ClickHouse/src/IO/ReadHelpers.cpp
Azat Khuzhin 50231460af Use forward declaration for Buffer<> in generic headers
- changes in ReadHelpers.h -- recompiles 1000 modules
- changes in FormatFactor.h -- recompiles 100 modules
2021-10-16 12:03:24 +03:00

1164 lines
33 KiB
C++

#include <Core/Defines.h>
#include <Common/hex.h>
#include <Common/PODArray.h>
#include <Common/StringUtils/StringUtils.h>
#include <Common/memcpySmall.h>
#include <Formats/FormatSettings.h>
#include <IO/WriteHelpers.h>
#include <IO/WriteBufferFromString.h>
#include <IO/BufferWithOwnMemory.h>
#include <IO/readFloatText.h>
#include <IO/Operators.h>
#include <base/find_symbols.h>
#include <stdlib.h>
#ifdef __SSE2__
#include <emmintrin.h>
#endif
namespace DB
{
namespace ErrorCodes
{
extern const int CANNOT_PARSE_INPUT_ASSERTION_FAILED;
extern const int CANNOT_PARSE_ESCAPE_SEQUENCE;
extern const int CANNOT_PARSE_QUOTED_STRING;
extern const int CANNOT_PARSE_DATETIME;
extern const int CANNOT_PARSE_DATE;
extern const int INCORRECT_DATA;
}
template <typename IteratorSrc, typename IteratorDst>
void parseHex(IteratorSrc src, IteratorDst dst, const size_t num_bytes)
{
size_t src_pos = 0;
size_t dst_pos = 0;
for (; dst_pos < num_bytes; ++dst_pos, src_pos += 2)
dst[dst_pos] = unhex2(reinterpret_cast<const char *>(&src[src_pos]));
}
void parseUUID(const UInt8 * src36, UInt8 * dst16)
{
/// If string is not like UUID - implementation specific behaviour.
parseHex(&src36[0], &dst16[0], 4);
parseHex(&src36[9], &dst16[4], 2);
parseHex(&src36[14], &dst16[6], 2);
parseHex(&src36[19], &dst16[8], 2);
parseHex(&src36[24], &dst16[10], 6);
}
void parseUUIDWithoutSeparator(const UInt8 * src36, UInt8 * dst16)
{
/// If string is not like UUID - implementation specific behaviour.
parseHex(&src36[0], &dst16[0], 16);
}
/** Function used when byte ordering is important when parsing uuid
* ex: When we create an UUID type
*/
void parseUUID(const UInt8 * src36, std::reverse_iterator<UInt8 *> dst16)
{
/// If string is not like UUID - implementation specific behaviour.
/// FIXME This code looks like trash.
parseHex(&src36[0], dst16 + 8, 4);
parseHex(&src36[9], dst16 + 12, 2);
parseHex(&src36[14], dst16 + 14, 2);
parseHex(&src36[19], dst16, 2);
parseHex(&src36[24], dst16 + 2, 6);
}
/** Function used when byte ordering is important when parsing uuid
* ex: When we create an UUID type
*/
void parseUUIDWithoutSeparator(const UInt8 * src36, std::reverse_iterator<UInt8 *> dst16)
{
/// If string is not like UUID - implementation specific behaviour.
parseHex(&src36[0], dst16 + 8, 8);
parseHex(&src36[16], dst16, 8);
}
void NO_INLINE throwAtAssertionFailed(const char * s, ReadBuffer & buf)
{
WriteBufferFromOwnString out;
out << "Cannot parse input: expected " << quote << s;
if (buf.eof())
out << " at end of stream.";
else
out << " before: " << quote << String(buf.position(), std::min(SHOW_CHARS_ON_SYNTAX_ERROR, buf.buffer().end() - buf.position()));
throw ParsingException(out.str(), ErrorCodes::CANNOT_PARSE_INPUT_ASSERTION_FAILED);
}
bool checkString(const char * s, ReadBuffer & buf)
{
for (; *s; ++s)
{
if (buf.eof() || *buf.position() != *s)
return false;
++buf.position();
}
return true;
}
bool checkStringCaseInsensitive(const char * s, ReadBuffer & buf)
{
for (; *s; ++s)
{
if (buf.eof())
return false;
char c = *buf.position();
if (!equalsCaseInsensitive(*s, c))
return false;
++buf.position();
}
return true;
}
void assertString(const char * s, ReadBuffer & buf)
{
if (!checkString(s, buf))
throwAtAssertionFailed(s, buf);
}
void assertEOF(ReadBuffer & buf)
{
if (!buf.eof())
throwAtAssertionFailed("eof", buf);
}
void assertStringCaseInsensitive(const char * s, ReadBuffer & buf)
{
if (!checkStringCaseInsensitive(s, buf))
throwAtAssertionFailed(s, buf);
}
bool checkStringByFirstCharacterAndAssertTheRest(const char * s, ReadBuffer & buf)
{
if (buf.eof() || *buf.position() != *s)
return false;
assertString(s, buf);
return true;
}
bool checkStringByFirstCharacterAndAssertTheRestCaseInsensitive(const char * s, ReadBuffer & buf)
{
if (buf.eof())
return false;
char c = *buf.position();
if (!equalsCaseInsensitive(*s, c))
return false;
assertStringCaseInsensitive(s, buf);
return true;
}
template <typename T>
static void appendToStringOrVector(T & s, ReadBuffer & rb, const char * end)
{
s.append(rb.position(), end - rb.position());
}
template <>
inline void appendToStringOrVector(PaddedPODArray<UInt8> & s, ReadBuffer & rb, const char * end)
{
if (rb.isPadded())
s.insertSmallAllowReadWriteOverflow15(rb.position(), end);
else
s.insert(rb.position(), end);
}
template <>
inline void appendToStringOrVector(PODArray<char> & s, ReadBuffer & rb, const char * end)
{
s.insert(rb.position(), end);
}
template <char... chars, typename Vector>
void readStringUntilCharsInto(Vector & s, ReadBuffer & buf)
{
while (!buf.eof())
{
char * next_pos = find_first_symbols<chars...>(buf.position(), buf.buffer().end());
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (buf.hasPendingData())
return;
}
}
template <typename Vector>
void readStringInto(Vector & s, ReadBuffer & buf)
{
readStringUntilCharsInto<'\t', '\n'>(s, buf);
}
template <typename Vector>
void readStringUntilWhitespaceInto(Vector & s, ReadBuffer & buf)
{
readStringUntilCharsInto<' '>(s, buf);
}
template <typename Vector>
void readNullTerminated(Vector & s, ReadBuffer & buf)
{
readStringUntilCharsInto<'\0'>(s, buf);
buf.ignore();
}
void readStringUntilWhitespace(String & s, ReadBuffer & buf)
{
s.clear();
readStringUntilWhitespaceInto(s, buf);
}
template void readNullTerminated<PODArray<char>>(PODArray<char> & s, ReadBuffer & buf);
template void readNullTerminated<String>(String & s, ReadBuffer & buf);
void readString(String & s, ReadBuffer & buf)
{
s.clear();
readStringInto(s, buf);
}
template void readStringInto<PaddedPODArray<UInt8>>(PaddedPODArray<UInt8> & s, ReadBuffer & buf);
template <typename Vector>
void readStringUntilEOFInto(Vector & s, ReadBuffer & buf)
{
while (!buf.eof())
{
appendToStringOrVector(s, buf, buf.buffer().end());
buf.position() = buf.buffer().end();
}
}
void readStringUntilEOF(String & s, ReadBuffer & buf)
{
s.clear();
readStringUntilEOFInto(s, buf);
}
template <typename Vector>
void readEscapedStringUntilEOLInto(Vector & s, ReadBuffer & buf)
{
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\n', '\\'>(buf.position(), buf.buffer().end());
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == '\n')
return;
if (*buf.position() == '\\')
parseComplexEscapeSequence(s, buf);
}
}
void readEscapedStringUntilEOL(String & s, ReadBuffer & buf)
{
s.clear();
readEscapedStringUntilEOLInto(s, buf);
}
template void readStringUntilEOFInto<PaddedPODArray<UInt8>>(PaddedPODArray<UInt8> & s, ReadBuffer & buf);
/** Parse the escape sequence, which can be simple (one character after backslash) or more complex (multiple characters).
* It is assumed that the cursor is located on the `\` symbol
*/
template <typename Vector>
static void parseComplexEscapeSequence(Vector & s, ReadBuffer & buf)
{
++buf.position();
if (buf.eof())
throw Exception("Cannot parse escape sequence", ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE);
char char_after_backslash = *buf.position();
if (char_after_backslash == 'x')
{
++buf.position();
/// escape sequence of the form \xAA
char hex_code[2];
readPODBinary(hex_code, buf);
s.push_back(unhex2(hex_code));
}
else if (char_after_backslash == 'N')
{
/// Support for NULLs: \N sequence must be parsed as empty string.
++buf.position();
}
else
{
/// The usual escape sequence of a single character.
char decoded_char = parseEscapeSequence(char_after_backslash);
/// For convenience using LIKE and regular expressions,
/// we leave backslash when user write something like 'Hello 100\%':
/// it is parsed like Hello 100\% instead of Hello 100%
if (decoded_char != '\\'
&& decoded_char != '\''
&& decoded_char != '"'
&& decoded_char != '`' /// MySQL style identifiers
&& decoded_char != '/' /// JavaScript in HTML
&& decoded_char != '=' /// Yandex's TSKV
&& !isControlASCII(decoded_char))
{
s.push_back('\\');
}
s.push_back(decoded_char);
++buf.position();
}
}
template <typename Vector, typename ReturnType>
static ReturnType parseJSONEscapeSequence(Vector & s, ReadBuffer & buf)
{
static constexpr bool throw_exception = std::is_same_v<ReturnType, void>;
auto error = [](const char * message [[maybe_unused]], int code [[maybe_unused]])
{
if constexpr (throw_exception)
throw Exception(message, code);
return ReturnType(false);
};
++buf.position();
if (buf.eof())
return error("Cannot parse escape sequence", ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE);
assert(buf.hasPendingData());
switch (*buf.position())
{
case '"':
s.push_back('"');
break;
case '\\':
s.push_back('\\');
break;
case '/':
s.push_back('/');
break;
case 'b':
s.push_back('\b');
break;
case 'f':
s.push_back('\f');
break;
case 'n':
s.push_back('\n');
break;
case 'r':
s.push_back('\r');
break;
case 't':
s.push_back('\t');
break;
case 'u':
{
++buf.position();
char hex_code[4];
if (4 != buf.read(hex_code, 4))
return error("Cannot parse escape sequence: less than four bytes after \\u", ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE);
/// \u0000 - special case
if (0 == memcmp(hex_code, "0000", 4))
{
s.push_back(0);
return ReturnType(true);
}
UInt16 code_point = unhex4(hex_code);
if (code_point <= 0x7F)
{
s.push_back(code_point);
}
else if (code_point <= 0x07FF)
{
s.push_back(((code_point >> 6) & 0x1F) | 0xC0);
s.push_back((code_point & 0x3F) | 0x80);
}
else
{
/// Surrogate pair.
if (code_point >= 0xD800 && code_point <= 0xDBFF)
{
if (!checkString("\\u", buf))
return error("Cannot parse escape sequence: missing second part of surrogate pair", ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE);
char second_hex_code[4];
if (4 != buf.read(second_hex_code, 4))
return error("Cannot parse escape sequence: less than four bytes after \\u of second part of surrogate pair",
ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE);
UInt16 second_code_point = unhex4(second_hex_code);
if (second_code_point >= 0xDC00 && second_code_point <= 0xDFFF)
{
UInt32 full_code_point = 0x10000 + (code_point - 0xD800) * 1024 + (second_code_point - 0xDC00);
s.push_back(((full_code_point >> 18) & 0x07) | 0xF0);
s.push_back(((full_code_point >> 12) & 0x3F) | 0x80);
s.push_back(((full_code_point >> 6) & 0x3F) | 0x80);
s.push_back((full_code_point & 0x3F) | 0x80);
}
else
return error("Incorrect surrogate pair of unicode escape sequences in JSON", ErrorCodes::CANNOT_PARSE_ESCAPE_SEQUENCE);
}
else
{
s.push_back(((code_point >> 12) & 0x0F) | 0xE0);
s.push_back(((code_point >> 6) & 0x3F) | 0x80);
s.push_back((code_point & 0x3F) | 0x80);
}
}
return ReturnType(true);
}
default:
s.push_back(*buf.position());
break;
}
++buf.position();
return ReturnType(true);
}
template <typename Vector>
void readEscapedStringInto(Vector & s, ReadBuffer & buf)
{
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\t', '\n', '\\'>(buf.position(), buf.buffer().end());
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == '\t' || *buf.position() == '\n')
return;
if (*buf.position() == '\\')
parseComplexEscapeSequence(s, buf);
}
}
void readEscapedString(String & s, ReadBuffer & buf)
{
s.clear();
readEscapedStringInto(s, buf);
}
template void readEscapedStringInto<PaddedPODArray<UInt8>>(PaddedPODArray<UInt8> & s, ReadBuffer & buf);
template void readEscapedStringInto<NullOutput>(NullOutput & s, ReadBuffer & buf);
/** If enable_sql_style_quoting == true,
* strings like 'abc''def' will be parsed as abc'def.
* Please note, that even with SQL style quoting enabled,
* backslash escape sequences are also parsed,
* that could be slightly confusing.
*/
template <char quote, bool enable_sql_style_quoting, typename Vector>
static void readAnyQuotedStringInto(Vector & s, ReadBuffer & buf)
{
if (buf.eof() || *buf.position() != quote)
{
throw ParsingException(ErrorCodes::CANNOT_PARSE_QUOTED_STRING,
"Cannot parse quoted string: expected opening quote '{}', got '{}'",
std::string{quote}, buf.eof() ? "EOF" : std::string{*buf.position()});
}
++buf.position();
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\\', quote>(buf.position(), buf.buffer().end());
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == quote)
{
++buf.position();
if (enable_sql_style_quoting && !buf.eof() && *buf.position() == quote)
{
s.push_back(quote);
++buf.position();
continue;
}
return;
}
if (*buf.position() == '\\')
parseComplexEscapeSequence(s, buf);
}
throw ParsingException("Cannot parse quoted string: expected closing quote",
ErrorCodes::CANNOT_PARSE_QUOTED_STRING);
}
template <bool enable_sql_style_quoting, typename Vector>
void readQuotedStringInto(Vector & s, ReadBuffer & buf)
{
readAnyQuotedStringInto<'\'', enable_sql_style_quoting>(s, buf);
}
template <bool enable_sql_style_quoting, typename Vector>
void readDoubleQuotedStringInto(Vector & s, ReadBuffer & buf)
{
readAnyQuotedStringInto<'"', enable_sql_style_quoting>(s, buf);
}
template <bool enable_sql_style_quoting, typename Vector>
void readBackQuotedStringInto(Vector & s, ReadBuffer & buf)
{
readAnyQuotedStringInto<'`', enable_sql_style_quoting>(s, buf);
}
void readQuotedString(String & s, ReadBuffer & buf)
{
s.clear();
readQuotedStringInto<false>(s, buf);
}
void readQuotedStringWithSQLStyle(String & s, ReadBuffer & buf)
{
s.clear();
readQuotedStringInto<true>(s, buf);
}
template void readQuotedStringInto<true>(PaddedPODArray<UInt8> & s, ReadBuffer & buf);
template void readDoubleQuotedStringInto<false>(NullOutput & s, ReadBuffer & buf);
void readDoubleQuotedString(String & s, ReadBuffer & buf)
{
s.clear();
readDoubleQuotedStringInto<false>(s, buf);
}
void readDoubleQuotedStringWithSQLStyle(String & s, ReadBuffer & buf)
{
s.clear();
readDoubleQuotedStringInto<true>(s, buf);
}
void readBackQuotedString(String & s, ReadBuffer & buf)
{
s.clear();
readBackQuotedStringInto<false>(s, buf);
}
void readBackQuotedStringWithSQLStyle(String & s, ReadBuffer & buf)
{
s.clear();
readBackQuotedStringInto<true>(s, buf);
}
template <typename Vector>
void readCSVStringInto(Vector & s, ReadBuffer & buf, const FormatSettings::CSV & settings)
{
if (buf.eof())
throwReadAfterEOF();
const char delimiter = settings.delimiter;
const char maybe_quote = *buf.position();
/// Emptiness and not even in quotation marks.
if (maybe_quote == delimiter)
return;
if ((settings.allow_single_quotes && maybe_quote == '\'') || (settings.allow_double_quotes && maybe_quote == '"'))
{
++buf.position();
/// The quoted case. We are looking for the next quotation mark.
while (!buf.eof())
{
char * next_pos = reinterpret_cast<char *>(memchr(buf.position(), maybe_quote, buf.buffer().end() - buf.position()));
if (nullptr == next_pos)
next_pos = buf.buffer().end();
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
/// Now there is a quotation mark under the cursor. Is there any following?
++buf.position();
if (buf.eof())
return;
if (*buf.position() == maybe_quote)
{
s.push_back(maybe_quote);
++buf.position();
continue;
}
return;
}
}
else
{
/// Unquoted case. Look for delimiter or \r or \n.
while (!buf.eof())
{
char * next_pos = buf.position();
[&]()
{
#ifdef __SSE2__
auto rc = _mm_set1_epi8('\r');
auto nc = _mm_set1_epi8('\n');
auto dc = _mm_set1_epi8(delimiter);
for (; next_pos + 15 < buf.buffer().end(); next_pos += 16)
{
__m128i bytes = _mm_loadu_si128(reinterpret_cast<const __m128i *>(next_pos));
auto eq = _mm_or_si128(_mm_or_si128(_mm_cmpeq_epi8(bytes, rc), _mm_cmpeq_epi8(bytes, nc)), _mm_cmpeq_epi8(bytes, dc));
uint16_t bit_mask = _mm_movemask_epi8(eq);
if (bit_mask)
{
next_pos += __builtin_ctz(bit_mask);
return;
}
}
#endif
while (next_pos < buf.buffer().end()
&& *next_pos != delimiter && *next_pos != '\r' && *next_pos != '\n')
++next_pos;
}();
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
/** CSV format can contain insignificant spaces and tabs.
* Usually the task of skipping them is for the calling code.
* But in this case, it will be difficult to do this, so remove the trailing whitespace by ourself.
*/
size_t size = s.size();
while (size > 0
&& (s[size - 1] == ' ' || s[size - 1] == '\t'))
--size;
s.resize(size);
return;
}
}
}
void readCSVString(String & s, ReadBuffer & buf, const FormatSettings::CSV & settings)
{
s.clear();
readCSVStringInto(s, buf, settings);
}
template void readCSVStringInto<PaddedPODArray<UInt8>>(PaddedPODArray<UInt8> & s, ReadBuffer & buf, const FormatSettings::CSV & settings);
template <typename Vector, typename ReturnType>
ReturnType readJSONStringInto(Vector & s, ReadBuffer & buf)
{
static constexpr bool throw_exception = std::is_same_v<ReturnType, void>;
auto error = [](const char * message [[maybe_unused]], int code [[maybe_unused]])
{
if constexpr (throw_exception)
throw ParsingException(message, code);
return ReturnType(false);
};
if (buf.eof() || *buf.position() != '"')
return error("Cannot parse JSON string: expected opening quote", ErrorCodes::CANNOT_PARSE_QUOTED_STRING);
++buf.position();
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\\', '"'>(buf.position(), buf.buffer().end());
appendToStringOrVector(s, buf, next_pos);
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == '"')
{
++buf.position();
return ReturnType(true);
}
if (*buf.position() == '\\')
parseJSONEscapeSequence<Vector, ReturnType>(s, buf);
}
return error("Cannot parse JSON string: expected closing quote", ErrorCodes::CANNOT_PARSE_QUOTED_STRING);
}
void readJSONString(String & s, ReadBuffer & buf)
{
s.clear();
readJSONStringInto(s, buf);
}
template void readJSONStringInto<PaddedPODArray<UInt8>, void>(PaddedPODArray<UInt8> & s, ReadBuffer & buf);
template bool readJSONStringInto<PaddedPODArray<UInt8>, bool>(PaddedPODArray<UInt8> & s, ReadBuffer & buf);
template void readJSONStringInto<NullOutput>(NullOutput & s, ReadBuffer & buf);
template void readJSONStringInto<String>(String & s, ReadBuffer & buf);
template <typename ReturnType>
ReturnType readDateTextFallback(LocalDate & date, ReadBuffer & buf)
{
static constexpr bool throw_exception = std::is_same_v<ReturnType, void>;
auto error = []
{
if constexpr (throw_exception)
throw Exception("Cannot parse date: value is too short", ErrorCodes::CANNOT_PARSE_DATE);
return ReturnType(false);
};
auto ignore_delimiter = [&]
{
if (!buf.eof() && !isNumericASCII(*buf.position()))
{
++buf.position();
return true;
}
else
return false;
};
auto append_digit = [&](auto & x)
{
if (!buf.eof() && isNumericASCII(*buf.position()))
{
x = x * 10 + (*buf.position() - '0');
++buf.position();
return true;
}
else
return false;
};
UInt16 year = 0;
if (!append_digit(year)
|| !append_digit(year) // NOLINT
|| !append_digit(year) // NOLINT
|| !append_digit(year)) // NOLINT
return error();
if (!ignore_delimiter())
return error();
UInt8 month = 0;
if (!append_digit(month))
return error();
append_digit(month);
if (!ignore_delimiter())
return error();
UInt8 day = 0;
if (!append_digit(day))
return error();
append_digit(day);
date = LocalDate(year, month, day);
return ReturnType(true);
}
template void readDateTextFallback<void>(LocalDate &, ReadBuffer &);
template bool readDateTextFallback<bool>(LocalDate &, ReadBuffer &);
template <typename ReturnType>
ReturnType readDateTimeTextFallback(time_t & datetime, ReadBuffer & buf, const DateLUTImpl & date_lut)
{
static constexpr bool throw_exception = std::is_same_v<ReturnType, void>;
/// YYYY-MM-DD hh:mm:ss
static constexpr auto date_time_broken_down_length = 19;
/// YYYY-MM-DD
static constexpr auto date_broken_down_length = 10;
char s[date_time_broken_down_length];
char * s_pos = s;
/** Read characters, that could represent unix timestamp.
* Only unix timestamp of at least 5 characters is supported.
* Then look at 5th character. If it is a number - treat whole as unix timestamp.
* If it is not a number - then parse datetime in YYYY-MM-DD hh:mm:ss or YYYY-MM-DD format.
*/
/// A piece similar to unix timestamp, maybe scaled to subsecond precision.
while (s_pos < s + date_time_broken_down_length && !buf.eof() && isNumericASCII(*buf.position()))
{
*s_pos = *buf.position();
++s_pos;
++buf.position();
}
/// 2015-01-01 01:02:03 or 2015-01-01
if (s_pos == s + 4 && !buf.eof() && !isNumericASCII(*buf.position()))
{
const auto already_read_length = s_pos - s;
const size_t remaining_date_time_size = date_time_broken_down_length - already_read_length;
const size_t remaining_date_size = date_broken_down_length - already_read_length;
size_t size = buf.read(s_pos, remaining_date_time_size);
if (size != remaining_date_time_size && size != remaining_date_size)
{
s_pos[size] = 0;
if constexpr (throw_exception)
throw ParsingException(std::string("Cannot parse datetime ") + s, ErrorCodes::CANNOT_PARSE_DATETIME);
else
return false;
}
UInt16 year = (s[0] - '0') * 1000 + (s[1] - '0') * 100 + (s[2] - '0') * 10 + (s[3] - '0');
UInt8 month = (s[5] - '0') * 10 + (s[6] - '0');
UInt8 day = (s[8] - '0') * 10 + (s[9] - '0');
UInt8 hour = 0;
UInt8 minute = 0;
UInt8 second = 0;
if (size == remaining_date_time_size)
{
hour = (s[11] - '0') * 10 + (s[12] - '0');
minute = (s[14] - '0') * 10 + (s[15] - '0');
second = (s[17] - '0') * 10 + (s[18] - '0');
}
if (unlikely(year == 0))
datetime = 0;
else
datetime = date_lut.makeDateTime(year, month, day, hour, minute, second);
}
else
{
if (s_pos - s >= 5)
{
/// Not very efficient.
datetime = 0;
for (const char * digit_pos = s; digit_pos < s_pos; ++digit_pos)
datetime = datetime * 10 + *digit_pos - '0';
}
else
{
if constexpr (throw_exception)
throw ParsingException("Cannot parse datetime", ErrorCodes::CANNOT_PARSE_DATETIME);
else
return false;
}
}
return ReturnType(true);
}
template void readDateTimeTextFallback<void>(time_t &, ReadBuffer &, const DateLUTImpl &);
template bool readDateTimeTextFallback<bool>(time_t &, ReadBuffer &, const DateLUTImpl &);
void skipJSONField(ReadBuffer & buf, const StringRef & name_of_field)
{
if (buf.eof())
throw Exception("Unexpected EOF for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
else if (*buf.position() == '"') /// skip double-quoted string
{
NullOutput sink;
readJSONStringInto(sink, buf);
}
else if (isNumericASCII(*buf.position()) || *buf.position() == '-' || *buf.position() == '+' || *buf.position() == '.') /// skip number
{
if (*buf.position() == '+')
++buf.position();
double v;
if (!tryReadFloatText(v, buf))
throw Exception("Expected a number field for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
}
else if (*buf.position() == 'n') /// skip null
{
assertString("null", buf);
}
else if (*buf.position() == 't') /// skip true
{
assertString("true", buf);
}
else if (*buf.position() == 'f') /// skip false
{
assertString("false", buf);
}
else if (*buf.position() == '[')
{
++buf.position();
skipWhitespaceIfAny(buf);
if (!buf.eof() && *buf.position() == ']') /// skip empty array
{
++buf.position();
return;
}
while (true)
{
skipJSONField(buf, name_of_field);
skipWhitespaceIfAny(buf);
if (!buf.eof() && *buf.position() == ',')
{
++buf.position();
skipWhitespaceIfAny(buf);
}
else if (!buf.eof() && *buf.position() == ']')
{
++buf.position();
break;
}
else
throw Exception("Unexpected symbol for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
}
}
else if (*buf.position() == '{') /// skip whole object
{
++buf.position();
skipWhitespaceIfAny(buf);
while (!buf.eof() && *buf.position() != '}')
{
// field name
if (*buf.position() == '"')
{
NullOutput sink;
readJSONStringInto(sink, buf);
}
else
throw Exception("Unexpected symbol for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
// ':'
skipWhitespaceIfAny(buf);
if (buf.eof() || !(*buf.position() == ':'))
throw Exception("Unexpected symbol for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
++buf.position();
skipWhitespaceIfAny(buf);
skipJSONField(buf, name_of_field);
skipWhitespaceIfAny(buf);
// optional ','
if (!buf.eof() && *buf.position() == ',')
{
++buf.position();
skipWhitespaceIfAny(buf);
}
}
if (buf.eof())
throw Exception("Unexpected EOF for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
++buf.position();
}
else
{
throw Exception("Unexpected symbol '" + std::string(*buf.position(), 1) + "' for key '" + name_of_field.toString() + "'", ErrorCodes::INCORRECT_DATA);
}
}
Exception readException(ReadBuffer & buf, const String & additional_message, bool remote_exception)
{
int code = 0;
String name;
String message;
String stack_trace;
bool has_nested = false; /// Obsolete
readBinary(code, buf);
readBinary(name, buf);
readBinary(message, buf);
readBinary(stack_trace, buf);
readBinary(has_nested, buf);
WriteBufferFromOwnString out;
if (!additional_message.empty())
out << additional_message << ". ";
if (name != "DB::Exception")
out << name << ". ";
out << message << ".";
if (!stack_trace.empty())
out << " Stack trace:\n\n" << stack_trace;
return Exception(out.str(), code, remote_exception);
}
void readAndThrowException(ReadBuffer & buf, const String & additional_message)
{
readException(buf, additional_message).rethrow();
}
void skipToCarriageReturnOrEOF(ReadBuffer & buf)
{
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\r'>(buf.position(), buf.buffer().end());
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == '\r')
{
++buf.position();
return;
}
}
}
void skipToNextLineOrEOF(ReadBuffer & buf)
{
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\n'>(buf.position(), buf.buffer().end());
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == '\n')
{
++buf.position();
return;
}
}
}
void skipToUnescapedNextLineOrEOF(ReadBuffer & buf)
{
while (!buf.eof())
{
char * next_pos = find_first_symbols<'\n', '\\'>(buf.position(), buf.buffer().end());
buf.position() = next_pos;
if (!buf.hasPendingData())
continue;
if (*buf.position() == '\n')
{
++buf.position();
return;
}
if (*buf.position() == '\\')
{
++buf.position();
if (buf.eof())
return;
/// Skip escaped character. We do not consider escape sequences with more than one character after backslash (\x01).
/// It's ok for the purpose of this function, because we are interested only in \n and \\.
++buf.position();
continue;
}
}
}
void saveUpToPosition(ReadBuffer & in, Memory<> & memory, char * current)
{
assert(current >= in.position());
assert(current <= in.buffer().end());
const size_t old_bytes = memory.size();
const size_t additional_bytes = current - in.position();
const size_t new_bytes = old_bytes + additional_bytes;
/// There are no new bytes to add to memory.
/// No need to do extra stuff.
if (new_bytes == 0)
return;
assert(in.position() + additional_bytes <= in.buffer().end());
memory.resize(new_bytes);
memcpy(memory.data() + old_bytes, in.position(), additional_bytes);
in.position() = current;
}
bool loadAtPosition(ReadBuffer & in, Memory<> & memory, char * & current)
{
assert(current <= in.buffer().end());
if (current < in.buffer().end())
return true;
saveUpToPosition(in, memory, current);
bool loaded_more = !in.eof();
// A sanity check. Buffer position may be in the beginning of the buffer
// (normal case), or have some offset from it (AIO).
assert(in.position() >= in.buffer().begin());
assert(in.position() <= in.buffer().end());
current = in.position();
return loaded_more;
}
}