ClickHouse/docs/en/sql_reference/table_functions/file.md
2020-04-03 16:23:32 +03:00

120 lines
3.7 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

---
toc_priority: 37
toc_title: file
---
# file {#file}
Creates a table from a file. This table function is similar to [url](url.md) and [hdfs](hdfs.md) ones.
``` sql
file(path, format, structure)
```
**Input parameters**
- `path` — The relative path to the file from [user\_files\_path](../../operations/server_configuration_parameters/settings.md#server_configuration_parameters-user_files_path). Path to file support following globs in readonly mode: `*`, `?`, `{abc,def}` and `{N..M}` where `N`, `M` — numbers, \``'abc', 'def'` — strings.
- `format` — The [format](../../interfaces/formats.md#formats) of the file.
- `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`.
**Returned value**
A table with the specified structure for reading or writing data in the specified file.
**Example**
Setting `user_files_path` and the contents of the file `test.csv`:
``` bash
$ grep user_files_path /etc/clickhouse-server/config.xml
<user_files_path>/var/lib/clickhouse/user_files/</user_files_path>
$ cat /var/lib/clickhouse/user_files/test.csv
1,2,3
3,2,1
78,43,45
```
Table from`test.csv` and selection of the first two rows from it:
``` sql
SELECT *
FROM file('test.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32')
LIMIT 2
```
``` text
┌─column1─┬─column2─┬─column3─┐
│ 1 │ 2 │ 3 │
│ 3 │ 2 │ 1 │
└─────────┴─────────┴─────────┘
```
``` sql
-- getting the first 10 lines of a table that contains 3 columns of UInt32 type from a CSV file
SELECT * FROM file('test.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32') LIMIT 10
```
**Globs in path**
Multiple path components can have globs. For being processed file should exists and matches to the whole path pattern (not only suffix or prefix).
- `*` — Substitutes any number of any characters except `/` including empty string.
- `?` — Substitutes any single character.
- `{some_string,another_string,yet_another_one}` — Substitutes any of strings `'some_string', 'another_string', 'yet_another_one'`.
- `{N..M}` — Substitutes any number in range from N to M including both borders.
Constructions with `{}` are similar to the [remote table function](../../sql_reference/table_functions/remote.md)).
**Example**
1. Suppose we have several files with the following relative paths:
- some\_dir/some\_file\_1
- some\_dir/some\_file\_2
- some\_dir/some\_file\_3
- another\_dir/some\_file\_1
- another\_dir/some\_file\_2
- another\_dir/some\_file\_3
1. Query the amount of rows in these files:
<!-- -->
``` sql
SELECT count(*)
FROM file('{some,another}_dir/some_file_{1..3}', 'TSV', 'name String, value UInt32')
```
1. Query the amount of rows in all files of these two directories:
<!-- -->
``` sql
SELECT count(*)
FROM file('{some,another}_dir/*', 'TSV', 'name String, value UInt32')
```
!!! warning "Warning"
If your listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`.
**Example**
Query the data from files named `file000`, `file001`, … , `file999`:
``` sql
SELECT count(*)
FROM file('big_dir/file{0..9}{0..9}{0..9}', 'CSV', 'name String, value UInt32')
```
## Virtual Columns {#virtual-columns}
- `_path` — Path to the file.
- `_file` — Name of the file.
**See Also**
- [Virtual columns](https://clickhouse.tech/docs/en/operations/table_engines/#table_engines-virtual_columns)
[Original article](https://clickhouse.tech/docs/en/query_language/table_functions/file/) <!--hide-->