ClickHouse/src/Functions/modulo.cpp
Danila Kutenin 08e3f77a9c Optimize most important parts with NEON SIMD
First part, updated most UTF8, hashing, memory and codecs. Except
utf8lower and upper, maybe a little later.

That includes huge amount of research with movemask dealing. Exact
details and blog post TBD.
2022-06-15 13:19:29 +00:00

180 lines
6.8 KiB
C++

#include <Functions/FunctionFactory.h>
#include <Functions/FunctionBinaryArithmetic.h>
#if defined(__SSE2__)
# define LIBDIVIDE_SSE2
#elif defined(__AVX512F__) || defined(__AVX512BW__) || defined(__AVX512VL__)
# define LIBDIVIDE_AVX512
#elif defined(__AVX2__)
# define LIBDIVIDE_AVX2
#elif defined(__aarch64__) && defined(__ARM_NEON)
# define LIBDIVIDE_NEON
#endif
#include <libdivide.h>
namespace DB
{
namespace ErrorCodes
{
extern const int ILLEGAL_DIVISION;
}
namespace
{
/// Optimizations for integer modulo by a constant.
template <typename A, typename B>
struct ModuloByConstantImpl
: BinaryOperation<A, B, ModuloImpl<A, B>>
{
using Op = ModuloImpl<A, B>;
using ResultType = typename Op::ResultType;
static const constexpr bool allow_fixed_string = false;
static const constexpr bool allow_string_integer = false;
template <OpCase op_case>
static void NO_INLINE process(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t size, const NullMap * right_nullmap)
{
if constexpr (op_case == OpCase::RightConstant)
{
if (right_nullmap && (*right_nullmap)[0])
return;
vectorConstant(a, *b, c, size);
}
else
{
if (right_nullmap)
{
for (size_t i = 0; i < size; ++i)
if ((*right_nullmap)[i])
c[i] = ResultType();
else
apply<op_case>(a, b, c, i);
}
else
for (size_t i = 0; i < size; ++i)
apply<op_case>(a, b, c, i);
}
}
static ResultType process(A a, B b) { return Op::template apply<ResultType>(a, b); }
static void NO_INLINE NO_SANITIZE_UNDEFINED vectorConstant(const A * __restrict src, B b, ResultType * __restrict dst, size_t size)
{
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wsign-compare"
/// Modulo with too small divisor.
if (unlikely((std::is_signed_v<B> && b == -1) || b == 1))
{
for (size_t i = 0; i < size; ++i)
dst[i] = 0;
return;
}
/// Modulo with too large divisor.
if (unlikely(b > std::numeric_limits<A>::max()
|| (std::is_signed_v<A> && std::is_signed_v<B> && b < std::numeric_limits<A>::lowest())))
{
for (size_t i = 0; i < size; ++i)
dst[i] = src[i];
return;
}
#pragma GCC diagnostic pop
if (unlikely(static_cast<A>(b) == 0))
throw Exception("Division by zero", ErrorCodes::ILLEGAL_DIVISION);
/// Division by min negative value.
if (std::is_signed_v<B> && b == std::numeric_limits<B>::lowest())
throw Exception("Division by the most negative number", ErrorCodes::ILLEGAL_DIVISION);
/// Modulo of division by negative number is the same as the positive number.
if (b < 0)
b = -b;
/// Here we failed to make the SSE variant from libdivide give an advantage.
if (b & (b - 1))
{
libdivide::divider<A> divider(b);
for (size_t i = 0; i < size; ++i)
dst[i] = src[i] - (src[i] / divider) * b; /// NOTE: perhaps, the division semantics with the remainder of negative numbers is not preserved.
}
else
{
// gcc libdivide doesn't work well for pow2 division
auto mask = b - 1;
for (size_t i = 0; i < size; ++i)
dst[i] = src[i] & mask;
}
}
private:
template <OpCase op_case>
static inline void apply(const A * __restrict a, const B * __restrict b, ResultType * __restrict c, size_t i)
{
if constexpr (op_case == OpCase::Vector)
c[i] = Op::template apply<ResultType>(a[i], b[i]);
else
c[i] = Op::template apply<ResultType>(*a, b[i]);
}
};
template <typename A, typename B>
struct ModuloLegacyByConstantImpl : ModuloByConstantImpl<A, B>
{
using Op = ModuloLegacyImpl<A, B>;
};
}
/** Specializations are specified for dividing numbers of the type UInt64 and UInt32 by the numbers of the same sign.
* Can be expanded to all possible combinations, but more code is needed.
*/
namespace impl_
{
template <> struct BinaryOperationImpl<UInt64, UInt8, ModuloImpl<UInt64, UInt8>> : ModuloByConstantImpl<UInt64, UInt8> {};
template <> struct BinaryOperationImpl<UInt64, UInt16, ModuloImpl<UInt64, UInt16>> : ModuloByConstantImpl<UInt64, UInt16> {};
template <> struct BinaryOperationImpl<UInt64, UInt32, ModuloImpl<UInt64, UInt32>> : ModuloByConstantImpl<UInt64, UInt32> {};
template <> struct BinaryOperationImpl<UInt64, UInt64, ModuloImpl<UInt64, UInt64>> : ModuloByConstantImpl<UInt64, UInt64> {};
template <> struct BinaryOperationImpl<UInt32, UInt8, ModuloImpl<UInt32, UInt8>> : ModuloByConstantImpl<UInt32, UInt8> {};
template <> struct BinaryOperationImpl<UInt32, UInt16, ModuloImpl<UInt32, UInt16>> : ModuloByConstantImpl<UInt32, UInt16> {};
template <> struct BinaryOperationImpl<UInt32, UInt32, ModuloImpl<UInt32, UInt32>> : ModuloByConstantImpl<UInt32, UInt32> {};
template <> struct BinaryOperationImpl<UInt32, UInt64, ModuloImpl<UInt32, UInt64>> : ModuloByConstantImpl<UInt32, UInt64> {};
template <> struct BinaryOperationImpl<Int64, Int8, ModuloImpl<Int64, Int8>> : ModuloByConstantImpl<Int64, Int8> {};
template <> struct BinaryOperationImpl<Int64, Int16, ModuloImpl<Int64, Int16>> : ModuloByConstantImpl<Int64, Int16> {};
template <> struct BinaryOperationImpl<Int64, Int32, ModuloImpl<Int64, Int32>> : ModuloByConstantImpl<Int64, Int32> {};
template <> struct BinaryOperationImpl<Int64, Int64, ModuloImpl<Int64, Int64>> : ModuloByConstantImpl<Int64, Int64> {};
template <> struct BinaryOperationImpl<Int32, Int8, ModuloImpl<Int32, Int8>> : ModuloByConstantImpl<Int32, Int8> {};
template <> struct BinaryOperationImpl<Int32, Int16, ModuloImpl<Int32, Int16>> : ModuloByConstantImpl<Int32, Int16> {};
template <> struct BinaryOperationImpl<Int32, Int32, ModuloImpl<Int32, Int32>> : ModuloByConstantImpl<Int32, Int32> {};
template <> struct BinaryOperationImpl<Int32, Int64, ModuloImpl<Int32, Int64>> : ModuloByConstantImpl<Int32, Int64> {};
}
struct NameModulo { static constexpr auto name = "modulo"; };
using FunctionModulo = BinaryArithmeticOverloadResolver<ModuloImpl, NameModulo, false>;
void registerFunctionModulo(FunctionFactory & factory)
{
factory.registerFunction<FunctionModulo>();
factory.registerAlias("mod", "modulo", FunctionFactory::CaseInsensitive);
}
struct NameModuloLegacy { static constexpr auto name = "moduloLegacy"; };
using FunctionModuloLegacy = BinaryArithmeticOverloadResolver<ModuloLegacyImpl, NameModuloLegacy, false>;
void registerFunctionModuloLegacy(FunctionFactory & factory)
{
factory.registerFunction<FunctionModuloLegacy>();
}
}