ClickHouse/dbms/src/Interpreters/SyntaxAnalyzer.cpp
2018-11-06 21:13:35 +03:00

905 lines
35 KiB
C++

#include <Interpreters/SyntaxAnalyzer.h>
#include <Interpreters/InJoinSubqueriesPreprocessor.h>
#include <Interpreters/LogicalExpressionsOptimizer.h>
#include <Interpreters/Settings.h>
#include <Interpreters/QueryAliasesVisitor.h>
#include <Interpreters/InterpreterSelectWithUnionQuery.h>
#include <Interpreters/ArrayJoinedColumnsVisitor.h>
#include <Interpreters/TranslateQualifiedNamesVisitor.h>
#include <Interpreters/Context.h>
#include <Interpreters/QueryNormalizer.h>
#include <Interpreters/ExecuteScalarSubqueriesVisitor.h>
#include <Interpreters/PredicateExpressionsOptimizer.h>
#include <Interpreters/ExternalDictionaries.h>
#include <Parsers/ASTSelectQuery.h>
#include <Parsers/ASTLiteral.h>
#include <Parsers/ASTOrderByElement.h>
#include <Parsers/ASTTablesInSelectQuery.h>
#include <Parsers/ASTExpressionList.h>
#include <Parsers/queryToString.h>
#include <DataTypes/NestedUtils.h>
#include <DataTypes/DataTypeNullable.h>
#include <Common/typeid_cast.h>
#include <Core/NamesAndTypes.h>
#include <Storages/IStorage.h>
#include <IO/WriteHelpers.h>
#include <functional>
namespace DB
{
namespace ErrorCodes
{
extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH;
extern const int ALIAS_REQUIRED;
extern const int MULTIPLE_EXPRESSIONS_FOR_ALIAS;
extern const int EMPTY_NESTED_TABLE;
extern const int LOGICAL_ERROR;
extern const int INVALID_JOIN_ON_EXPRESSION;
}
namespace
{
using LogAST = DebugASTLog<false>; /// set to true to enable logs
using Aliases = std::unordered_map<String, ASTPtr>;
void translateQualifiedNames(ASTPtr & query, ASTSelectQuery * select_query,
const NameSet & source_columns, const Context & context)
{
if (!select_query || !select_query->tables || select_query->tables->children.empty())
return;
std::vector<DatabaseAndTableWithAlias> tables = getDatabaseAndTables(*select_query, context.getCurrentDatabase());
LogAST log;
TranslateQualifiedNamesVisitor visitor(source_columns, tables, log.stream());
visitor.visit(query);
}
void normalizeTree(SyntaxAnalyzerResult & result, const Names & source_columns, const NameSet & source_columns_set,
const Context & context, const ASTSelectQuery * select_query, bool asterisk_left_columns_only)
{
Names all_columns_name(source_columns.begin(), source_columns.end());
if (!asterisk_left_columns_only)
{
auto columns_from_joined_table = result.analyzed_join.getColumnsFromJoinedTable(source_columns_set, context, select_query);
for (auto & column : columns_from_joined_table)
all_columns_name.emplace_back(column.name_and_type.name);
}
if (all_columns_name.empty())
throw Exception("An asterisk cannot be replaced with empty columns.", ErrorCodes::LOGICAL_ERROR);
TableNamesAndColumnNames table_names_and_column_names;
if (select_query && select_query->tables && !select_query->tables->children.empty())
{
std::vector<const ASTTableExpression *> tables_expression = getSelectTablesExpression(*select_query);
bool first = true;
for (const auto * table_expression : tables_expression)
{
DatabaseAndTableWithAlias table_name(*table_expression, context.getCurrentDatabase());
NamesAndTypesList names_and_types = getNamesAndTypeListFromTableExpression(*table_expression, context);
if (!first)
{
/// For joined tables qualify duplicating names.
for (auto & name_and_type : names_and_types)
if (source_columns_set.count(name_and_type.name))
name_and_type.name = table_name.getQualifiedNamePrefix() + name_and_type.name;
}
first = false;
table_names_and_column_names.emplace_back(std::pair(table_name, names_and_types.getNames()));
}
}
auto & settings = context.getSettingsRef();
QueryNormalizer(result.query, result.aliases, settings, all_columns_name, table_names_and_column_names).perform();
}
bool hasArrayJoin(const ASTPtr & ast)
{
if (const ASTFunction * function = typeid_cast<const ASTFunction *>(&*ast))
if (function->name == "arrayJoin")
return true;
for (const auto & child : ast->children)
if (!typeid_cast<ASTSelectQuery *>(child.get()) && hasArrayJoin(child))
return true;
return false;
}
void removeUnneededColumnsFromSelectClause(const ASTSelectQuery * select_query, const Names & required_result_columns)
{
if (!select_query)
return;
if (required_result_columns.empty())
return;
ASTs & elements = select_query->select_expression_list->children;
ASTs new_elements;
new_elements.reserve(elements.size());
/// Some columns may be queried multiple times, like SELECT x, y, y FROM table.
/// In that case we keep them exactly same number of times.
std::map<String, size_t> required_columns_with_duplicate_count;
for (const auto & name : required_result_columns)
++required_columns_with_duplicate_count[name];
for (const auto & elem : elements)
{
String name = elem->getAliasOrColumnName();
auto it = required_columns_with_duplicate_count.find(name);
if (required_columns_with_duplicate_count.end() != it && it->second)
{
new_elements.push_back(elem);
--it->second;
}
else if (select_query->distinct || hasArrayJoin(elem))
{
new_elements.push_back(elem);
}
}
elements = std::move(new_elements);
}
void executeScalarSubqueries(SyntaxAnalyzerResult & result, const ASTSelectQuery * select_query,
const Context & context, size_t subquery_depth)
{
LogAST log;
if (!select_query)
{
ExecuteScalarSubqueriesVisitor visitor(context, subquery_depth, log.stream());
visitor.visit(result.query);
}
else
{
for (auto & child : result.query->children)
{
/// Do not go to FROM, JOIN, UNION.
if (!typeid_cast<const ASTTableExpression *>(child.get())
&& !typeid_cast<const ASTSelectQuery *>(child.get()))
{
ExecuteScalarSubqueriesVisitor visitor(context, subquery_depth, log.stream());
visitor.visit(child);
}
}
}
}
bool tryExtractConstValueFromCondition(const ASTPtr & condition, bool & value)
{
/// numeric constant in condition
if (const ASTLiteral * literal = typeid_cast<ASTLiteral *>(condition.get()))
{
if (literal->value.getType() == Field::Types::Int64 ||
literal->value.getType() == Field::Types::UInt64)
{
value = literal->value.get<Int64>();
return true;
}
}
/// cast of numeric constant in condition to UInt8
if (const ASTFunction * function = typeid_cast<ASTFunction * >(condition.get()))
{
if (function->name == "CAST")
{
if (ASTExpressionList * expr_list = typeid_cast<ASTExpressionList *>(function->arguments.get()))
{
const ASTPtr & type_ast = expr_list->children.at(1);
if (const ASTLiteral * type_literal = typeid_cast<ASTLiteral *>(type_ast.get()))
{
if (type_literal->value.getType() == Field::Types::String &&
type_literal->value.get<std::string>() == "UInt8")
return tryExtractConstValueFromCondition(expr_list->children.at(0), value);
}
}
}
}
return false;
}
void optimizeIfWithConstantCondition(ASTPtr & current_ast, Aliases & aliases)
{
if (!current_ast)
return;
for (ASTPtr & child : current_ast->children)
{
auto * function_node = typeid_cast<ASTFunction *>(child.get());
if (!function_node || function_node->name != "if")
{
optimizeIfWithConstantCondition(child, aliases);
continue;
}
optimizeIfWithConstantCondition(function_node->arguments, aliases);
auto * args = typeid_cast<ASTExpressionList *>(function_node->arguments.get());
if (args->children.size() != 3)
throw Exception("Wrong number of arguments for function 'if' (" + toString(args->children.size()) + " instead of 3)",
ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH);
ASTPtr condition_expr = args->children[0];
ASTPtr then_expr = args->children[1];
ASTPtr else_expr = args->children[2];
bool condition;
if (tryExtractConstValueFromCondition(condition_expr, condition))
{
ASTPtr replace_ast = condition ? then_expr : else_expr;
ASTPtr child_copy = child;
String replace_alias = replace_ast->tryGetAlias();
String if_alias = child->tryGetAlias();
if (replace_alias.empty())
{
replace_ast->setAlias(if_alias);
child = replace_ast;
}
else
{
/// Only copy of one node is required here.
/// But IAST has only method for deep copy of subtree.
/// This can be a reason of performance degradation in case of deep queries.
ASTPtr replace_ast_deep_copy = replace_ast->clone();
replace_ast_deep_copy->setAlias(if_alias);
child = replace_ast_deep_copy;
}
if (!if_alias.empty())
{
auto alias_it = aliases.find(if_alias);
if (alias_it != aliases.end() && alias_it->second.get() == child_copy.get())
alias_it->second = child;
}
}
}
}
/** Calls to these functions in the GROUP BY statement would be
* replaced by their immediate argument.
*/
const std::unordered_set<String> injective_function_names
{
"negate",
"bitNot",
"reverse",
"reverseUTF8",
"toString",
"toFixedString",
"IPv4NumToString",
"IPv4StringToNum",
"hex",
"unhex",
"bitmaskToList",
"bitmaskToArray",
"tuple",
"regionToName",
"concatAssumeInjective",
};
const std::unordered_set<String> possibly_injective_function_names
{
"dictGetString",
"dictGetUInt8",
"dictGetUInt16",
"dictGetUInt32",
"dictGetUInt64",
"dictGetInt8",
"dictGetInt16",
"dictGetInt32",
"dictGetInt64",
"dictGetFloat32",
"dictGetFloat64",
"dictGetDate",
"dictGetDateTime"
};
void optimizeGroupBy(ASTSelectQuery * select_query, const NameSet & source_columns, const Context & context)
{
if (!(select_query && select_query->group_expression_list))
return;
const auto is_literal = [] (const ASTPtr & ast)
{
return typeid_cast<const ASTLiteral *>(ast.get());
};
auto & group_exprs = select_query->group_expression_list->children;
/// removes expression at index idx by making it last one and calling .pop_back()
const auto remove_expr_at_index = [&group_exprs] (const size_t idx)
{
if (idx < group_exprs.size() - 1)
std::swap(group_exprs[idx], group_exprs.back());
group_exprs.pop_back();
};
/// iterate over each GROUP BY expression, eliminate injective function calls and literals
for (size_t i = 0; i < group_exprs.size();)
{
if (const auto function = typeid_cast<ASTFunction *>(group_exprs[i].get()))
{
/// assert function is injective
if (possibly_injective_function_names.count(function->name))
{
/// do not handle semantic errors here
if (function->arguments->children.size() < 2)
{
++i;
continue;
}
const auto & dict_name = typeid_cast<const ASTLiteral &>(*function->arguments->children[0])
.value.safeGet<String>();
const auto & dict_ptr = context.getExternalDictionaries().getDictionary(dict_name);
const auto & attr_name = typeid_cast<const ASTLiteral &>(*function->arguments->children[1])
.value.safeGet<String>();
if (!dict_ptr->isInjective(attr_name))
{
++i;
continue;
}
}
else if (!injective_function_names.count(function->name))
{
++i;
continue;
}
/// copy shared pointer to args in order to ensure lifetime
auto args_ast = function->arguments;
/** remove function call and take a step back to ensure
* next iteration does not skip not yet processed data
*/
remove_expr_at_index(i);
/// copy non-literal arguments
std::remove_copy_if(
std::begin(args_ast->children), std::end(args_ast->children),
std::back_inserter(group_exprs), is_literal
);
}
else if (is_literal(group_exprs[i]))
{
remove_expr_at_index(i);
}
else
{
/// if neither a function nor literal - advance to next expression
++i;
}
}
if (group_exprs.empty())
{
/** You can not completely remove GROUP BY. Because if there were no aggregate functions, then it turns out that there will be no aggregation.
* Instead, leave `GROUP BY const`.
* Next, see deleting the constants in the analyzeAggregation method.
*/
/// You must insert a constant that is not the name of the column in the table. Such a case is rare, but it happens.
UInt64 unused_column = 0;
String unused_column_name = toString(unused_column);
while (source_columns.count(unused_column_name))
{
++unused_column;
unused_column_name = toString(unused_column);
}
select_query->group_expression_list = std::make_shared<ASTExpressionList>();
select_query->group_expression_list->children.emplace_back(std::make_shared<ASTLiteral>(UInt64(unused_column)));
}
}
void optimizeOrderBy(const ASTSelectQuery * select_query)
{
if (!(select_query && select_query->order_expression_list))
return;
/// Make unique sorting conditions.
using NameAndLocale = std::pair<String, String>;
std::set<NameAndLocale> elems_set;
ASTs & elems = select_query->order_expression_list->children;
ASTs unique_elems;
unique_elems.reserve(elems.size());
for (const auto & elem : elems)
{
String name = elem->children.front()->getColumnName();
const ASTOrderByElement & order_by_elem = typeid_cast<const ASTOrderByElement &>(*elem);
if (elems_set.emplace(name, order_by_elem.collation ? order_by_elem.collation->getColumnName() : "").second)
unique_elems.emplace_back(elem);
}
if (unique_elems.size() < elems.size())
elems = unique_elems;
}
void optimizeLimitBy(const ASTSelectQuery * select_query)
{
if (!(select_query && select_query->limit_by_expression_list))
return;
std::set<String> elems_set;
ASTs & elems = select_query->limit_by_expression_list->children;
ASTs unique_elems;
unique_elems.reserve(elems.size());
for (const auto & elem : elems)
{
if (elems_set.emplace(elem->getColumnName()).second)
unique_elems.emplace_back(elem);
}
if (unique_elems.size() < elems.size())
elems = unique_elems;
}
void optimizeUsing(const ASTSelectQuery * select_query)
{
if (!select_query)
return;
auto node = const_cast<ASTTablesInSelectQueryElement *>(select_query->join());
if (!node)
return;
auto table_join = static_cast<ASTTableJoin *>(&*node->table_join);
if (!(table_join && table_join->using_expression_list))
return;
ASTs & expression_list = table_join->using_expression_list->children;
ASTs uniq_expressions_list;
std::set<String> expressions_names;
for (const auto & expression : expression_list)
{
auto expression_name = expression->getAliasOrColumnName();
if (expressions_names.find(expression_name) == expressions_names.end())
{
uniq_expressions_list.push_back(expression);
expressions_names.insert(expression_name);
}
}
if (uniq_expressions_list.size() < expression_list.size())
expression_list = uniq_expressions_list;
}
void getArrayJoinedColumns(SyntaxAnalyzerResult & result, const ASTSelectQuery * select_query, const NameSet & source_columns)
{
if (select_query && select_query->array_join_expression_list())
{
ASTs & array_join_asts = select_query->array_join_expression_list()->children;
for (const auto & ast : array_join_asts)
{
const String nested_table_name = ast->getColumnName();
const String nested_table_alias = ast->getAliasOrColumnName();
if (nested_table_alias == nested_table_name && !typeid_cast<const ASTIdentifier *>(ast.get()))
throw Exception("No alias for non-trivial value in ARRAY JOIN: " + nested_table_name,
ErrorCodes::ALIAS_REQUIRED);
if (result.array_join_alias_to_name.count(nested_table_alias) || result.aliases.count(nested_table_alias))
throw Exception("Duplicate alias in ARRAY JOIN: " + nested_table_alias,
ErrorCodes::MULTIPLE_EXPRESSIONS_FOR_ALIAS);
result.array_join_alias_to_name[nested_table_alias] = nested_table_name;
result.array_join_name_to_alias[nested_table_name] = nested_table_alias;
}
{
ArrayJoinedColumnsVisitor visitor(result.array_join_name_to_alias,
result.array_join_alias_to_name,
result.array_join_result_to_source);
visitor.visit(result.query);
}
/// If the result of ARRAY JOIN is not used, it is necessary to ARRAY-JOIN any column,
/// to get the correct number of rows.
if (result.array_join_result_to_source.empty())
{
ASTPtr expr = select_query->array_join_expression_list()->children.at(0);
String source_name = expr->getColumnName();
String result_name = expr->getAliasOrColumnName();
/// This is an array.
if (!typeid_cast<ASTIdentifier *>(expr.get()) || source_columns.count(source_name))
{
result.array_join_result_to_source[result_name] = source_name;
}
else /// This is a nested table.
{
bool found = false;
for (const auto & column_name : source_columns)
{
auto splitted = Nested::splitName(column_name);
if (splitted.first == source_name && !splitted.second.empty())
{
result.array_join_result_to_source[Nested::concatenateName(result_name, splitted.second)] = column_name;
found = true;
break;
}
}
if (!found)
throw Exception("No columns in nested table " + source_name, ErrorCodes::EMPTY_NESTED_TABLE);
}
}
}
}
void collectJoinedColumnsFromJoinOnExpr(AnalyzedJoin & analyzed_join, const ASTSelectQuery * select_query,
const NameSet & source_columns, const Context & context)
{
const auto & tables = static_cast<const ASTTablesInSelectQuery &>(*select_query->tables);
const auto * left_tables_element = static_cast<const ASTTablesInSelectQueryElement *>(tables.children.at(0).get());
const auto * right_tables_element = select_query->join();
if (!left_tables_element || !right_tables_element)
return;
const auto & table_join = static_cast<const ASTTableJoin &>(*right_tables_element->table_join);
if (!table_join.on_expression)
return;
const auto & left_table_expression = static_cast<const ASTTableExpression &>(*left_tables_element->table_expression);
const auto & right_table_expression = static_cast<const ASTTableExpression &>(*right_tables_element->table_expression);
DatabaseAndTableWithAlias left_source_names(left_table_expression, context.getCurrentDatabase());
DatabaseAndTableWithAlias right_source_names(right_table_expression, context.getCurrentDatabase());
/// Stores examples of columns which are only from one table.
struct TableBelonging
{
const ASTIdentifier * example_only_from_left = nullptr;
const ASTIdentifier * example_only_from_right = nullptr;
};
/// Check all identifiers in ast and decide their possible table belonging.
/// Throws if there are two identifiers definitely from different tables.
std::function<TableBelonging(const ASTPtr &)> get_table_belonging;
get_table_belonging = [&](const ASTPtr & ast) -> TableBelonging
{
auto * identifier = typeid_cast<const ASTIdentifier *>(ast.get());
if (identifier)
{
if (identifier->general())
{
auto left_num_components = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, left_source_names);
auto right_num_components = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, right_source_names);
/// Assume that component from definite table if num_components is greater than for the other table.
if (left_num_components > right_num_components)
return {identifier, nullptr};
if (left_num_components < right_num_components)
return {nullptr, identifier};
}
return {};
}
TableBelonging table_belonging;
for (const auto & child : ast->children)
{
auto children_belonging = get_table_belonging(child);
if (!table_belonging.example_only_from_left)
table_belonging.example_only_from_left = children_belonging.example_only_from_left;
if (!table_belonging.example_only_from_right)
table_belonging.example_only_from_right = children_belonging.example_only_from_right;
}
if (table_belonging.example_only_from_left && table_belonging.example_only_from_right)
throw Exception("Invalid columns in JOIN ON section. Columns "
+ table_belonging.example_only_from_left->getAliasOrColumnName() + " and "
+ table_belonging.example_only_from_right->getAliasOrColumnName()
+ " are from different tables.", ErrorCodes::INVALID_JOIN_ON_EXPRESSION);
return table_belonging;
};
std::function<void(ASTPtr &, const DatabaseAndTableWithAlias &, bool)> translate_qualified_names;
translate_qualified_names = [&](ASTPtr & ast, const DatabaseAndTableWithAlias & source_names, bool right_table)
{
if (auto * identifier = typeid_cast<const ASTIdentifier *>(ast.get()))
{
if (identifier->general())
{
auto num_components = getNumComponentsToStripInOrderToTranslateQualifiedName(*identifier, source_names);
stripIdentifier(ast, num_components);
if (right_table && source_columns.count(ast->getColumnName()))
source_names.makeQualifiedName(ast);
}
return;
}
for (auto & child : ast->children)
translate_qualified_names(child, source_names, right_table);
};
const auto supported_syntax = " Supported syntax: JOIN ON Expr([table.]column, ...) = Expr([table.]column, ...) "
"[AND Expr([table.]column, ...) = Expr([table.]column, ...) ...]";
auto throwSyntaxException = [&](const String & msg)
{
throw Exception("Invalid expression for JOIN ON. " + msg + supported_syntax, ErrorCodes::INVALID_JOIN_ON_EXPRESSION);
};
/// For equal expression find out corresponding table for each part, translate qualified names and add asts to join keys.
auto add_columns_from_equals_expr = [&](const ASTPtr & expr)
{
auto * func_equals = typeid_cast<const ASTFunction *>(expr.get());
if (!func_equals || func_equals->name != "equals")
throwSyntaxException("Expected equals expression, got " + queryToString(expr) + ".");
ASTPtr left_ast = func_equals->arguments->children.at(0)->clone();
ASTPtr right_ast = func_equals->arguments->children.at(1)->clone();
auto left_table_belonging = get_table_belonging(left_ast);
auto right_table_belonging = get_table_belonging(right_ast);
bool can_be_left_part_from_left_table = left_table_belonging.example_only_from_right == nullptr;
bool can_be_left_part_from_right_table = left_table_belonging.example_only_from_left == nullptr;
bool can_be_right_part_from_left_table = right_table_belonging.example_only_from_right == nullptr;
bool can_be_right_part_from_right_table = right_table_belonging.example_only_from_left == nullptr;
auto add_join_keys = [&](ASTPtr & ast_to_left_table, ASTPtr & ast_to_right_table)
{
translate_qualified_names(ast_to_left_table, left_source_names, false);
translate_qualified_names(ast_to_right_table, right_source_names, true);
analyzed_join.key_asts_left.push_back(ast_to_left_table);
analyzed_join.key_names_left.push_back(ast_to_left_table->getColumnName());
analyzed_join.key_asts_right.push_back(ast_to_right_table);
analyzed_join.key_names_right.push_back(ast_to_right_table->getAliasOrColumnName());
};
/// Default variant when all identifiers may be from any table.
if (can_be_left_part_from_left_table && can_be_right_part_from_right_table)
add_join_keys(left_ast, right_ast);
else if (can_be_left_part_from_right_table && can_be_right_part_from_left_table)
add_join_keys(right_ast, left_ast);
else
{
auto * left_example = left_table_belonging.example_only_from_left ?
left_table_belonging.example_only_from_left :
left_table_belonging.example_only_from_right;
auto * right_example = right_table_belonging.example_only_from_left ?
right_table_belonging.example_only_from_left :
right_table_belonging.example_only_from_right;
auto left_name = queryToString(*left_example);
auto right_name = queryToString(*right_example);
auto expr_name = queryToString(expr);
throwSyntaxException("In expression " + expr_name + " columns " + left_name + " and " + right_name
+ " are from the same table but from different arguments of equal function.");
}
};
auto * func = typeid_cast<const ASTFunction *>(table_join.on_expression.get());
if (func && func->name == "and")
{
for (const auto & expr : func->arguments->children)
add_columns_from_equals_expr(expr);
}
else
add_columns_from_equals_expr(table_join.on_expression);
}
void collectJoinedColumns(AnalyzedJoin & analyzed_join, const ASTSelectQuery * select_query,
const NameSet & source_columns, const Context & context)
{
if (!select_query)
return;
const ASTTablesInSelectQueryElement * node = select_query->join();
if (!node)
return;
const auto & table_join = static_cast<const ASTTableJoin &>(*node->table_join);
const auto & table_expression = static_cast<const ASTTableExpression &>(*node->table_expression);
DatabaseAndTableWithAlias joined_table_name(table_expression, context.getCurrentDatabase());
auto add_name_to_join_keys = [&](Names & join_keys, ASTs & join_asts, const ASTPtr & ast, bool right_table)
{
String name;
if (right_table)
{
name = ast->getAliasOrColumnName();
if (source_columns.count(name))
name = joined_table_name.getQualifiedNamePrefix() + name;
}
else
name = ast->getColumnName();
join_keys.push_back(name);
join_asts.push_back(ast);
};
if (table_join.using_expression_list)
{
auto & keys = typeid_cast<ASTExpressionList &>(*table_join.using_expression_list);
for (const auto & key : keys.children)
{
add_name_to_join_keys(analyzed_join.key_names_left, analyzed_join.key_asts_left, key, false);
add_name_to_join_keys(analyzed_join.key_names_right, analyzed_join.key_asts_right, key, true);
}
}
else if (table_join.on_expression)
collectJoinedColumnsFromJoinOnExpr(analyzed_join, select_query, source_columns, context);
auto & columns_from_joined_table = analyzed_join.getColumnsFromJoinedTable(source_columns, context, select_query);
NameSet joined_columns;
auto & settings = context.getSettingsRef();
for (auto & column : columns_from_joined_table)
{
auto & column_name = column.name_and_type.name;
auto & column_type = column.name_and_type.type;
auto & original_name = column.original_name;
{
if (joined_columns.count(column_name)) /// Duplicate columns in the subquery for JOIN do not make sense.
continue;
joined_columns.insert(column_name);
bool make_nullable = settings.join_use_nulls && (table_join.kind == ASTTableJoin::Kind::Left ||
table_join.kind == ASTTableJoin::Kind::Full);
auto type = make_nullable ? makeNullable(column_type) : column_type;
analyzed_join.columns_added_by_join.emplace_back(NameAndTypePair(column_name, std::move(type)), original_name);
}
}
}
void removeDuplicateColumns(NamesAndTypesList & columns)
{
std::set<String> names;
for (auto it = columns.begin(); it != columns.end();)
{
if (names.emplace(it->name).second)
++it;
else
columns.erase(it++);
}
}
NamesAndTypesList collectSourceColumns(NamesAndTypesList source_columns, ASTSelectQuery * select_query,
const Context & context, StoragePtr & storage)
{
if (!storage && select_query)
{
if (auto db_and_table = getDatabaseAndTable(*select_query, 0))
storage = context.tryGetTable(db_and_table->database, db_and_table->table);
}
if (storage)
{
auto physical_columns = storage->getColumns().getAllPhysical();
if (source_columns.empty())
source_columns.swap(physical_columns);
else
source_columns.insert(source_columns.end(), physical_columns.begin(), physical_columns.end());
if (select_query)
{
const auto & storage_aliases = storage->getColumns().aliases;
source_columns.insert(source_columns.end(), storage_aliases.begin(), storage_aliases.end());
}
}
removeDuplicateColumns(source_columns);
return source_columns;
}
}
SyntaxAnalyzerResult SyntaxAnalyzer::analyze(const ASTPtr & query,
const Context & context,
const StoragePtr & storage,
NamesAndTypesList source_columns,
const Names & required_result_columns,
size_t subquery_depth) const
{
SyntaxAnalyzerResult result;
result.storage = storage;
result.query = query->clone();
auto * select_query = typeid_cast<ASTSelectQuery *>(result.query.get());
result.source_columns = collectSourceColumns(std::move(source_columns), select_query, context, result.storage);
const auto & settings = context.getSettingsRef();
Names source_columns_list;
source_columns_list.reserve(result.source_columns.size());
for (const auto & type_name : result.source_columns)
source_columns_list.emplace_back(type_name.name);
NameSet source_columns_set(source_columns_list.begin(), source_columns_list.end());
translateQualifiedNames(result.query, select_query, source_columns_set, context);
/// Depending on the user's profile, check for the execution rights
/// distributed subqueries inside the IN or JOIN sections and process these subqueries.
InJoinSubqueriesPreprocessor(context).process(select_query);
/// Optimizes logical expressions.
LogicalExpressionsOptimizer(select_query, settings.optimize_min_equality_disjunction_chain_length.value).perform();
/// Creates a dictionary `aliases`: alias -> ASTPtr
{
LogAST log;
QueryAliasesVisitor query_aliases_visitor(log.stream());
query_aliases_visitor.visit(result.query, result.aliases);
}
/// Common subexpression elimination. Rewrite rules.
normalizeTree(result, source_columns_list, source_columns_set, context, select_query, settings.asterisk_left_columns_only != 0);
/// Remove unneeded columns according to 'required_result_columns'.
/// Leave all selected columns in case of DISTINCT; columns that contain arrayJoin function inside.
/// Must be after 'normalizeTree' (after expanding aliases, for aliases not get lost)
/// and before 'executeScalarSubqueries', 'analyzeAggregation', etc. to avoid excessive calculations.
removeUnneededColumnsFromSelectClause(select_query, required_result_columns);
/// Executing scalar subqueries - replacing them with constant values.
executeScalarSubqueries(result, select_query, context, subquery_depth);
/// Optimize if with constant condition after constants was substituted instead of sclalar subqueries.
optimizeIfWithConstantCondition(result.query, result.aliases);
/// GROUP BY injective function elimination.
optimizeGroupBy(select_query, source_columns_set, context);
/// Remove duplicate items from ORDER BY.
optimizeOrderBy(select_query);
// Remove duplicated elements from LIMIT BY clause.
optimizeLimitBy(select_query);
/// Remove duplicated columns from USING(...).
optimizeUsing(select_query);
/// array_join_alias_to_name, array_join_result_to_source.
getArrayJoinedColumns(result, select_query, source_columns_set);
/// Push the predicate expression down to the subqueries.
result.rewrite_subqueries = PredicateExpressionsOptimizer(select_query, settings, context).optimize();
collectJoinedColumns(result.analyzed_join, select_query, source_columns_set, context);
return result;
}
}