ClickHouse/dbms/src/Interpreters/Set.cpp
2018-09-28 13:44:59 +03:00

595 lines
19 KiB
C++

#include <optional>
#include <Core/Field.h>
#include <Common/FieldVisitors.h>
#include <Core/Row.h>
#include <Columns/ColumnsNumber.h>
#include <Columns/ColumnTuple.h>
#include <Common/typeid_cast.h>
#include <DataStreams/IProfilingBlockInputStream.h>
#include <DataTypes/DataTypeTuple.h>
#include <DataTypes/DataTypeNullable.h>
#include <Parsers/ASTExpressionList.h>
#include <Parsers/ASTFunction.h>
#include <Parsers/ASTLiteral.h>
#include <Interpreters/Set.h>
#include <Interpreters/convertFieldToType.h>
#include <Interpreters/evaluateConstantExpression.h>
#include <Interpreters/NullableUtils.h>
#include <Interpreters/sortBlock.h>
#include <Storages/MergeTree/KeyCondition.h>
#include <ext/range.h>
#include <DataTypes/DataTypeLowCardinality.h>
namespace DB
{
namespace ErrorCodes
{
extern const int LOGICAL_ERROR;
extern const int SET_SIZE_LIMIT_EXCEEDED;
extern const int TYPE_MISMATCH;
extern const int INCORRECT_ELEMENT_OF_SET;
extern const int NUMBER_OF_COLUMNS_DOESNT_MATCH;
}
template <typename Method>
void NO_INLINE Set::insertFromBlockImpl(
Method & method,
const ColumnRawPtrs & key_columns,
size_t rows,
SetVariants & variants,
ConstNullMapPtr null_map,
ColumnUInt8::Container * out_filter)
{
if (null_map)
{
if (out_filter)
insertFromBlockImplCase<Method, true, true>(method, key_columns, rows, variants, null_map, out_filter);
else
insertFromBlockImplCase<Method, true, false>(method, key_columns, rows, variants, null_map, out_filter);
}
else
{
if (out_filter)
insertFromBlockImplCase<Method, false, true>(method, key_columns, rows, variants, null_map, out_filter);
else
insertFromBlockImplCase<Method, false, false>(method, key_columns, rows, variants, null_map, out_filter);
}
}
template <typename Method, bool has_null_map, bool build_filter>
void NO_INLINE Set::insertFromBlockImplCase(
Method & method,
const ColumnRawPtrs & key_columns,
size_t rows,
SetVariants & variants,
ConstNullMapPtr null_map,
ColumnUInt8::Container * out_filter)
{
typename Method::State state;
state.init(key_columns);
/// For all rows
for (size_t i = 0; i < rows; ++i)
{
if (has_null_map && (*null_map)[i])
continue;
/// Obtain a key to insert to the set
typename Method::Key key = state.getKey(key_columns, keys_size, i, key_sizes);
typename Method::Data::iterator it;
bool inserted;
method.data.emplace(key, it, inserted);
if (inserted)
method.onNewKey(*it, keys_size, variants.string_pool);
if (build_filter)
(*out_filter)[i] = inserted;
}
}
void Set::setHeader(const Block & block)
{
std::unique_lock lock(rwlock);
if (!empty())
return;
keys_size = block.columns();
ColumnRawPtrs key_columns;
key_columns.reserve(keys_size);
data_types.reserve(keys_size);
/// The constant columns to the right of IN are not supported directly. For this, they first materialize.
Columns materialized_columns;
/// Remember the columns we will work with
for (size_t i = 0; i < keys_size; ++i)
{
key_columns.emplace_back(block.safeGetByPosition(i).column.get());
data_types.emplace_back(block.safeGetByPosition(i).type);
if (ColumnPtr converted = key_columns.back()->convertToFullColumnIfConst())
{
materialized_columns.emplace_back(converted);
key_columns.back() = materialized_columns.back().get();
}
/// Convert low cardinality column to full.
if (auto * low_cardinality_type = typeid_cast<const DataTypeLowCardinality *>(data_types.back().get()))
{
data_types.back() = low_cardinality_type->getDictionaryType();
materialized_columns.emplace_back(key_columns.back()->convertToFullColumnIfLowCardinality());
key_columns.back() = materialized_columns.back().get();
}
}
/// We will insert to the Set only keys, where all components are not NULL.
ColumnPtr null_map_holder;
ConstNullMapPtr null_map{};
extractNestedColumnsAndNullMap(key_columns, null_map_holder, null_map);
if (fill_set_elements)
{
/// Create empty columns with set values in advance.
/// It is needed because set may be empty, so method 'insertFromBlock' will be never called.
set_elements.reserve(keys_size);
for (const auto & type : data_types)
set_elements.emplace_back(removeNullable(type)->createColumn());
}
/// Choose data structure to use for the set.
data.init(data.chooseMethod(key_columns, key_sizes));
}
bool Set::insertFromBlock(const Block & block)
{
std::unique_lock lock(rwlock);
if (empty())
throw Exception("Method Set::setHeader must be called before Set::insertFromBlock", ErrorCodes::LOGICAL_ERROR);
ColumnRawPtrs key_columns;
key_columns.reserve(keys_size);
/// The constant columns to the right of IN are not supported directly. For this, they first materialize.
Columns materialized_columns;
/// Remember the columns we will work with
for (size_t i = 0; i < keys_size; ++i)
{
key_columns.emplace_back(block.safeGetByPosition(i).column.get());
if (ColumnPtr converted = key_columns.back()->convertToFullColumnIfConst())
{
materialized_columns.emplace_back(converted);
key_columns.back() = materialized_columns.back().get();
}
/// Convert low cardinality column to full.
if (key_columns.back()->lowCardinality())
{
materialized_columns.emplace_back(key_columns.back()->convertToFullColumnIfLowCardinality());
key_columns.back() = materialized_columns.back().get();
}
}
size_t rows = block.rows();
/// We will insert to the Set only keys, where all components are not NULL.
ColumnPtr null_map_holder;
ConstNullMapPtr null_map{};
extractNestedColumnsAndNullMap(key_columns, null_map_holder, null_map);
/// Filter to extract distinct values from the block.
ColumnUInt8::MutablePtr filter;
if (fill_set_elements)
filter = ColumnUInt8::create(block.rows());
switch (data.type)
{
case SetVariants::Type::EMPTY:
break;
#define M(NAME) \
case SetVariants::Type::NAME: \
insertFromBlockImpl(*data.NAME, key_columns, rows, data, null_map, filter ? &filter->getData() : nullptr); \
break;
APPLY_FOR_SET_VARIANTS(M)
#undef M
}
if (fill_set_elements)
{
for (size_t i = 0; i < keys_size; ++i)
{
auto filtered_column = block.getByPosition(i).column->filter(filter->getData(), rows);
if (set_elements[i]->empty())
set_elements[i] = filtered_column;
else
set_elements[i]->assumeMutableRef().insertRangeFrom(*filtered_column, 0, filtered_column->size());
}
}
return limits.check(getTotalRowCount(), getTotalByteCount(), "IN-set", ErrorCodes::SET_SIZE_LIMIT_EXCEEDED);
}
static Field extractValueFromNode(ASTPtr & node, const IDataType & type, const Context & context)
{
if (ASTLiteral * lit = typeid_cast<ASTLiteral *>(node.get()))
{
return convertFieldToType(lit->value, type);
}
else if (typeid_cast<ASTFunction *>(node.get()))
{
std::pair<Field, DataTypePtr> value_raw = evaluateConstantExpression(node, context);
return convertFieldToType(value_raw.first, type, value_raw.second.get());
}
else
throw Exception("Incorrect element of set. Must be literal or constant expression.", ErrorCodes::INCORRECT_ELEMENT_OF_SET);
}
void Set::createFromAST(const DataTypes & types, ASTPtr node, const Context & context)
{
/// Will form a block with values from the set.
Block header;
size_t num_columns = types.size();
for (size_t i = 0; i < num_columns; ++i)
header.insert(ColumnWithTypeAndName(types[i]->createColumn(), types[i], "_" + toString(i)));
setHeader(header);
MutableColumns columns = header.cloneEmptyColumns();
DataTypePtr tuple_type;
Row tuple_values;
ASTExpressionList & list = typeid_cast<ASTExpressionList &>(*node);
for (auto & elem : list.children)
{
if (num_columns == 1)
{
Field value = extractValueFromNode(elem, *types[0], context);
if (!value.isNull())
columns[0]->insert(value);
}
else if (ASTFunction * func = typeid_cast<ASTFunction *>(elem.get()))
{
Field function_result;
const TupleBackend * tuple = nullptr;
if (func->name != "tuple")
{
if (!tuple_type)
tuple_type = std::make_shared<DataTypeTuple>(types);
function_result = extractValueFromNode(elem, *tuple_type, context);
if (function_result.getType() != Field::Types::Tuple)
throw Exception("Invalid type of set. Expected tuple, got " + String(function_result.getTypeName()),
ErrorCodes::INCORRECT_ELEMENT_OF_SET);
tuple = &function_result.get<Tuple>().toUnderType();
}
size_t tuple_size = tuple ? tuple->size() : func->arguments->children.size();
if (tuple_size != num_columns)
throw Exception("Incorrect size of tuple in set: " + toString(tuple_size) + " instead of " + toString(num_columns),
ErrorCodes::INCORRECT_ELEMENT_OF_SET);
if (tuple_values.empty())
tuple_values.resize(tuple_size);
size_t i = 0;
for (; i < tuple_size; ++i)
{
Field value = tuple ? (*tuple)[i]
: extractValueFromNode(func->arguments->children[i], *types[i], context);
/// If at least one of the elements of the tuple has an impossible (outside the range of the type) value, then the entire tuple too.
if (value.isNull())
break;
tuple_values[i] = value;
}
if (i == tuple_size)
for (i = 0; i < tuple_size; ++i)
columns[i]->insert(tuple_values[i]);
}
else
throw Exception("Incorrect element of set", ErrorCodes::INCORRECT_ELEMENT_OF_SET);
}
Block block = header.cloneWithColumns(std::move(columns));
insertFromBlock(block);
}
ColumnPtr Set::execute(const Block & block, bool negative) const
{
size_t num_key_columns = block.columns();
if (0 == num_key_columns)
throw Exception("Logical error: no columns passed to Set::execute method.", ErrorCodes::LOGICAL_ERROR);
auto res = ColumnUInt8::create();
ColumnUInt8::Container & vec_res = res->getData();
vec_res.resize(block.safeGetByPosition(0).column->size());
if (vec_res.empty())
return res;
std::shared_lock lock(rwlock);
/// If the set is empty.
if (data_types.empty())
{
if (negative)
memset(vec_res.data(), 1, vec_res.size());
else
memset(vec_res.data(), 0, vec_res.size());
return res;
}
if (data_types.size() != num_key_columns)
{
std::stringstream message;
message << "Number of columns in section IN doesn't match. "
<< num_key_columns << " at left, " << data_types.size() << " at right.";
throw Exception(message.str(), ErrorCodes::NUMBER_OF_COLUMNS_DOESNT_MATCH);
}
/// Remember the columns we will work with. Also check that the data types are correct.
ColumnRawPtrs key_columns;
key_columns.reserve(num_key_columns);
/// The constant columns to the left of IN are not supported directly. For this, they first materialize.
Columns materialized_columns;
for (size_t i = 0; i < num_key_columns; ++i)
{
key_columns.push_back(block.safeGetByPosition(i).column.get());
if (!removeNullable(data_types[i])->equals(*removeNullable(block.safeGetByPosition(i).type)))
throw Exception("Types of column " + toString(i + 1) + " in section IN don't match: "
+ data_types[i]->getName() + " on the right, " + block.safeGetByPosition(i).type->getName() +
" on the left.", ErrorCodes::TYPE_MISMATCH);
if (ColumnPtr converted = key_columns.back()->convertToFullColumnIfConst())
{
materialized_columns.emplace_back(converted);
key_columns.back() = materialized_columns.back().get();
}
}
/// We will check existence in Set only for keys, where all components are not NULL.
ColumnPtr null_map_holder;
ConstNullMapPtr null_map{};
extractNestedColumnsAndNullMap(key_columns, null_map_holder, null_map);
executeOrdinary(key_columns, vec_res, negative, null_map);
return res;
}
template <typename Method>
void NO_INLINE Set::executeImpl(
Method & method,
const ColumnRawPtrs & key_columns,
ColumnUInt8::Container & vec_res,
bool negative,
size_t rows,
ConstNullMapPtr null_map) const
{
if (null_map)
executeImplCase<Method, true>(method, key_columns, vec_res, negative, rows, null_map);
else
executeImplCase<Method, false>(method, key_columns, vec_res, negative, rows, null_map);
}
template <typename Method, bool has_null_map>
void NO_INLINE Set::executeImplCase(
Method & method,
const ColumnRawPtrs & key_columns,
ColumnUInt8::Container & vec_res,
bool negative,
size_t rows,
ConstNullMapPtr null_map) const
{
typename Method::State state;
state.init(key_columns);
/// NOTE Optimization is not used for consecutive identical values.
/// For all rows
for (size_t i = 0; i < rows; ++i)
{
if (has_null_map && (*null_map)[i])
vec_res[i] = negative;
else
{
/// Build the key
typename Method::Key key = state.getKey(key_columns, keys_size, i, key_sizes);
vec_res[i] = negative ^ method.data.has(key);
}
}
}
void Set::executeOrdinary(
const ColumnRawPtrs & key_columns,
ColumnUInt8::Container & vec_res,
bool negative,
ConstNullMapPtr null_map) const
{
size_t rows = key_columns[0]->size();
switch (data.type)
{
case SetVariants::Type::EMPTY:
break;
#define M(NAME) \
case SetVariants::Type::NAME: \
executeImpl(*data.NAME, key_columns, vec_res, negative, rows, null_map); \
break;
APPLY_FOR_SET_VARIANTS(M)
#undef M
}
}
MergeTreeSetIndex::MergeTreeSetIndex(const Columns & set_elements, std::vector<KeyTuplePositionMapping> && index_mapping_)
: indexes_mapping(std::move(index_mapping_))
{
std::sort(indexes_mapping.begin(), indexes_mapping.end(),
[](const KeyTuplePositionMapping & l, const KeyTuplePositionMapping & r)
{
return std::forward_as_tuple(l.key_index, l.tuple_index) < std::forward_as_tuple(r.key_index, r.tuple_index);
});
indexes_mapping.erase(std::unique(
indexes_mapping.begin(), indexes_mapping.end(),
[](const KeyTuplePositionMapping & l, const KeyTuplePositionMapping & r)
{
return l.key_index == r.key_index;
}), indexes_mapping.end());
size_t tuple_size = indexes_mapping.size();
ordered_set.resize(tuple_size);
for (size_t i = 0; i < tuple_size; ++i)
ordered_set[i] = set_elements[indexes_mapping[i].tuple_index];
Block block_to_sort;
SortDescription sort_description;
for (size_t i = 0; i < tuple_size; ++i)
{
block_to_sort.insert({ ordered_set[i], nullptr, "" });
sort_description.emplace_back(i, 1, 1);
}
sortBlock(block_to_sort, sort_description);
for (size_t i = 0; i < tuple_size; ++i)
ordered_set[i] = block_to_sort.getByPosition(i).column;
}
/** Return the BoolMask where:
* 1: the intersection of the set and the range is non-empty
* 2: the range contains elements not in the set
*/
BoolMask MergeTreeSetIndex::mayBeTrueInRange(const std::vector<Range> & key_ranges, const DataTypes & data_types)
{
size_t tuple_size = indexes_mapping.size();
using FieldWithInfinityTuple = std::vector<FieldWithInfinity>;
FieldWithInfinityTuple left_point;
FieldWithInfinityTuple right_point;
left_point.reserve(tuple_size);
right_point.reserve(tuple_size);
bool invert_left_infinities = false;
bool invert_right_infinities = false;
for (size_t i = 0; i < tuple_size; ++i)
{
std::optional<Range> new_range = KeyCondition::applyMonotonicFunctionsChainToRange(
key_ranges[indexes_mapping[i].key_index],
indexes_mapping[i].functions,
data_types[indexes_mapping[i].key_index]);
if (!new_range)
return {true, true};
/** A range that ends in (x, y, ..., +inf) exclusive is the same as a range
* that ends in (x, y, ..., -inf) inclusive and vice versa for the left bound.
*/
if (new_range->left_bounded)
{
if (!new_range->left_included)
invert_left_infinities = true;
left_point.push_back(FieldWithInfinity(new_range->left));
}
else
{
if (invert_left_infinities)
left_point.push_back(FieldWithInfinity::getPlusinfinity());
else
left_point.push_back(FieldWithInfinity::getMinusInfinity());
}
if (new_range->right_bounded)
{
if (!new_range->right_included)
invert_right_infinities = true;
right_point.push_back(FieldWithInfinity(new_range->right));
}
else
{
if (invert_right_infinities)
right_point.push_back(FieldWithInfinity::getMinusInfinity());
else
right_point.push_back(FieldWithInfinity::getPlusinfinity());
}
}
/// This allows to construct tuple in 'ordered_set' at specified index for comparison with range.
auto indices = ext::range(0, ordered_set.at(0)->size());
auto extract_tuple = [tuple_size, this](size_t i)
{
/// Inefficient.
FieldWithInfinityTuple res;
res.reserve(tuple_size);
for (size_t j = 0; j < tuple_size; ++j)
res.emplace_back((*ordered_set[j])[i]);
return res;
};
auto compare = [&extract_tuple](size_t i, const FieldWithInfinityTuple & rhs)
{
return extract_tuple(i) < rhs;
};
/** Because each parallelogram maps to a contiguous sequence of elements
* layed out in the lexicographically increasing order, the set intersects the range
* if and only if either bound coincides with an element or at least one element
* is between the lower bounds
*/
auto left_lower = std::lower_bound(indices.begin(), indices.end(), left_point, compare);
auto right_lower = std::lower_bound(indices.begin(), indices.end(), right_point, compare);
return
{
left_lower != right_lower
|| (left_lower != indices.end() && extract_tuple(*left_lower) == left_point)
|| (right_lower != indices.end() && extract_tuple(*right_lower) == right_point),
true
};
}
}