ClickHouse/tests/integration/test_parallel_replicas_all_marks_read/test.py

159 lines
4.5 KiB
Python

import json
from random import randint
import pytest
from helpers.cluster import ClickHouseCluster
cluster = ClickHouseCluster(__file__)
cluster_name = "parallel_replicas_with_unavailable_nodes"
nodes = [
cluster.add_instance(
f"node{num}", main_configs=["configs/remote_servers.xml"], with_zookeeper=True
)
for num in range(3)
]
@pytest.fixture(scope="module", autouse=True)
def start_cluster():
try:
cluster.start()
yield cluster
finally:
cluster.shutdown()
def _create_tables(table_name, table_size, index_granularity):
for num in range(len(nodes)):
nodes[num].query(f"DROP TABLE IF EXISTS {table_name}")
nodes[num].query(
f"""
CREATE TABLE IF NOT EXISTS {table_name} (key Int64, value String)
Engine=ReplicatedMergeTree('/test_parallel_replicas/shard1/{table_name}', '{num}')
ORDER BY (key)
SETTINGS index_granularity = {index_granularity}
"""
)
nodes[0].query(
f"""
INSERT INTO {table_name}
SELECT number, toString(number) FROM numbers_mt({table_size})
"""
)
def _create_query(query_tmpl, table_name):
rand_set = [randint(0, 500) for i in range(42)]
return query_tmpl.format(table_name=table_name, rand_set=rand_set)
def _get_result_without_parallel_replicas(query):
return nodes[0].query(
query,
settings={
"enable_parallel_replicas": 0,
},
)
def _get_result_with_parallel_replicas(
query, query_id, cluster_name, parallel_replicas_mark_segment_size
):
return nodes[0].query(
query,
settings={
"enable_parallel_replicas": 2,
"max_parallel_replicas": 6,
"cluster_for_parallel_replicas": f"{cluster_name}",
"parallel_replicas_mark_segment_size": parallel_replicas_mark_segment_size,
"query_id": query_id,
"parallel_replicas_skip_index_analysis_on_workers": True,
},
)
def _get_expected_amount_of_marks_to_read(query):
return json.loads(
nodes[0].query(
f"""
EXPLAIN ESTIMATE
{query}
FORMAT JSONEachRow
"""
)
)["marks"]
def _get_number_of_marks_read_by_replicas(query_id):
nodes[0].query("SYSTEM FLUSH LOGS")
return (
nodes[0]
.query(
f"""
SELECT sum(
ProfileEvents['ParallelReplicasReadAssignedMarks']
+ ProfileEvents['ParallelReplicasReadUnassignedMarks']
+ ProfileEvents['ParallelReplicasReadAssignedForStealingMarks']
)
FROM system.query_log
WHERE query_id = '{query_id}'
"""
)
.strip()
)
@pytest.mark.parametrize(
"query_tmpl",
[
"SELECT sum(cityHash64(*)) FROM {table_name}",
"SELECT sum(cityHash64(*)) FROM {table_name} WHERE intDiv(key, 100) IN {rand_set}",
],
)
@pytest.mark.parametrize(
"table_size",
[1000, 10000, 100000],
)
@pytest.mark.parametrize(
"index_granularity",
[10, 100],
)
@pytest.mark.parametrize(
"parallel_replicas_mark_segment_size",
[1, 10],
)
def test_number_of_marks_read(
start_cluster,
query_tmpl,
table_size,
index_granularity,
parallel_replicas_mark_segment_size,
):
if nodes[0].is_built_with_sanitizer():
pytest.skip("Disabled for sanitizers (too slow)")
table_name = f"tbl_{len(query_tmpl)}_{cluster_name}_{table_size}_{index_granularity}_{parallel_replicas_mark_segment_size}"
_create_tables(table_name, table_size, index_granularity)
if "where" in query_tmpl.lower():
# We need all the replicas to see the same state of parts to make sure that index analysis will pick the same amount of marks for reading
# regardless of which replica's state will be chosen as the working set. This should became redundant once we start to always use initiator's snapshot.
nodes[0].query(f"OPTIMIZE TABLE {table_name} FINAL", settings={"alter_sync": 2})
for node in nodes:
node.query(f"SYSTEM SYNC REPLICA {table_name} STRICT")
query = _create_query(query_tmpl, table_name)
query_id = f"{table_name}_{randint(0, 1e9)}"
assert _get_result_with_parallel_replicas(
query, query_id, cluster_name, parallel_replicas_mark_segment_size
) == _get_result_without_parallel_replicas(query)
assert _get_number_of_marks_read_by_replicas(
query_id
) == _get_expected_amount_of_marks_to_read(query)