mirror of
https://github.com/ClickHouse/ClickHouse.git
synced 2024-12-15 10:52:30 +00:00
0b47f4a9e9
Consider the following example: CREATE TABLE test(p DateTime, k int) ENGINE MergeTree PARTITION BY toDate(p) ORDER BY k; INSERT INTO test VALUES ('2020-09-01 00:01:02', 1), ('2020-09-01 20:01:03', 2), ('2020-09-02 00:01:03', 3); - SELECT count() FROM test WHERE toDate(p) >= '2020-09-01' AND p <= '2020-09-01 00:00:00' In this case rpn will be (FUNCTION_IN_RANGE, FUNCTION_UNKNOWN (due to strict), FUNCTION_AND) and for optimize_trivial_count_query we cannot use index if there is at least one FUNCTION_UNKNOWN. since there is no post processing and return count() based on only the first predicate is wrong. Before this patch FUNCTION_UNKNOWN was allowed for optimize_trivial_count_query, and the result was wrong. And two examples above just to show the difference, the behaviour hadn't been changed with this patch: - SELECT * FROM test WHERE toDate(p) >= '2020-09-01' AND p <= '2020-09-01 00:00:00' In this case will be (FUNCTION_IN_RANGE, FUNCTION_IN_RANGE (due to non-strict), FUNCTION_AND) so it will prune everything out and nothing will be read. - SELECT * FROM test WHERE toDate(p) >= '2020-09-01' AND toUnixTimestamp(p)%5==0 In this case will be (FUNCTION_IN_RANGE, FUNCTION_UNKNOWN, FUNCTION_AND) and all, two, partitions will be scanned, but due to filtering later none of rows will be matched.
457 lines
16 KiB
C++
457 lines
16 KiB
C++
#pragma once
|
|
|
|
#include <optional>
|
|
|
|
#include <Interpreters/Set.h>
|
|
#include <Core/SortDescription.h>
|
|
#include <Parsers/ASTExpressionList.h>
|
|
#include <Parsers/ASTSelectQuery.h>
|
|
#include <Parsers/ASTFunction.h>
|
|
#include <Storages/SelectQueryInfo.h>
|
|
|
|
|
|
namespace DB
|
|
{
|
|
|
|
class Context;
|
|
class IFunction;
|
|
using FunctionBasePtr = std::shared_ptr<IFunctionBase>;
|
|
class ExpressionActions;
|
|
using ExpressionActionsPtr = std::shared_ptr<ExpressionActions>;
|
|
|
|
/** A field, that can be stored in two representations:
|
|
* - A standalone field.
|
|
* - A field with reference to its position in a block.
|
|
* It's needed for execution of functions on ranges during
|
|
* index analysis. If function was executed once for field,
|
|
* its result would be cached for whole block for which field's reference points to.
|
|
*/
|
|
struct FieldRef : public Field
|
|
{
|
|
FieldRef() = default;
|
|
|
|
/// Create as explicit field without block.
|
|
template <typename T>
|
|
FieldRef(T && value) : Field(std::forward<T>(value)) {}
|
|
|
|
/// Create as reference to field in block.
|
|
FieldRef(ColumnsWithTypeAndName * columns_, size_t row_idx_, size_t column_idx_)
|
|
: Field((*(*columns_)[column_idx_].column)[row_idx_]),
|
|
columns(columns_), row_idx(row_idx_), column_idx(column_idx_) {}
|
|
|
|
bool isExplicit() const { return columns == nullptr; }
|
|
|
|
ColumnsWithTypeAndName * columns = nullptr;
|
|
size_t row_idx = 0;
|
|
size_t column_idx = 0;
|
|
};
|
|
|
|
/** Range with open or closed ends; possibly unbounded.
|
|
*/
|
|
struct Range
|
|
{
|
|
private:
|
|
static bool equals(const Field & lhs, const Field & rhs);
|
|
static bool less(const Field & lhs, const Field & rhs);
|
|
|
|
public:
|
|
FieldRef left; /// the left border, if any
|
|
FieldRef right; /// the right border, if any
|
|
bool left_bounded = false; /// bounded at the left
|
|
bool right_bounded = false; /// bounded at the right
|
|
bool left_included = false; /// includes the left border, if any
|
|
bool right_included = false; /// includes the right border, if any
|
|
|
|
/// The whole unversum.
|
|
Range() {}
|
|
|
|
/// One point.
|
|
Range(const FieldRef & point)
|
|
: left(point), right(point), left_bounded(true), right_bounded(true), left_included(true), right_included(true) {}
|
|
|
|
/// A bounded two-sided range.
|
|
Range(const FieldRef & left_, bool left_included_, const FieldRef & right_, bool right_included_)
|
|
: left(left_), right(right_),
|
|
left_bounded(true), right_bounded(true),
|
|
left_included(left_included_), right_included(right_included_)
|
|
{
|
|
shrinkToIncludedIfPossible();
|
|
}
|
|
|
|
static Range createRightBounded(const FieldRef & right_point, bool right_included)
|
|
{
|
|
Range r;
|
|
r.right = right_point;
|
|
r.right_bounded = true;
|
|
r.right_included = right_included;
|
|
r.shrinkToIncludedIfPossible();
|
|
return r;
|
|
}
|
|
|
|
static Range createLeftBounded(const FieldRef & left_point, bool left_included)
|
|
{
|
|
Range r;
|
|
r.left = left_point;
|
|
r.left_bounded = true;
|
|
r.left_included = left_included;
|
|
r.shrinkToIncludedIfPossible();
|
|
return r;
|
|
}
|
|
|
|
/** Optimize the range. If it has an open boundary and the Field type is "loose"
|
|
* - then convert it to closed, narrowing by one.
|
|
* That is, for example, turn (0,2) into [1].
|
|
*/
|
|
void shrinkToIncludedIfPossible()
|
|
{
|
|
if (left.isExplicit() && left_bounded && !left_included)
|
|
{
|
|
if (left.getType() == Field::Types::UInt64 && left.get<UInt64>() != std::numeric_limits<UInt64>::max())
|
|
{
|
|
++left.get<UInt64 &>();
|
|
left_included = true;
|
|
}
|
|
if (left.getType() == Field::Types::Int64 && left.get<Int64>() != std::numeric_limits<Int64>::max())
|
|
{
|
|
++left.get<Int64 &>();
|
|
left_included = true;
|
|
}
|
|
}
|
|
if (right.isExplicit() && right_bounded && !right_included)
|
|
{
|
|
if (right.getType() == Field::Types::UInt64 && right.get<UInt64>() != std::numeric_limits<UInt64>::min())
|
|
{
|
|
--right.get<UInt64 &>();
|
|
right_included = true;
|
|
}
|
|
if (right.getType() == Field::Types::Int64 && right.get<Int64>() != std::numeric_limits<Int64>::min())
|
|
{
|
|
--right.get<Int64 &>();
|
|
right_included = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
bool empty() const
|
|
{
|
|
return left_bounded && right_bounded
|
|
&& (less(right, left)
|
|
|| ((!left_included || !right_included) && !less(left, right)));
|
|
}
|
|
|
|
/// x contained in the range
|
|
bool contains(const FieldRef & x) const
|
|
{
|
|
return !leftThan(x) && !rightThan(x);
|
|
}
|
|
|
|
/// x is to the left
|
|
bool rightThan(const FieldRef & x) const
|
|
{
|
|
return (left_bounded
|
|
? !(less(left, x) || (left_included && equals(x, left)))
|
|
: false);
|
|
}
|
|
|
|
/// x is to the right
|
|
bool leftThan(const FieldRef & x) const
|
|
{
|
|
return (right_bounded
|
|
? !(less(x, right) || (right_included && equals(x, right)))
|
|
: false);
|
|
}
|
|
|
|
bool intersectsRange(const Range & r) const
|
|
{
|
|
/// r to the left of me.
|
|
if (r.right_bounded
|
|
&& left_bounded
|
|
&& (less(r.right, left)
|
|
|| ((!left_included || !r.right_included)
|
|
&& equals(r.right, left))))
|
|
return false;
|
|
|
|
/// r to the right of me.
|
|
if (r.left_bounded
|
|
&& right_bounded
|
|
&& (less(right, r.left) /// ...} {...
|
|
|| ((!right_included || !r.left_included) /// ...) [... or ...] (...
|
|
&& equals(r.left, right))))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool containsRange(const Range & r) const
|
|
{
|
|
/// r starts to the left of me.
|
|
if (left_bounded
|
|
&& (!r.left_bounded
|
|
|| less(r.left, left)
|
|
|| (r.left_included
|
|
&& !left_included
|
|
&& equals(r.left, left))))
|
|
return false;
|
|
|
|
/// r ends right of me.
|
|
if (right_bounded
|
|
&& (!r.right_bounded
|
|
|| less(right, r.right)
|
|
|| (r.right_included
|
|
&& !right_included
|
|
&& equals(r.right, right))))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void swapLeftAndRight()
|
|
{
|
|
std::swap(left, right);
|
|
std::swap(left_bounded, right_bounded);
|
|
std::swap(left_included, right_included);
|
|
}
|
|
|
|
String toString() const;
|
|
};
|
|
|
|
/** Condition on the index.
|
|
*
|
|
* Consists of the conditions for the key belonging to all possible ranges or sets,
|
|
* as well as logical operators AND/OR/NOT above these conditions.
|
|
*
|
|
* Constructs a reverse polish notation from these conditions
|
|
* and can calculate (interpret) its satisfiability over key ranges.
|
|
*/
|
|
class KeyCondition
|
|
{
|
|
public:
|
|
/// Does not take into account the SAMPLE section. all_columns - the set of all columns of the table.
|
|
KeyCondition(
|
|
const SelectQueryInfo & query_info,
|
|
const Context & context,
|
|
const Names & key_column_names,
|
|
const ExpressionActionsPtr & key_expr,
|
|
bool single_point_ = false,
|
|
bool strict_ = false);
|
|
|
|
/// Whether the condition and its negation are feasible in the direct product of single column ranges specified by `hyperrectangle`.
|
|
BoolMask checkInHyperrectangle(
|
|
const std::vector<Range> & hyperrectangle,
|
|
const DataTypes & data_types) const;
|
|
|
|
/// Whether the condition and its negation are (independently) feasible in the key range.
|
|
/// left_key and right_key must contain all fields in the sort_descr in the appropriate order.
|
|
/// data_types - the types of the key columns.
|
|
/// Argument initial_mask is used for early exiting the implementation when we do not care about
|
|
/// one of the resulting mask components (see BoolMask::consider_only_can_be_XXX).
|
|
BoolMask checkInRange(
|
|
size_t used_key_size,
|
|
const FieldRef * left_key,
|
|
const FieldRef* right_key,
|
|
const DataTypes & data_types,
|
|
BoolMask initial_mask = BoolMask(false, false)) const;
|
|
|
|
/// Are the condition and its negation valid in a semi-infinite (not limited to the right) key range.
|
|
/// left_key must contain all the fields in the sort_descr in the appropriate order.
|
|
BoolMask checkAfter(
|
|
size_t used_key_size,
|
|
const FieldRef * left_key,
|
|
const DataTypes & data_types,
|
|
BoolMask initial_mask = BoolMask(false, false)) const;
|
|
|
|
/// Same as checkInRange, but calculate only may_be_true component of a result.
|
|
/// This is more efficient than checkInRange(...).can_be_true.
|
|
bool mayBeTrueInRange(
|
|
size_t used_key_size,
|
|
const FieldRef * left_key,
|
|
const FieldRef * right_key,
|
|
const DataTypes & data_types) const;
|
|
|
|
/// Same as checkAfter, but calculate only may_be_true component of a result.
|
|
/// This is more efficient than checkAfter(...).can_be_true.
|
|
bool mayBeTrueAfter(
|
|
size_t used_key_size,
|
|
const FieldRef * left_key,
|
|
const DataTypes & data_types) const;
|
|
|
|
/// Checks that the index can not be used
|
|
/// FUNCTION_UNKNOWN will be AND'ed (if any).
|
|
bool alwaysUnknownOrTrue() const;
|
|
/// Checks that the index can not be used
|
|
/// Does not allow any FUNCTION_UNKNOWN (will instantly return true).
|
|
bool anyUnknownOrAlwaysTrue() const;
|
|
|
|
/// Get the maximum number of the key element used in the condition.
|
|
size_t getMaxKeyColumn() const;
|
|
|
|
bool hasMonotonicFunctionsChain() const;
|
|
|
|
/// Impose an additional condition: the value in the column `column` must be in the range `range`.
|
|
/// Returns whether there is such a column in the key.
|
|
bool addCondition(const String & column, const Range & range);
|
|
|
|
String toString() const;
|
|
|
|
|
|
/** A chain of possibly monotone functions.
|
|
* If the key column is wrapped in functions that can be monotonous in some value ranges
|
|
* (for example: -toFloat64(toDayOfWeek(date))), then here the functions will be located: toDayOfWeek, toFloat64, negate.
|
|
*/
|
|
using MonotonicFunctionsChain = std::vector<FunctionBasePtr>;
|
|
|
|
/** Computes value of constant expression and its data type.
|
|
* Returns false, if expression isn't constant.
|
|
*/
|
|
static bool getConstant(
|
|
const ASTPtr & expr, Block & block_with_constants, Field & out_value, DataTypePtr & out_type);
|
|
|
|
static Block getBlockWithConstants(
|
|
const ASTPtr & query, const TreeRewriterResultPtr & syntax_analyzer_result, const Context & context);
|
|
|
|
static std::optional<Range> applyMonotonicFunctionsChainToRange(
|
|
Range key_range,
|
|
const MonotonicFunctionsChain & functions,
|
|
DataTypePtr current_type,
|
|
bool single_point = false);
|
|
|
|
bool matchesExactContinuousRange() const;
|
|
|
|
private:
|
|
/// The expression is stored as Reverse Polish Notation.
|
|
struct RPNElement
|
|
{
|
|
enum Function
|
|
{
|
|
/// Atoms of a Boolean expression.
|
|
FUNCTION_IN_RANGE,
|
|
FUNCTION_NOT_IN_RANGE,
|
|
FUNCTION_IN_SET,
|
|
FUNCTION_NOT_IN_SET,
|
|
FUNCTION_UNKNOWN, /// Can take any value.
|
|
/// Operators of the logical expression.
|
|
FUNCTION_NOT,
|
|
FUNCTION_AND,
|
|
FUNCTION_OR,
|
|
/// Constants
|
|
ALWAYS_FALSE,
|
|
ALWAYS_TRUE,
|
|
};
|
|
|
|
RPNElement() {}
|
|
RPNElement(Function function_) : function(function_) {}
|
|
RPNElement(Function function_, size_t key_column_) : function(function_), key_column(key_column_) {}
|
|
RPNElement(Function function_, size_t key_column_, const Range & range_)
|
|
: function(function_), range(range_), key_column(key_column_) {}
|
|
|
|
String toString() const;
|
|
|
|
Function function = FUNCTION_UNKNOWN;
|
|
|
|
/// For FUNCTION_IN_RANGE and FUNCTION_NOT_IN_RANGE.
|
|
Range range;
|
|
size_t key_column = 0;
|
|
/// For FUNCTION_IN_SET, FUNCTION_NOT_IN_SET
|
|
using MergeTreeSetIndexPtr = std::shared_ptr<const MergeTreeSetIndex>;
|
|
MergeTreeSetIndexPtr set_index;
|
|
|
|
MonotonicFunctionsChain monotonic_functions_chain;
|
|
};
|
|
|
|
using RPN = std::vector<RPNElement>;
|
|
using ColumnIndices = std::map<String, size_t>;
|
|
|
|
using AtomMap = std::unordered_map<std::string, bool(*)(RPNElement & out, const Field & value)>;
|
|
|
|
public:
|
|
static const AtomMap atom_map;
|
|
|
|
private:
|
|
BoolMask checkInRange(
|
|
size_t used_key_size,
|
|
const FieldRef * left_key,
|
|
const FieldRef * right_key,
|
|
const DataTypes & data_types,
|
|
bool right_bounded,
|
|
BoolMask initial_mask) const;
|
|
|
|
void traverseAST(const ASTPtr & node, const Context & context, Block & block_with_constants);
|
|
bool tryParseAtomFromAST(const ASTPtr & node, const Context & context, Block & block_with_constants, RPNElement & out);
|
|
static bool tryParseLogicalOperatorFromAST(const ASTFunction * func, RPNElement & out);
|
|
|
|
/** Is node the key column
|
|
* or expression in which column of key is wrapped by chain of functions,
|
|
* that can be monotonic on certain ranges?
|
|
* If these conditions are true, then returns number of column in key, type of resulting expression
|
|
* and fills chain of possibly-monotonic functions.
|
|
*/
|
|
bool isKeyPossiblyWrappedByMonotonicFunctions(
|
|
const ASTPtr & node,
|
|
const Context & context,
|
|
size_t & out_key_column_num,
|
|
DataTypePtr & out_key_res_column_type,
|
|
MonotonicFunctionsChain & out_functions_chain);
|
|
|
|
bool isKeyPossiblyWrappedByMonotonicFunctionsImpl(
|
|
const ASTPtr & node,
|
|
size_t & out_key_column_num,
|
|
DataTypePtr & out_key_column_type,
|
|
std::vector<const ASTFunction *> & out_functions_chain);
|
|
|
|
bool canConstantBeWrappedByMonotonicFunctions(
|
|
const ASTPtr & node,
|
|
size_t & out_key_column_num,
|
|
DataTypePtr & out_key_column_type,
|
|
Field & out_value,
|
|
DataTypePtr & out_type);
|
|
|
|
bool canConstantBeWrappedByFunctions(
|
|
const ASTPtr & ast, size_t & out_key_column_num, DataTypePtr & out_key_column_type, Field & out_value, DataTypePtr & out_type);
|
|
|
|
/// If it's possible to make an RPNElement
|
|
/// that will filter values (possibly tuples) by the content of 'prepared_set',
|
|
/// do it and return true.
|
|
bool tryPrepareSetIndex(
|
|
const ASTs & args,
|
|
const Context & context,
|
|
RPNElement & out,
|
|
size_t & out_key_column_num);
|
|
|
|
/// Checks that the index can not be used.
|
|
///
|
|
/// If unknown_any is false (used by alwaysUnknownOrTrue()), then FUNCTION_UNKNOWN can be AND'ed,
|
|
/// otherwise (anyUnknownOrAlwaysTrue()) first FUNCTION_UNKNOWN will return true (index cannot be used).
|
|
///
|
|
/// Consider the following example:
|
|
///
|
|
/// CREATE TABLE test(p DateTime, k int) ENGINE MergeTree PARTITION BY toDate(p) ORDER BY k;
|
|
/// INSERT INTO test VALUES ('2020-09-01 00:01:02', 1), ('2020-09-01 20:01:03', 2), ('2020-09-02 00:01:03', 3);
|
|
///
|
|
/// - SELECT count() FROM test WHERE toDate(p) >= '2020-09-01' AND p <= '2020-09-01 00:00:00'
|
|
/// In this case rpn will be (FUNCTION_IN_RANGE, FUNCTION_UNKNOWN (due to strict), FUNCTION_AND)
|
|
/// and for optimize_trivial_count_query we cannot use index if there is at least one FUNCTION_UNKNOWN.
|
|
/// since there is no post processing and return count() based on only the first predicate is wrong.
|
|
///
|
|
/// - SELECT * FROM test WHERE toDate(p) >= '2020-09-01' AND p <= '2020-09-01 00:00:00'
|
|
/// In this case will be (FUNCTION_IN_RANGE, FUNCTION_IN_RANGE (due to non-strict), FUNCTION_AND)
|
|
/// so it will prune everything out and nothing will be read.
|
|
///
|
|
/// - SELECT * FROM test WHERE toDate(p) >= '2020-09-01' AND toUnixTimestamp(p)%5==0
|
|
/// In this case will be (FUNCTION_IN_RANGE, FUNCTION_UNKNOWN, FUNCTION_AND)
|
|
/// and all, two, partitions will be scanned, but due to filtering later none of rows will be matched.
|
|
bool unknownOrAlwaysTrue(bool unknown_any) const;
|
|
|
|
RPN rpn;
|
|
|
|
ColumnIndices key_columns;
|
|
ExpressionActionsPtr key_expr;
|
|
PreparedSets prepared_sets;
|
|
|
|
// If true, always allow key_expr to be wrapped by function
|
|
bool single_point;
|
|
// If true, do not use always_monotonic information to transform constants
|
|
bool strict;
|
|
};
|
|
|
|
}
|