ClickHouse/dbms/AggregateFunctions/AggregateFunctionGroupBitmapData.h
Ivan 97f2a2213e
Move all folders inside /dbms one level up (#9974)
* Move some code outside dbms/src folder
* Fix paths
2020-04-02 02:51:21 +03:00

738 lines
22 KiB
C++

#pragma once
#include <algorithm>
#include <IO/ReadHelpers.h>
#include <IO/WriteHelpers.h>
#include <boost/noncopyable.hpp>
#include <Common/HashTable/SmallTable.h>
#include <Common/PODArray.h>
// Include this header last, because it is an auto-generated dump of questionable
// garbage that breaks the build (e.g. it changes _POSIX_C_SOURCE).
// TODO: find out what it is. On github, they have proper inteface headers like
// this one: https://github.com/RoaringBitmap/CRoaring/blob/master/include/roaring/roaring.h
#pragma GCC diagnostic push
#pragma GCC diagnostic warning "-Wold-style-cast"
#include <roaring/roaring.h>
#pragma GCC diagnostic pop
namespace DB
{
/**
* For a small number of values - an array of fixed size "on the stack".
* For large, roaring_bitmap_t is allocated.
* For a description of the roaring_bitmap_t, see: https://github.com/RoaringBitmap/CRoaring
*/
template <typename T, UInt8 small_set_size>
class RoaringBitmapWithSmallSet : private boost::noncopyable
{
private:
using Small = SmallSet<T, small_set_size>;
using ValueBuffer = std::vector<T>;
Small small;
roaring_bitmap_t * rb = nullptr;
void toLarge()
{
rb = roaring_bitmap_create();
for (const auto & x : small)
roaring_bitmap_add(rb, x.getValue());
}
public:
bool isLarge() const { return rb != nullptr; }
bool isSmall() const { return rb == nullptr; }
~RoaringBitmapWithSmallSet()
{
if (isLarge())
roaring_bitmap_free(rb);
}
void add(T value)
{
if (isSmall())
{
if (small.find(value) == small.end())
{
if (!small.full())
small.insert(value);
else
{
toLarge();
roaring_bitmap_add(rb, value);
}
}
}
else
roaring_bitmap_add(rb, value);
}
UInt64 size() const
{
return isSmall()
? small.size()
: roaring_bitmap_get_cardinality(rb);
}
void merge(const RoaringBitmapWithSmallSet & r1)
{
if (r1.isLarge())
{
if (isSmall())
toLarge();
roaring_bitmap_or_inplace(rb, r1.rb);
}
else
{
for (const auto & x : r1.small)
add(x.getValue());
}
}
void read(DB::ReadBuffer & in)
{
bool is_large;
readBinary(is_large, in);
if (is_large)
{
std::string s;
readStringBinary(s,in);
rb = roaring_bitmap_portable_deserialize(s.c_str());
for (const auto & x : small) // merge from small
roaring_bitmap_add(rb, x.getValue());
}
else
small.read(in);
}
void write(DB::WriteBuffer & out) const
{
writeBinary(isLarge(), out);
if (isLarge())
{
uint32_t expectedsize = roaring_bitmap_portable_size_in_bytes(rb);
std::string s(expectedsize,0);
roaring_bitmap_portable_serialize(rb, const_cast<char*>(s.data()));
writeStringBinary(s,out);
}
else
small.write(out);
}
roaring_bitmap_t * getRb() const { return rb; }
Small & getSmall() const { return small; }
/**
* Get a new roaring_bitmap_t from elements of small
*/
roaring_bitmap_t * getNewRbFromSmall() const
{
roaring_bitmap_t * smallRb = roaring_bitmap_create();
for (const auto & x : small)
roaring_bitmap_add(smallRb, x.getValue());
return smallRb;
}
/**
* Computes the intersection between two bitmaps
*/
void rb_and(const RoaringBitmapWithSmallSet & r1)
{
ValueBuffer buffer;
if (isSmall() && r1.isSmall())
{
// intersect
for (const auto & x : small)
if (r1.small.find(x.getValue()) != r1.small.end())
buffer.push_back(x.getValue());
// Clear out the original values
small.clear();
for (const auto & value : buffer)
small.insert(value);
buffer.clear();
}
else if (isSmall() && r1.isLarge())
{
for (const auto & x : small)
if (roaring_bitmap_contains(r1.rb, x.getValue()))
buffer.push_back(x.getValue());
// Clear out the original values
small.clear();
for (const auto & value : buffer)
small.insert(value);
buffer.clear();
}
else
{
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
roaring_bitmap_and_inplace(rb, rb1);
if (r1.isSmall())
roaring_bitmap_free(rb1);
}
}
/**
* Computes the union between two bitmaps.
*/
void rb_or(const RoaringBitmapWithSmallSet & r1) { merge(r1); }
/**
* Computes the symmetric difference (xor) between two bitmaps.
*/
void rb_xor(const RoaringBitmapWithSmallSet & r1)
{
if (isSmall())
toLarge();
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
roaring_bitmap_xor_inplace(rb, rb1);
if (r1.isSmall())
roaring_bitmap_free(rb1);
}
/**
* Computes the difference (andnot) between two bitmaps
*/
void rb_andnot(const RoaringBitmapWithSmallSet & r1)
{
ValueBuffer buffer;
if (isSmall() && r1.isSmall())
{
// subtract
for (const auto & x : small)
if (r1.small.find(x.getValue()) == r1.small.end())
buffer.push_back(x.getValue());
// Clear out the original values
small.clear();
for (const auto & value : buffer)
small.insert(value);
buffer.clear();
}
else if (isSmall() && r1.isLarge())
{
for (const auto & x : small)
if (!roaring_bitmap_contains(r1.rb, x.getValue()))
buffer.push_back(x.getValue());
// Clear out the original values
small.clear();
for (const auto & value : buffer)
small.insert(value);
buffer.clear();
}
else
{
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
roaring_bitmap_andnot_inplace(rb, rb1);
if (r1.isSmall())
roaring_bitmap_free(rb1);
}
}
/**
* Computes the cardinality of the intersection between two bitmaps.
*/
UInt64 rb_and_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 retSize = 0;
if (isSmall() && r1.isSmall())
{
for (const auto & x : small)
if (r1.small.find(x.getValue()) != r1.small.end())
++retSize;
}
else if (isSmall() && r1.isLarge())
{
for (const auto & x : small)
if (roaring_bitmap_contains(r1.rb, x.getValue()))
++retSize;
}
else
{
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
retSize = roaring_bitmap_and_cardinality(rb, rb1);
if (r1.isSmall())
roaring_bitmap_free(rb1);
}
return retSize;
}
/**
* Computes the cardinality of the union between two bitmaps.
*/
UInt64 rb_or_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 c1 = size();
UInt64 c2 = r1.size();
UInt64 inter = rb_and_cardinality(r1);
return c1 + c2 - inter;
}
/**
* Computes the cardinality of the symmetric difference (andnot) between two bitmaps.
*/
UInt64 rb_xor_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 c1 = size();
UInt64 c2 = r1.size();
UInt64 inter = rb_and_cardinality(r1);
return c1 + c2 - 2 * inter;
}
/**
* Computes the cardinality of the difference (andnot) between two bitmaps.
*/
UInt64 rb_andnot_cardinality(const RoaringBitmapWithSmallSet & r1) const
{
UInt64 c1 = size();
UInt64 inter = rb_and_cardinality(r1);
return c1 - inter;
}
/**
* Return 1 if the two bitmaps contain the same elements.
*/
UInt8 rb_equals(const RoaringBitmapWithSmallSet & r1)
{
if (isSmall())
toLarge();
roaring_bitmap_t * rb1 = r1.isSmall() ? r1.getNewRbFromSmall() : r1.getRb();
UInt8 is_true = roaring_bitmap_equals(rb, rb1);
if (r1.isSmall())
roaring_bitmap_free(rb1);
return is_true;
}
/**
* Check whether two bitmaps intersect.
* Intersection with an empty set is always 0 (consistent with hasAny).
*/
UInt8 rb_intersect(const RoaringBitmapWithSmallSet & r1) const
{
if (isSmall())
{
if (r1.isSmall())
{
for (const auto & x : r1.small)
if (small.find(x.getValue()) != small.end())
return 1;
}
else
{
for (const auto & x : small)
if (roaring_bitmap_contains(r1.rb, x.getValue()))
return 1;
}
}
else if (r1.isSmall())
{
for (const auto & x : r1.small)
if (roaring_bitmap_contains(rb, x.getValue()))
return 1;
}
else if (roaring_bitmap_intersect(rb, r1.rb))
return 1;
return 0;
}
/**
* Check whether the argument is the subset of this set.
* Empty set is a subset of any other set (consistent with hasAll).
*/
UInt8 rb_is_subset(const RoaringBitmapWithSmallSet & r1) const
{
if (isSmall())
{
if (r1.isSmall())
{
for (const auto & x : r1.small)
if (small.find(x.getValue()) == small.end())
return 0;
}
else
{
UInt64 r1_size = r1.size();
if (r1_size > small.size())
return 0; // A bigger set can not be a subset of ours.
// This is a rare case with a small number of elements on
// both sides: r1 was promoted to large for some reason and
// it is still not larger than our small set.
// If r1 is our subset then our size must be equal to
// r1_size + number of not found elements, if this sum becomes
// greater then r1 is not a subset.
for (const auto & x : small)
if (!roaring_bitmap_contains(r1.rb, x.getValue()) && ++r1_size > small.size())
return 0;
}
}
else if (r1.isSmall())
{
for (const auto & x : r1.small)
if (!roaring_bitmap_contains(rb, x.getValue()))
return 0;
}
else if (!roaring_bitmap_is_subset(r1.rb, rb))
return 0;
return 1;
}
/**
* Check whether this bitmap contains the argument.
*/
UInt8 rb_contains(const UInt32 x) const
{
return isSmall() ? small.find(x) != small.end() : roaring_bitmap_contains(rb, x);
}
/**
* Remove value
*/
void rb_remove(UInt64 offsetid)
{
if (isSmall())
toLarge();
roaring_bitmap_remove(rb, offsetid);
}
/**
* compute (in place) the negation of the roaring bitmap within a specified
* interval: [range_start, range_end). The number of negated values is
* range_end - range_start.
* Areas outside the range are passed through unchanged.
*/
void rb_flip(UInt64 offsetstart, UInt64 offsetend)
{
if (isSmall())
toLarge();
roaring_bitmap_flip_inplace(rb, offsetstart, offsetend);
}
/**
* returns the number of integers that are smaller or equal to offsetid.
*/
UInt64 rb_rank(UInt64 offsetid)
{
if (isSmall())
toLarge();
return roaring_bitmap_rank(rb, offsetid);
}
/**
* Convert elements to integer array, return number of elements
*/
template <typename Element>
UInt64 rb_to_array(PaddedPODArray<Element> & res_data) const
{
UInt64 count = 0;
if (isSmall())
{
for (const auto & x : small)
{
res_data.emplace_back(x.getValue());
count++;
}
}
else
{
roaring_uint32_iterator_t iterator;
roaring_init_iterator(rb, &iterator);
while (iterator.has_value)
{
res_data.emplace_back(iterator.current_value);
roaring_advance_uint32_iterator(&iterator);
count++;
}
}
return count;
}
/**
* Return new set with specified range (not include the range_end)
*/
UInt64 rb_range(UInt32 range_start, UInt32 range_end, RoaringBitmapWithSmallSet & r1) const
{
UInt64 count = 0;
if (range_start >= range_end)
return count;
if (isSmall())
{
for (const auto & x : small)
{
T val = x.getValue();
if (UInt32(val) >= range_start && UInt32(val) < range_end)
{
r1.add(val);
++count;
}
}
}
else
{
roaring_uint32_iterator_t iterator;
roaring_init_iterator(rb, &iterator);
roaring_move_uint32_iterator_equalorlarger(&iterator, range_start);
while (iterator.has_value && UInt32(iterator.current_value) < range_end)
{
r1.add(iterator.current_value);
roaring_advance_uint32_iterator(&iterator);
++count;
}
}
return count;
}
/**
* Return new set of the smallest `limit` values in set which is no less than `range_start`.
*/
UInt64 rb_limit(UInt32 range_start, UInt32 limit, RoaringBitmapWithSmallSet & r1) const
{
UInt64 count = 0;
if (isSmall())
{
std::vector<T> ans;
for (const auto & x : small)
{
T val = x.getValue();
if (UInt32(val) >= range_start)
{
ans.push_back(val);
}
}
sort(ans.begin(), ans.end());
if (limit > ans.size())
limit = ans.size();
for (size_t i = 0; i < limit; ++i)
r1.add(ans[i]);
count = UInt64(limit);
}
else
{
roaring_uint32_iterator_t iterator;
roaring_init_iterator(rb, &iterator);
roaring_move_uint32_iterator_equalorlarger(&iterator, range_start);
while (UInt32(count) < limit && iterator.has_value)
{
r1.add(iterator.current_value);
roaring_advance_uint32_iterator(&iterator);
++count;
}
}
return count;
}
UInt64 rb_min() const
{
UInt64 min_val = UINT32_MAX;
if (isSmall())
{
for (const auto & x : small)
{
T val = x.getValue();
if (UInt64(val) < min_val)
{
min_val = UInt64(val);
}
}
}
else
{
min_val = UInt64(roaring_bitmap_minimum(rb));
}
return min_val;
}
UInt64 rb_max() const
{
UInt64 max_val = 0;
if (isSmall())
{
for (const auto & x : small)
{
T val = x.getValue();
if (UInt64(val) > max_val)
{
max_val = UInt64(val);
}
}
}
else
{
max_val = UInt64(roaring_bitmap_maximum(rb));
}
return max_val;
}
/**
* Replace value
*/
void rb_replace(const UInt32 * from_vals, const UInt32 * to_vals, size_t num)
{
if (isSmall())
toLarge();
for (size_t i = 0; i < num; ++i)
{
if (from_vals[i] == to_vals[i])
continue;
bool changed = roaring_bitmap_remove_checked(rb, from_vals[i]);
if (changed)
roaring_bitmap_add(rb, to_vals[i]);
}
}
private:
/// To read and write the DB Buffer directly, migrate code from CRoaring
void db_roaring_bitmap_add_many(DB::ReadBuffer & dbBuf, roaring_bitmap_t * r, size_t n_args)
{
void * container = nullptr; // hold value of last container touched
uint8_t typecode = 0; // typecode of last container touched
uint32_t prev = 0; // previous valued inserted
size_t i = 0; // index of value
int containerindex = 0;
if (n_args == 0)
return;
uint32_t val;
readBinary(val, dbBuf);
container = containerptr_roaring_bitmap_add(r, val, &typecode, &containerindex);
prev = val;
++i;
for (; i < n_args; ++i)
{
readBinary(val, dbBuf);
if (((prev ^ val) >> 16) == 0)
{ // no need to seek the container, it is at hand
// because we already have the container at hand, we can do the
// insertion
// automatically, bypassing the roaring_bitmap_add call
uint8_t newtypecode = typecode;
void * container2 = container_add(container, val & 0xFFFF, typecode, &newtypecode);
// rare instance when we need to
if (container2 != container)
{
// change the container type
container_free(container, typecode);
ra_set_container_at_index(&r->high_low_container, containerindex, container2, newtypecode);
typecode = newtypecode;
container = container2;
}
}
else
{
container = containerptr_roaring_bitmap_add(r, val, &typecode, &containerindex);
}
prev = val;
}
}
void db_ra_to_uint32_array(DB::WriteBuffer & dbBuf, roaring_array_t * ra) const
{
size_t ctr = 0;
for (Int32 i = 0; i < ra->size; ++i)
{
Int32 num_added = db_container_to_uint32_array(dbBuf, ra->containers[i], ra->typecodes[i], (static_cast<UInt32>(ra->keys[i])) << 16);
ctr += num_added;
}
}
UInt32 db_container_to_uint32_array(DB::WriteBuffer & dbBuf, const void * container, uint8_t typecode, UInt32 base) const
{
container = container_unwrap_shared(container, &typecode);
switch (typecode)
{
case BITSET_CONTAINER_TYPE_CODE:
return db_bitset_container_to_uint32_array(dbBuf, static_cast<const bitset_container_t *>(container), base);
case ARRAY_CONTAINER_TYPE_CODE:
return db_array_container_to_uint32_array(dbBuf, static_cast<const array_container_t *>(container), base);
case RUN_CONTAINER_TYPE_CODE:
return db_run_container_to_uint32_array(dbBuf, static_cast<const run_container_t *>(container), base);
}
return 0;
}
UInt32 db_bitset_container_to_uint32_array(DB::WriteBuffer & dbBuf, const bitset_container_t * cont, UInt32 base) const
{
return static_cast<UInt32>(db_bitset_extract_setbits(dbBuf, cont->array, BITSET_CONTAINER_SIZE_IN_WORDS, base));
}
size_t db_bitset_extract_setbits(DB::WriteBuffer & dbBuf, UInt64 * bitset, size_t length, UInt32 base) const
{
UInt32 outpos = 0;
for (size_t i = 0; i < length; ++i)
{
UInt64 w = bitset[i];
while (w != 0)
{
UInt64 t = w & (~w + 1); // on x64, should compile to BLSI (careful: the Intel compiler seems to fail)
UInt32 r = __builtin_ctzll(w); // on x64, should compile to TZCNT
UInt32 val = r + base;
writePODBinary(val, dbBuf);
outpos++;
w ^= t;
}
base += 64;
}
return outpos;
}
int db_array_container_to_uint32_array(DB::WriteBuffer & dbBuf, const array_container_t * cont, UInt32 base) const
{
UInt32 outpos = 0;
for (Int32 i = 0; i < cont->cardinality; ++i)
{
const UInt32 val = base + cont->array[i];
writePODBinary(val, dbBuf);
outpos++;
}
return outpos;
}
int db_run_container_to_uint32_array(DB::WriteBuffer & dbBuf, const run_container_t * cont, UInt32 base) const
{
UInt32 outpos = 0;
for (Int32 i = 0; i < cont->n_runs; ++i)
{
UInt32 run_start = base + cont->runs[i].value;
UInt16 le = cont->runs[i].length;
for (Int32 j = 0; j <= le; ++j)
{
UInt32 val = run_start + j;
writePODBinary(val, dbBuf);
outpos++;
}
}
return outpos;
}
};
template <typename T>
struct AggregateFunctionGroupBitmapData
{
bool doneFirst = false;
RoaringBitmapWithSmallSet<T, 32> rbs;
static const char * name() { return "groupBitmap"; }
};
}