||
class FloatRoundingComputation<Float32, rounding_mode, ZeroScale>
|
||
: public BaseFloatRoundingComputation<Float32>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
}
|
||
|
||
static inline void compute(const Float32 * __restrict in, const Scale & scale, Float32 * __restrict out)
|
||
{
|
||
__m128 val = _mm_loadu_ps(in);
|
||
__m128 mask = _mm_cmplt_ps(val, getZero());
|
||
|
||
val = _mm_round_ps(val, rounding_mode);
|
||
|
||
normalize(val, mask);
|
||
_mm_storeu_ps(out, val);
|
||
}
|
||
};
|
||
|
||
template<int rounding_mode>
|
||
class FloatRoundingComputation<Float64, rounding_mode, PositiveScale>
|
||
: public BaseFloatRoundingComputation<Float64>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
Float64 fscale = static_cast<Float64>(scale);
|
||
mm_scale = _mm_load1_pd(&fscale);
|
||
}
|
||
|
||
static inline void compute(const Float64 * __restrict in, const Scale & scale, Float64 * __restrict out)
|
||
{
|
||
__m128d val = _mm_loadu_pd(in);
|
||
__m128d mask = _mm_cmplt_pd(val, getZero());
|
||
|
||
/// Алгоритм округления.
|
||
val = _mm_mul_pd(val, scale);
|
||
val = _mm_round_pd(val, rounding_mode);
|
||
val = _mm_div_pd(val, scale);
|
||
|
||
normalize(val, mask);
|
||
_mm_storeu_pd(out, val);
|
||
}
|
||
};
|
||
|
||
template<int rounding_mode>
|
||
class FloatRoundingComputation<Float64, rounding_mode, NegativeScale>
|
||
: public BaseFloatRoundingComputation<Float64>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
Float64 fscale = static_cast<Float64>(scale);
|
||
mm_scale = _mm_load1_pd(&fscale);
|
||
}
|
||
|
||
static inline void compute(const Float64 * __restrict in, const Scale & scale, Float64 * __restrict out)
|
||
{
|
||
__m128d val = _mm_loadu_pd(in);
|
||
__m128d mask = _mm_cmplt_pd(val, getZero());
|
||
|
||
/// Превратить отрицательные значения в положительные.
|
||
__m128d factor = _mm_cmpge_pd(val, getZero());
|
||
factor = _mm_min_pd(factor, getTwo());
|
||
factor = _mm_sub_pd(factor, getOne());
|
||
val = _mm_mul_pd(val, factor);
|
||
|
||
/// Алгоритм округления.
|
||
val = _mm_div_pd(val, scale);
|
||
__m128d res = _mm_cmpge_pd(val, getOneTenth());
|
||
val = _mm_round_pd(val, rounding_mode);
|
||
val = _mm_mul_pd(val, scale);
|
||
val = _mm_and_pd(val, res);
|
||
|
||
/// Вернуть настоящие знаки всех значений.
|
||
val = _mm_mul_pd(val, factor);
|
||
|
||
normalize(val, mask);
|
||
_mm_storeu_pd(out, val);
|
||
}
|
||
|
||
private:
|
||
static inline const __m128d & getOneTenth()
|
||
{
|
||
static const __m128d one_tenth = _mm_set1_pd(0.1);
|
||
return one_tenth;
|
||
}
|
||
};
|
||
|
||
template<int rounding_mode>
|
||
class FloatRoundingComputation<Float64, rounding_mode, ZeroScale>
|
||
: public BaseFloatRoundingComputation<Float64>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
}
|
||
|
||
static inline void compute(const Float64 * __restrict in, const Scale & scale, Float64 * __restrict out)
|
||
{
|
||
__m128d val = _mm_loadu_pd(in);
|
||
__m128d mask = _mm_cmplt_pd(val, getZero());
|
||
|
||
val = _mm_round_pd(val, rounding_mode);
|
||
|
||
normalize(val, mask);
|
||
_mm_storeu_pd(out, val);
|
||
}
|
||
};
|
||
#else
|
||
/// Реализация для ARM. Не векторизована. Не исправляет отрицательные нули.
|
||
|
||
template <int mode>
|
||
float roundWithMode(float x)
|
||
{
|
||
if (mode == _MM_FROUND_NINT) return roundf(x);
|
||
if (mode == _MM_FROUND_FLOOR) return floorf(x);
|
||
if (mode == _MM_FROUND_CEIL) return ceilf(x);
|
||
__builtin_unreachable();
|
||
}
|
||
|
||
template <int mode>
|
||
double roundWithMode(double x)
|
||
{
|
||
if (mode == _MM_FROUND_NINT) return round(x);
|
||
if (mode == _MM_FROUND_FLOOR) return floor(x);
|
||
if (mode == _MM_FROUND_CEIL) return ceil(x);
|
||
__builtin_unreachable();
|
||
}
|
||
|
||
template <typename T>
|
||
class BaseFloatRoundingComputation
|
||
{
|
||
public:
|
||
using Scale = T;
|
||
static const size_t data_count = 1;
|
||
|
||
static inline void prepare(size_t scale, Scale & mm_scale)
|
||
{
|
||
mm_scale = static_cast<T>(scale);
|
||
}
|
||
};
|
||
|
||
template <typename T, int rounding_mode, ScaleMode scale_mode>
|
||
class FloatRoundingComputation;
|
||
|
||
template <typename T, int rounding_mode>
|
||
class FloatRoundingComputation<T, rounding_mode, PositiveScale>
|
||
: public BaseFloatRoundingComputation<T>
|
||
{
|
||
public:
|
||
static inline void compute(const T * __restrict in, const T & scale, T * __restrict out)
|
||
{
|
||
out[0] = roundWithMode<rounding_mode>(in[0] * scale) / scale;
|
||
}
|
||
};
|
||
|
||
template <typename T, int rounding_mode>
|
||
class FloatRoundingComputation<T, rounding_mode, NegativeScale>
|
||
: public BaseFloatRoundingComputation<T>
|
||
{
|
||
public:
|
||
static inline void compute(const T * __restrict in, const T & scale, T * __restrict out)
|
||
{
|
||
out[0] = roundWithMode<rounding_mode>(in[0] / scale) * scale;
|
||
}
|
||
};
|
||
|
||
template <typename T, int rounding_mode>
|
||
class FloatRoundingComputation<T, rounding_mode, ZeroScale>
|
||
: public BaseFloatRoundingComputation<T>
|
||
{
|
||
public:
|
||
static inline void prepare(size_t scale, T & mm_scale)
|
||
{
|
||
}
|
||
|
||
static inline void compute(const T * __restrict in, const T & scale, T * __restrict out)
|
||
{
|
||
out[0] = roundWithMode<rounding_mode>(in[0]);
|
||
}
|
||
};
|
||
#endif
|
||
|
||
|
||
/** Реализация высокоуровневых функций округления.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode, typename Enable = void>
|
||
struct FunctionRoundingImpl;
|
||
|
||
/** Реализация высокоуровневых функций округления для целочисленных значений.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode>
|
||
struct FunctionRoundingImpl<T, rounding_mode, scale_mode,
|
||
typename std::enable_if<std::is_integral<T>::value && (scale_mode != NullScale)>::type>
|
||
{
|
||
private:
|
||
using Op = IntegerRoundingComputation<T, rounding_mode, scale_mode>;
|
||
|
||
public:
|
||
static inline void apply(const PaddedPODArray<T> & in, size_t scale, typename ColumnVector<T>::Container_t & out)
|
||
{
|
||
auto divisor = Op::prepare(scale);
|
||
|
||
const T* begin_in = &in[0];
|
||
const T* end_in = begin_in + in.size();
|
||
|
||
T* __restrict p_out = &out[0];
|
||
for (const T* __restrict p_in = begin_in; p_in != end_in; ++p_in)
|
||
{
|
||
*p_out = Op::compute(*p_in, divisor);
|
||
++p_out;
|
||
}
|
||
}
|
||
|
||
static inline T apply(T val, size_t scale)
|
||
{
|
||
auto divisor = Op::prepare(scale);
|
||
return Op::compute(val, divisor);
|
||
}
|
||
};
|
||
|
||
/** Реализация высокоуровневых функций округления для значений с плавающей точкой.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode>
|
||
struct FunctionRoundingImpl<T, rounding_mode, scale_mode,
|
||
typename std::enable_if<std::is_floating_point<T>::value && (scale_mode != NullScale)>::type>
|
||
{
|
||
private:
|
||
using Op = FloatRoundingComputation<T, rounding_mode, scale_mode>;
|
||
using Data = std::array<T, Op::data_count>;
|
||
using Scale = typename Op::Scale;
|
||
|
||
public:
|
||
static inline void apply(const PaddedPODArray<T> & in, size_t scale, typename ColumnVector<T>::Container_t & out)
|
||
{
|
||
Scale mm_scale;
|
||
Op::prepare(scale, mm_scale);
|
||
|
||
const size_t data_count = std::tuple_size<Data>();
|
||
|
||
const T* begin_in = &in[0];
|
||
const T* end_in = begin_in + in.size();
|
||
|
||
T* begin_out = &out[0];
|
||
const T* end_out = begin_out + out.size();
|
||
|
||
const T* limit = begin_in + in.size() / data_count * data_count;
|
||
|
||
const T* __restrict p_in = begin_in;
|
||
T* __restrict p_out = begin_out;
|
||
for (; p_in < limit; p_in += data_count)
|
||
{
|
||
Op::compute(p_in, mm_scale, p_out);
|
||
p_out += data_count;
|
||
}
|
||
|
||
if (p_in < end_in)
|
||
{
|
||
Data tmp{{}};
|
||
T* begin_tmp = &tmp[0];
|
||
const T* end_tmp = begin_tmp + data_count;
|
||
|
||
for (T* __restrict p_tmp = begin_tmp; (p_tmp != end_tmp) && (p_in != end_in); ++p_tmp)
|
||
{
|
||
*p_tmp = *p_in;
|
||
++p_in;
|
||
}
|
||
|
||
Data res;
|
||
const T* begin_res = &res[0];
|
||
const T* end_res = begin_res + data_count;
|
||
|
||
Op::compute(reinterpret_cast<T *>(&tmp), mm_scale, reinterpret_cast<T *>(&res));
|
||
|
||
for (const T* __restrict p_res = begin_res; (p_res != end_res) && (p_out != end_out); ++p_res)
|
||
{
|
||
*p_out = *p_res;
|
||
++p_out;
|
||
}
|
||
}
|
||
}
|
||
|
||
static inline T apply(T val, size_t scale)
|
||
{
|
||
if (val == 0)
|
||
return val;
|
||
else
|
||
{
|
||
Scale mm_scale;
|
||
Op::prepare(scale, mm_scale);
|
||
|
||
Data tmp{{}};
|
||
tmp[0] = val;
|
||
|
||
Data res;
|
||
Op::compute(reinterpret_cast<T *>(&tmp), mm_scale, reinterpret_cast<T *>(&res));
|
||
return res[0];
|
||
}
|
||
}
|
||
};
|
||
|
||
/** Реализация высокоуровневых функций округления в том случае, когда возвращается нулевое значение.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode>
|
||
struct FunctionRoundingImpl<T, rounding_mode, scale_mode,
|
||
typename std::enable_if<scale_mode == NullScale>::type>
|
||
{
|
||
public:
|
||
static inline void apply(const PaddedPODArray<T> & in, size_t scale, typename ColumnVector<T>::Container_t & out)
|
||
{
|
||
::memset(reinterpret_cast<T *>(&out[0]), 0, in.size() * sizeof(T));
|
||
}
|
||
|
||
static inline T apply(T val, size_t scale)
|
||
{
|
||
return 0;
|
||
}
|
||
};
|
||
|
||
/// Следующий код генерирует во время сборки таблицу степеней числа 10.
|
||
|
||
namespace
|
||
{
|
||
/// Отдельные степени числа 10.
|
||
|
||
template<size_t N>
|
||
struct PowerOf10
|
||
{
|
||
static const size_t value = 10 * PowerOf10<N - 1>::value;
|
||
};
|
||
|
||
template<>
|
||
struct PowerOf10<0>
|
||
{
|
||
static const size_t value = 1;
|
||
};
|
||
}
|
||
|
||
/// Объявление и определение контейнера содержащего таблицу степеней числа 10.
|
||
|
||
template<size_t... TArgs>
|
||
struct TableContainer
|
||
{
|
||
static const std::array<size_t, sizeof...(TArgs)> values;
|
||
};
|
||
|
||
template<size_t... TArgs>
|
||
const std::array<size_t, sizeof...(TArgs)> TableContainer<TArgs...>::values {{ TArgs... }};
|
||
|
||
/// Генератор первых N степеней.
|
||
|
||
template<size_t N, size_t... TArgs>
|
||
struct FillArrayImpl
|
||
{
|
||
using result = typename FillArrayImpl<N - 1, PowerOf10<N>::value, TArgs...>::result;
|
||
};
|
||
|
||
template<size_t... TArgs>
|
||
struct FillArrayImpl<0, TArgs...>
|
||
{
|
||
using result = TableContainer<PowerOf10<0>::value, TArgs...>;
|
||
};
|
||
|
||
template<size_t N>
|
||
struct FillArray
|
||
{
|
||
using result = typename FillArrayImpl<N - 1>::result;
|
||
};
|
||
|
||
/** Этот шаблон определяет точность, которую используют функции round/ceil/floor,
|
||
* затем преобразовывает её в значение, которое можно использовать в операциях
|
||
* умножения и деления. Поэтому оно называется масштабом.
|
||
*/
|
||
template<typename T, typename U, typename Enable = void>
|
||
struct ScaleForRightType;
|
||
|
||
template<typename T, typename U>
|
||
struct ScaleForRightType<T, U,
|
||
typename std::enable_if<
|
||
std::is_floating_point<T>::value
|
||
&& std::is_signed<U>::value>::type>
|
||
{
|
||
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
|
||
{
|
||
using PowersOf10 = typename FillArray<std::numeric_limits<T>::digits10 + 1>::result;
|
||
using ColumnType = ColumnConst<U>;
|
||
|
||
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
|
||
if (precision_col == nullptr)
|
||
return false;
|
||
|
||
U val = precision_col->getData();
|
||
if (val < 0)
|
||
{
|
||
if (val < -static_cast<U>(std::numeric_limits<T>::digits10))
|
||
{
|
||
scale_mode = NullScale;
|
||
scale = 1;
|
||
}
|
||
else
|
||
{
|
||
scale_mode = NegativeScale;
|
||
scale = PowersOf10::values[-val];
|
||
}
|
||
}
|
||
else if (val == 0)
|
||
{
|
||
scale_mode = ZeroScale;
|
||
scale = 1;
|
||
}
|
||
else
|
||
{
|
||
scale_mode = PositiveScale;
|
||
if (val > std::numeric_limits<T>::digits10)
|
||
val = static_cast<U>(std::numeric_limits<T>::digits10);
|
||
scale = PowersOf10::values[val];
|
||
}
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
template<typename T, typename U>
|
||
struct ScaleForRightType<T, U,
|
||
typename std::enable_if<
|
||
std::is_floating_point<T>::value
|
||
&& std::is_unsigned<U>::value>::type>
|
||
{
|
||
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
|
||
{
|
||
using PowersOf10 = typename FillArray<std::numeric_limits<T>::digits10 + 1>::result;
|
||
using ColumnType = ColumnConst<U>;
|
||
|
||
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
|
||
if (precision_col == nullptr)
|
||
return false;
|
||
|
||
U val = precision_col->getData();
|
||
if (val == 0)
|
||
{
|
||
scale_mode = ZeroScale;
|
||
scale = 1;
|
||
}
|
||
else
|
||
{
|
||
scale_mode = PositiveScale;
|
||
if (val > static_cast<U>(std::numeric_limits<T>::digits10))
|
||
val = static_cast<U>(std::numeric_limits<T>::digits10);
|
||
scale = PowersOf10::values[val];
|
||
}
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
template<typename T, typename U>
|
||
struct ScaleForRightType<T, U,
|
||
typename std::enable_if<
|
||
std::is_integral<T>::value
|
||
&& std::is_signed<U>::value>::type>
|
||
{
|
||
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
|
||
{
|
||
using PowersOf10 = typename FillArray<std::numeric_limits<T>::digits10 + 1>::result;
|
||
using ColumnType = ColumnConst<U>;
|
||
|
||
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
|
||
if (precision_col == nullptr)
|
||
return false;
|
||
|
||
U val = precision_col->getData();
|
||
if (val < 0)
|
||
{
|
||
if (val < -std::numeric_limits<T>::digits10)
|
||
{
|
||
scale_mode = NullScale;
|
||
scale = 1;
|
||
}
|
||
else
|
||
{
|
||
scale_mode = NegativeScale;
|
||
scale = PowersOf10::values[-val];
|
||
}
|
||
}
|
||
else
|
||
{
|
||
scale_mode = ZeroScale;
|
||
scale = 1;
|
||
}
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
template<typename T, typename U>
|
||
struct ScaleForRightType<T, U,
|
||
typename std::enable_if<
|
||
std::is_integral<T>::value
|
||
&& std::is_unsigned<U>::value>::type>
|
||
{
|
||
static inline bool apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
|
||
{
|
||
using ColumnType = ColumnConst<U>;
|
||
|
||
const ColumnType * precision_col = typeid_cast<const ColumnType *>(&*column);
|
||
if (precision_col == nullptr)
|
||
return false;
|
||
|
||
scale_mode = ZeroScale;
|
||
scale = 1;
|
||
|
||
return true;
|
||
}
|
||
};
|
||
|
||
/** Превратить параметр точности в масштаб.
|
||
*/
|
||
template<typename T>
|
||
struct ScaleForLeftType
|
||
{
|
||
static inline void apply(const ColumnPtr & column, ScaleMode & scale_mode, size_t & scale)
|
||
{
|
||
if (!( ScaleForRightType<T, UInt8>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, UInt16>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, UInt16>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, UInt32>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, UInt64>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, Int8>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, Int16>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, Int32>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, Int64>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, Float32>::apply(column, scale_mode, scale)
|
||
|| ScaleForRightType<T, Float64>::apply(column, scale_mode, scale)))
|
||
{
|
||
throw Exception("Internal error", ErrorCodes::LOGICAL_ERROR);
|
||
}
|
||
}
|
||
};
|
||
|
||
/** Главный шаблон применяющий функцию округления к значению или столбцу.
|
||
*/
|
||
template<typename T, int rounding_mode, ScaleMode scale_mode>
|
||
struct Cruncher
|
||
{
|
||
using Op = FunctionRoundingImpl<T, rounding_mode, scale_mode>;
|
||
|
||
static inline void apply(Block & block, ColumnVector<T> * col, const ColumnNumbers & arguments, size_t result, size_t scale)
|
||
{
|
||
auto col_res = std::make_shared<ColumnVector<T>>();
|
||
block.safeGetByPosition(result).column = col_res;
|
||
|
||
typename ColumnVector<T>::Container_t & vec_res = col_res->getData();
|
||
vec_res.resize(col->getData().size());
|
||
|
||
if (vec_res.empty())
|
||
return;
|
||
|
||
Op::apply(col->getData(), scale, vec_res);
|
||
}
|
||
|
||
static inline void apply(Block & block, ColumnConst<T> * col, const ColumnNumbers & arguments, size_t result, size_t scale)
|
||
{
|
||
T res = Op::apply(col->getData(), scale);
|
||
auto col_res = std::make_shared<ColumnConst<T>>(col->size(), res);
|
||
block.safeGetByPosition(result).column = col_res;
|
||
}
|
||
};
|
||
|
||
/** Выбрать подходящий алгоритм обработки в зависимости от масштаба.
|
||
*/
|
||
template<typename T, template <typename> class U, int rounding_mode>
|
||
struct Dispatcher
|
||
{
|
||
static inline void apply(Block & block, U<T> * col, const ColumnNumbers & arguments, size_t result)
|
||
{
|
||
ScaleMode scale_mode;
|
||
size_t scale;
|
||
|
||
if (arguments.size() == 2)
|
||
ScaleForLeftType<T>::apply(block.safeGetByPosition(arguments[1]).column, scale_mode, scale);
|
||
else
|
||
{
|
||
scale_mode = ZeroScale;
|
||
scale = 1;
|
||
}
|
||
|
||
if (scale_mode == PositiveScale)
|
||
Cruncher<T, rounding_mode, PositiveScale>::apply(block, col, arguments, result, scale);
|
||
else if (scale_mode == ZeroScale)
|
||
Cruncher<T, rounding_mode, ZeroScale>::apply(block, col, arguments, result, scale);
|
||
else if (scale_mode == NegativeScale)
|
||
Cruncher<T, rounding_mode, NegativeScale>::apply(block, col, arguments, result, scale);
|
||
else if (scale_mode == NullScale)
|
||
Cruncher<T, rounding_mode, NullScale>::apply(block, col, arguments, result, scale);
|
||
else
|
||
throw Exception("Illegal operation", ErrorCodes::LOGICAL_ERROR);
|
||
}
|
||
};
|
||
|
||
/** Шаблон для функций, которые округляют значение входного параметра типа
|
||
* (U)Int8/16/32/64 или Float32/64, и принимают дополнительный необязятельный
|
||
* параметр (по умолчанию - 0).
|
||
*/
|
||
template<typename Name, int rounding_mode>
|
||
class FunctionRounding : public IFunction
|
||
{
|
||
public:
|
||
static constexpr auto name = Name::name;
|
||
static FunctionPtr create(const Context & context) { return std::make_shared<FunctionRounding>(); }
|
||
|
||
private:
|
||
template<typename T>
|
||
bool checkType(const IDataType * type) const
|
||
{
|
||
return typeid_cast<const T *>(type) != nullptr;
|
||
}
|
||
|
||
template<typename T>
|
||
bool executeForType(Block & block, const ColumnNumbers & arguments, size_t result)
|
||
{
|
||
if (ColumnVector<T> * col = typeid_cast<ColumnVector<T> *>(block.safeGetByPosition(arguments[0]).column.get()))
|
||
{
|
||
Dispatcher<T, ColumnVector, rounding_mode>::apply(block, col, arguments, result);
|
||
return true;
|
||
}
|
||
else if (ColumnConst<T> * col = typeid_cast<ColumnConst<T> *>(block.safeGetByPosition(arguments[0]).column.get()))
|
||
{
|
||
Dispatcher<T, ColumnConst, rounding_mode>::apply(block, col, arguments, result);
|
||
return true;
|
||
}
|
||
else
|
||
return false;
|
||
}
|
||
|
||
public:
|
||
String getName() const override
|
||
{
|
||
return name;
|
||
}
|
||
|
||
bool isVariadic() const override { return true; }
|
||
size_t getNumberOfArguments() const override { return 0; }
|
||
|
||
/// Получить типы результата по типам аргументов. Если функция неприменима для данных аргументов - кинуть исключение.
|
||
DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override
|
||
{
|
||
if ((arguments.size() < 1) || (arguments.size() > 2))
|
||
throw Exception("Number of arguments for function " + getName() + " doesn't match: passed "
|
||
+ toString(arguments.size()) + ", should be 1 or 2.",
|
||
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
|
||
|
||
if (arguments.size() == 2)
|
||
{
|
||
const IDataType * type = &*arguments[1];
|
||
if (!( checkType<DataTypeUInt8>(type)
|
||
|| checkType<DataTypeUInt16>(type)
|
||
|| checkType<DataTypeUInt32>(type)
|
||
|| checkType<DataTypeUInt64>(type)
|
||
|| checkType<DataTypeInt8>(type)
|
||
|| checkType<DataTypeInt16>(type)
|
||
|| checkType<DataTypeInt32>(type)
|
||
|| checkType<DataTypeInt64>(type)
|
||
|| checkType<DataTypeFloat32>(type)
|
||
|| checkType<DataTypeFloat64>(type)))
|
||
{
|
||
throw Exception("Illegal type in second argument of function " + getName(),
|
||
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
||
}
|
||
}
|
||
|
||
const IDataType * type = &*arguments[0];
|
||
if (!type->behavesAsNumber())
|
||
throw Exception("Illegal type " + arguments[0]->getName() + " of argument of function " + getName(),
|
||
ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT);
|
||
|
||
return arguments[0];
|
||
}
|
||
|
||
void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result) override
|
||
{
|
||
if (!( executeForType<UInt8>(block, arguments, result)
|
||
|| executeForType<UInt16>(block, arguments, result)
|
||
|| executeForType<UInt32>(block, arguments, result)
|
||
|| executeForType<UInt64>(block, arguments, result)
|
||
|| executeForType<Int8>(block, arguments, result)
|
||
|| executeForType<Int16>(block, arguments, result)
|
||
|| executeForType<Int32>(block, arguments, result)
|
||
|| executeForType<Int64>(block, arguments, result)
|
||
|| executeForType<Float32>(block, arguments, result)
|
||
|| executeForType<Float64>(block, arguments, result)))
|
||
{
|
||
throw Exception("Illegal column " + block.safeGetByPosition(arguments[0]).column->getName()
|
||
+ " of argument of function " + getName(),
|
||
ErrorCodes::ILLEGAL_COLUMN);
|
||
}
|
||
}
|
||
|
||
bool hasInformationAboutMonotonicity() const override
|
||
{
|
||
return true;
|
||
}
|
||
|
||
Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const override
|
||
{
|
||
return { true };
|
||
}
|
||
};
|
||
|
||
struct NameRoundToExp2 { static constexpr auto name = "roundToExp2"; };
|
||
struct NameRoundDuration { static constexpr auto name = "roundDuration"; };
|
||
struct NameRoundAge { static constexpr auto name = "roundAge"; };
|
||
struct NameRound { static constexpr auto name = "round"; };
|
||
struct NameCeil { static constexpr auto name = "ceil"; };
|
||
struct NameFloor { static constexpr auto name = "floor"; };
|
||
|
||
using FunctionRoundToExp2 = FunctionUnaryArithmetic<RoundToExp2Impl, NameRoundToExp2, false>;
|
||
using FunctionRoundDuration = FunctionUnaryArithmetic<RoundDurationImpl, NameRoundDuration, false>;
|
||
using FunctionRoundAge = FunctionUnaryArithmetic<RoundAgeImpl, NameRoundAge, false>;
|
||
|
||
using FunctionRound = FunctionRounding<NameRound, _MM_FROUND_NINT>;
|
||
using FunctionFloor = FunctionRounding<NameFloor, _MM_FROUND_FLOOR>;
|
||
using FunctionCeil = FunctionRounding<NameCeil, _MM_FROUND_CEIL>;
|
||
|
||
|
||
struct PositiveMonotonicity
|
||
{
|
||
static bool has() { return true; }
|
||
static IFunction::Monotonicity get(const Field & left, const Field & right)
|
||
{
|
||
return { true };
|
||
}
|
||
};
|
||
|
||
template <> struct FunctionUnaryArithmeticMonotonicity<NameRoundToExp2> : PositiveMonotonicity {};
|
||
template <> struct FunctionUnaryArithmeticMonotonicity<NameRoundDuration> : PositiveMonotonicity {};
|
||
template <> struct FunctionUnaryArithmeticMonotonicity<NameRoundAge> : PositiveMonotonicity {};
|
||
|
||
}
|