ClickHouse/src/Columns/ColumnString.cpp
2020-10-14 16:30:23 +03:00

644 lines
19 KiB
C++

#include <Common/Arena.h>
#include <Common/memcmpSmall.h>
#include <Common/assert_cast.h>
#include <Common/WeakHash.h>
#include <Common/HashTable/Hash.h>
#include <Columns/Collator.h>
#include <Columns/ColumnString.h>
#include <Columns/ColumnsCommon.h>
#include <DataStreams/ColumnGathererStream.h>
#include <common/unaligned.h>
#include <ext/scope_guard.h>
namespace DB
{
namespace ErrorCodes
{
extern const int PARAMETER_OUT_OF_BOUND;
extern const int SIZES_OF_COLUMNS_DOESNT_MATCH;
extern const int LOGICAL_ERROR;
}
ColumnString::ColumnString(const ColumnString & src)
: COWHelper<IColumn, ColumnString>(src),
offsets(src.offsets.begin(), src.offsets.end()),
chars(src.chars.begin(), src.chars.end())
{
if (!offsets.empty())
{
Offset last_offset = offsets.back();
/// This will also prevent possible overflow in offset.
if (chars.size() != last_offset)
throw Exception("String offsets has data inconsistent with chars array", ErrorCodes::LOGICAL_ERROR);
}
}
MutableColumnPtr ColumnString::cloneResized(size_t to_size) const
{
auto res = ColumnString::create();
if (to_size == 0)
return res;
size_t from_size = size();
if (to_size <= from_size)
{
/// Just cut column.
res->offsets.assign(offsets.begin(), offsets.begin() + to_size);
res->chars.assign(chars.begin(), chars.begin() + offsets[to_size - 1]);
}
else
{
/// Copy column and append empty strings for extra elements.
Offset offset = 0;
if (from_size > 0)
{
res->offsets.assign(offsets.begin(), offsets.end());
res->chars.assign(chars.begin(), chars.end());
offset = offsets.back();
}
/// Empty strings are just zero terminating bytes.
res->chars.resize_fill(res->chars.size() + to_size - from_size);
res->offsets.resize(to_size);
for (size_t i = from_size; i < to_size; ++i)
{
++offset;
res->offsets[i] = offset;
}
}
return res;
}
void ColumnString::updateWeakHash32(WeakHash32 & hash) const
{
auto s = offsets.size();
if (hash.getData().size() != s)
throw Exception("Size of WeakHash32 does not match size of column: column size is " + std::to_string(s) +
", hash size is " + std::to_string(hash.getData().size()), ErrorCodes::LOGICAL_ERROR);
const UInt8 * pos = chars.data();
UInt32 * hash_data = hash.getData().data();
Offset prev_offset = 0;
for (const auto & offset : offsets)
{
auto str_size = offset - prev_offset;
/// Skip last zero byte.
*hash_data = ::updateWeakHash32(pos, str_size - 1, *hash_data);
pos += str_size;
prev_offset = offset;
++hash_data;
}
}
void ColumnString::insertRangeFrom(const IColumn & src, size_t start, size_t length)
{
if (length == 0)
return;
const ColumnString & src_concrete = assert_cast<const ColumnString &>(src);
if (start + length > src_concrete.offsets.size())
throw Exception("Parameter out of bound in IColumnString::insertRangeFrom method.",
ErrorCodes::PARAMETER_OUT_OF_BOUND);
size_t nested_offset = src_concrete.offsetAt(start);
size_t nested_length = src_concrete.offsets[start + length - 1] - nested_offset;
size_t old_chars_size = chars.size();
chars.resize(old_chars_size + nested_length);
memcpy(&chars[old_chars_size], &src_concrete.chars[nested_offset], nested_length);
if (start == 0 && offsets.empty())
{
offsets.assign(src_concrete.offsets.begin(), src_concrete.offsets.begin() + length);
}
else
{
size_t old_size = offsets.size();
size_t prev_max_offset = offsets.back(); /// -1th index is Ok, see PaddedPODArray
offsets.resize(old_size + length);
for (size_t i = 0; i < length; ++i)
offsets[old_size + i] = src_concrete.offsets[start + i] - nested_offset + prev_max_offset;
}
}
ColumnPtr ColumnString::filter(const Filter & filt, ssize_t result_size_hint) const
{
if (offsets.empty())
return ColumnString::create();
auto res = ColumnString::create();
Chars & res_chars = res->chars;
Offsets & res_offsets = res->offsets;
filterArraysImpl<UInt8>(chars, offsets, res_chars, res_offsets, filt, result_size_hint);
return res;
}
ColumnPtr ColumnString::permute(const Permutation & perm, size_t limit) const
{
size_t size = offsets.size();
if (limit == 0)
limit = size;
else
limit = std::min(size, limit);
if (perm.size() < limit)
throw Exception("Size of permutation is less than required.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
if (limit == 0)
return ColumnString::create();
auto res = ColumnString::create();
Chars & res_chars = res->chars;
Offsets & res_offsets = res->offsets;
if (limit == size)
res_chars.resize(chars.size());
else
{
size_t new_chars_size = 0;
for (size_t i = 0; i < limit; ++i)
new_chars_size += sizeAt(perm[i]);
res_chars.resize(new_chars_size);
}
res_offsets.resize(limit);
Offset current_new_offset = 0;
for (size_t i = 0; i < limit; ++i)
{
size_t j = perm[i];
size_t string_offset = offsets[j - 1];
size_t string_size = offsets[j] - string_offset;
memcpySmallAllowReadWriteOverflow15(&res_chars[current_new_offset], &chars[string_offset], string_size);
current_new_offset += string_size;
res_offsets[i] = current_new_offset;
}
return res;
}
StringRef ColumnString::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const
{
size_t string_size = sizeAt(n);
size_t offset = offsetAt(n);
StringRef res;
res.size = sizeof(string_size) + string_size;
char * pos = arena.allocContinue(res.size, begin);
memcpy(pos, &string_size, sizeof(string_size));
memcpy(pos + sizeof(string_size), &chars[offset], string_size);
res.data = pos;
return res;
}
const char * ColumnString::deserializeAndInsertFromArena(const char * pos)
{
const size_t string_size = unalignedLoad<size_t>(pos);
pos += sizeof(string_size);
const size_t old_size = chars.size();
const size_t new_size = old_size + string_size;
chars.resize(new_size);
memcpy(chars.data() + old_size, pos, string_size);
offsets.push_back(new_size);
return pos + string_size;
}
ColumnPtr ColumnString::index(const IColumn & indexes, size_t limit) const
{
return selectIndexImpl(*this, indexes, limit);
}
template <typename Type>
ColumnPtr ColumnString::indexImpl(const PaddedPODArray<Type> & indexes, size_t limit) const
{
if (limit == 0)
return ColumnString::create();
auto res = ColumnString::create();
Chars & res_chars = res->chars;
Offsets & res_offsets = res->offsets;
size_t new_chars_size = 0;
for (size_t i = 0; i < limit; ++i)
new_chars_size += sizeAt(indexes[i]);
res_chars.resize(new_chars_size);
res_offsets.resize(limit);
Offset current_new_offset = 0;
for (size_t i = 0; i < limit; ++i)
{
size_t j = indexes[i];
size_t string_offset = offsets[j - 1];
size_t string_size = offsets[j] - string_offset;
memcpySmallAllowReadWriteOverflow15(&res_chars[current_new_offset], &chars[string_offset], string_size);
current_new_offset += string_size;
res_offsets[i] = current_new_offset;
}
return res;
}
void ColumnString::compareColumn(
const IColumn & rhs, size_t rhs_row_num,
PaddedPODArray<UInt64> * row_indexes, PaddedPODArray<Int8> & compare_results,
int direction, int nan_direction_hint) const
{
return doCompareColumn<ColumnString>(assert_cast<const ColumnString &>(rhs), rhs_row_num, row_indexes,
compare_results, direction, nan_direction_hint);
}
template <bool positive>
struct ColumnString::less
{
const ColumnString & parent;
explicit less(const ColumnString & parent_) : parent(parent_) {}
bool operator()(size_t lhs, size_t rhs) const
{
int res = memcmpSmallAllowOverflow15(
parent.chars.data() + parent.offsetAt(lhs), parent.sizeAt(lhs) - 1,
parent.chars.data() + parent.offsetAt(rhs), parent.sizeAt(rhs) - 1);
return positive ? (res < 0) : (res > 0);
}
};
void ColumnString::getPermutation(bool reverse, size_t limit, int /*nan_direction_hint*/, Permutation & res) const
{
size_t s = offsets.size();
res.resize(s);
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (limit >= s)
limit = 0;
if (limit)
{
if (reverse)
std::partial_sort(res.begin(), res.begin() + limit, res.end(), less<false>(*this));
else
std::partial_sort(res.begin(), res.begin() + limit, res.end(), less<true>(*this));
}
else
{
if (reverse)
std::sort(res.begin(), res.end(), less<false>(*this));
else
std::sort(res.begin(), res.end(), less<true>(*this));
}
}
void ColumnString::updatePermutation(bool reverse, size_t limit, int /*nan_direction_hint*/, Permutation & res, EqualRanges & equal_ranges) const
{
if (equal_ranges.empty())
return;
if (limit >= size() || limit > equal_ranges.back().second)
limit = 0;
EqualRanges new_ranges;
SCOPE_EXIT({equal_ranges = std::move(new_ranges);});
size_t number_of_ranges = equal_ranges.size();
if (limit)
--number_of_ranges;
for (size_t i = 0; i < number_of_ranges; ++i)
{
const auto & [first, last] = equal_ranges[i];
if (reverse)
std::sort(res.begin() + first, res.begin() + last, less<false>(*this));
else
std::sort(res.begin() + first, res.begin() + last, less<true>(*this));
size_t new_first = first;
for (size_t j = first + 1; j < last; ++j)
{
if (memcmpSmallAllowOverflow15(
chars.data() + offsetAt(res[j]), sizeAt(res[j]) - 1,
chars.data() + offsetAt(res[new_first]), sizeAt(res[new_first]) - 1) != 0)
{
if (j - new_first > 1)
new_ranges.emplace_back(new_first, j);
new_first = j;
}
}
if (last - new_first > 1)
new_ranges.emplace_back(new_first, last);
}
if (limit)
{
const auto & [first, last] = equal_ranges.back();
if (limit < first || limit > last)
return;
/// Since then we are working inside the interval.
if (reverse)
std::partial_sort(res.begin() + first, res.begin() + limit, res.begin() + last, less<false>(*this));
else
std::partial_sort(res.begin() + first, res.begin() + limit, res.begin() + last, less<true>(*this));
size_t new_first = first;
for (size_t j = first + 1; j < limit; ++j)
{
if (memcmpSmallAllowOverflow15(
chars.data() + offsetAt(res[j]), sizeAt(res[j]) - 1,
chars.data() + offsetAt(res[new_first]), sizeAt(res[new_first]) - 1) != 0)
{
if (j - new_first > 1)
new_ranges.emplace_back(new_first, j);
new_first = j;
}
}
size_t new_last = limit;
for (size_t j = limit; j < last; ++j)
{
if (memcmpSmallAllowOverflow15(
chars.data() + offsetAt(res[j]), sizeAt(res[j]) - 1,
chars.data() + offsetAt(res[new_first]), sizeAt(res[new_first]) - 1) == 0)
{
std::swap(res[j], res[new_last]);
++new_last;
}
}
if (new_last - new_first > 1)
new_ranges.emplace_back(new_first, new_last);
}
}
ColumnPtr ColumnString::replicate(const Offsets & replicate_offsets) const
{
size_t col_size = size();
if (col_size != replicate_offsets.size())
throw Exception("Size of offsets doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH);
auto res = ColumnString::create();
if (0 == col_size)
return res;
Chars & res_chars = res->chars;
Offsets & res_offsets = res->offsets;
res_chars.reserve(chars.size() / col_size * replicate_offsets.back());
res_offsets.reserve(replicate_offsets.back());
Offset prev_replicate_offset = 0;
Offset prev_string_offset = 0;
Offset current_new_offset = 0;
for (size_t i = 0; i < col_size; ++i)
{
size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset;
size_t string_size = offsets[i] - prev_string_offset;
for (size_t j = 0; j < size_to_replicate; ++j)
{
current_new_offset += string_size;
res_offsets.push_back(current_new_offset);
res_chars.resize(res_chars.size() + string_size);
memcpySmallAllowReadWriteOverflow15(
&res_chars[res_chars.size() - string_size], &chars[prev_string_offset], string_size);
}
prev_replicate_offset = replicate_offsets[i];
prev_string_offset = offsets[i];
}
return res;
}
void ColumnString::gather(ColumnGathererStream & gatherer)
{
gatherer.gather(*this);
}
void ColumnString::reserve(size_t n)
{
offsets.reserve(n);
}
void ColumnString::getExtremes(Field & min, Field & max) const
{
min = String();
max = String();
size_t col_size = size();
if (col_size == 0)
return;
size_t min_idx = 0;
size_t max_idx = 0;
less<true> less_op(*this);
for (size_t i = 1; i < col_size; ++i)
{
if (less_op(i, min_idx))
min_idx = i;
else if (less_op(max_idx, i))
max_idx = i;
}
get(min_idx, min);
get(max_idx, max);
}
int ColumnString::compareAtWithCollation(size_t n, size_t m, const IColumn & rhs_, const Collator & collator) const
{
const ColumnString & rhs = assert_cast<const ColumnString &>(rhs_);
return collator.compare(
reinterpret_cast<const char *>(&chars[offsetAt(n)]), sizeAt(n),
reinterpret_cast<const char *>(&rhs.chars[rhs.offsetAt(m)]), rhs.sizeAt(m));
}
template <bool positive>
struct ColumnString::lessWithCollation
{
const ColumnString & parent;
const Collator & collator;
lessWithCollation(const ColumnString & parent_, const Collator & collator_) : parent(parent_), collator(collator_) {}
bool operator()(size_t lhs, size_t rhs) const
{
int res = collator.compare(
reinterpret_cast<const char *>(&parent.chars[parent.offsetAt(lhs)]), parent.sizeAt(lhs),
reinterpret_cast<const char *>(&parent.chars[parent.offsetAt(rhs)]), parent.sizeAt(rhs));
return positive ? (res < 0) : (res > 0);
}
};
void ColumnString::getPermutationWithCollation(const Collator & collator, bool reverse, size_t limit, Permutation & res) const
{
size_t s = offsets.size();
res.resize(s);
for (size_t i = 0; i < s; ++i)
res[i] = i;
if (limit >= s)
limit = 0;
if (limit)
{
if (reverse)
std::partial_sort(res.begin(), res.begin() + limit, res.end(), lessWithCollation<false>(*this, collator));
else
std::partial_sort(res.begin(), res.begin() + limit, res.end(), lessWithCollation<true>(*this, collator));
}
else
{
if (reverse)
std::sort(res.begin(), res.end(), lessWithCollation<false>(*this, collator));
else
std::sort(res.begin(), res.end(), lessWithCollation<true>(*this, collator));
}
}
void ColumnString::updatePermutationWithCollation(const Collator & collator, bool reverse, size_t limit, int, Permutation & res, EqualRanges & equal_ranges) const
{
if (equal_ranges.empty())
return;
if (limit >= size() || limit >= equal_ranges.back().second)
limit = 0;
size_t number_of_ranges = equal_ranges.size();
if (limit)
--number_of_ranges;
EqualRanges new_ranges;
SCOPE_EXIT({equal_ranges = std::move(new_ranges);});
for (size_t i = 0; i < number_of_ranges; ++i)
{
const auto& [first, last] = equal_ranges[i];
if (reverse)
std::sort(res.begin() + first, res.begin() + last, lessWithCollation<false>(*this, collator));
else
std::sort(res.begin() + first, res.begin() + last, lessWithCollation<true>(*this, collator));
auto new_first = first;
for (auto j = first + 1; j < last; ++j)
{
if (collator.compare(
reinterpret_cast<const char *>(&chars[offsetAt(res[new_first])]), sizeAt(res[new_first]),
reinterpret_cast<const char *>(&chars[offsetAt(res[j])]), sizeAt(res[j])) != 0)
{
if (j - new_first > 1)
new_ranges.emplace_back(new_first, j);
new_first = j;
}
}
if (last - new_first > 1)
new_ranges.emplace_back(new_first, last);
}
if (limit)
{
const auto & [first, last] = equal_ranges.back();
if (limit < first || limit > last)
return;
/// Since then we are working inside the interval.
if (reverse)
std::partial_sort(res.begin() + first, res.begin() + limit, res.begin() + last, lessWithCollation<false>(*this, collator));
else
std::partial_sort(res.begin() + first, res.begin() + limit, res.begin() + last, lessWithCollation<true>(*this, collator));
auto new_first = first;
for (auto j = first + 1; j < limit; ++j)
{
if (collator.compare(
reinterpret_cast<const char *>(&chars[offsetAt(res[new_first])]), sizeAt(res[new_first]),
reinterpret_cast<const char *>(&chars[offsetAt(res[j])]), sizeAt(res[j])) != 0)
{
if (j - new_first > 1)
new_ranges.emplace_back(new_first, j);
new_first = j;
}
}
auto new_last = limit;
for (auto j = limit; j < last; ++j)
{
if (collator.compare(
reinterpret_cast<const char *>(&chars[offsetAt(res[new_first])]), sizeAt(res[new_first]),
reinterpret_cast<const char *>(&chars[offsetAt(res[j])]), sizeAt(res[j])) == 0)
{
std::swap(res[new_last], res[j]);
++new_last;
}
}
if (new_last - new_first > 1)
new_ranges.emplace_back(new_first, new_last);
}
}
void ColumnString::protect()
{
getChars().protect();
getOffsets().protect();
}
void ColumnString::validate() const
{
if (!offsets.empty() && offsets.back() != chars.size())
throw Exception(ErrorCodes::LOGICAL_ERROR, "ColumnString validation failed: size mismatch (internal logical error) {} != {}", offsets.back(), chars.size());
}
}